Commit a8fe22801cb7abdca543ea6b592a7b058475d5de

Authored by Paweł Morawiecki
1 parent 87c8a521

Short tutorial how to evaluate test examples

Showing 1 changed file with 188 additions and 0 deletions
for_investigation.ipynb 0 → 100644
  1 +{
  2 + "cells": [
  3 + {
  4 + "cell_type": "code",
  5 + "execution_count": 1,
  6 + "metadata": {},
  7 + "outputs": [
  8 + {
  9 + "name": "stderr",
  10 + "output_type": "stream",
  11 + "text": [
  12 + "Using TensorFlow backend.\n"
  13 + ]
  14 + }
  15 + ],
  16 + "source": [
  17 + "from keras.models import Model\n",
  18 + "from keras.layers import Input, Dense, Dropout, Activation, BatchNormalization\n",
  19 + "from keras.optimizers import SGD, Adam\n",
  20 + "import numpy as np"
  21 + ]
  22 + },
  23 + {
  24 + "cell_type": "code",
  25 + "execution_count": 2,
  26 + "metadata": {
  27 + "collapsed": true
  28 + },
  29 + "outputs": [],
  30 + "source": [
  31 + "filename = 'test_set.csv'\n",
  32 + "raw_data = open(filename, 'rt')\n",
  33 + "test_data = np.loadtxt(raw_data, delimiter= '\\t')"
  34 + ]
  35 + },
  36 + {
  37 + "cell_type": "code",
  38 + "execution_count": 3,
  39 + "metadata": {
  40 + "collapsed": true
  41 + },
  42 + "outputs": [],
  43 + "source": [
  44 + "number_of_features = 1126\n",
  45 + "test_set = test_data[:,0:1126]\n",
  46 + "test_labels = test_data[:,1126] #last column consists of labels"
  47 + ]
  48 + },
  49 + {
  50 + "cell_type": "markdown",
  51 + "metadata": {},
  52 + "source": [
  53 + "# Neural network configuration"
  54 + ]
  55 + },
  56 + {
  57 + "cell_type": "code",
  58 + "execution_count": 4,
  59 + "metadata": {
  60 + "collapsed": true
  61 + },
  62 + "outputs": [],
  63 + "source": [
  64 + "inputs = Input(shape=(number_of_features,))\n",
  65 + "output_from_1st_layer = Dense(1000, activation='relu')(inputs)\n",
  66 + "output_from_1st_layer = Dropout(0.5)(output_from_1st_layer)\n",
  67 + "output_from_1st_layer = BatchNormalization()(output_from_1st_layer)\n",
  68 + "output_from_2nd_layer = Dense(500, activation='relu')(output_from_1st_layer)\n",
  69 + "output_from_2nd_layer = Dropout(0.5)(output_from_2nd_layer)\n",
  70 + "output_from_2nd_layer = BatchNormalization()(output_from_2nd_layer)\n",
  71 + "output = Dense(1, activation='sigmoid')(output_from_2nd_layer)\n",
  72 + "\n",
  73 + "model = Model(inputs, output)\n",
  74 + "model.compile(optimizer='Adam',loss='binary_crossentropy',metrics=['accuracy'])"
  75 + ]
  76 + },
  77 + {
  78 + "cell_type": "markdown",
  79 + "metadata": {},
  80 + "source": [
  81 + "Let's load weights learnt earlier"
  82 + ]
  83 + },
  84 + {
  85 + "cell_type": "code",
  86 + "execution_count": 5,
  87 + "metadata": {
  88 + "collapsed": true
  89 + },
  90 + "outputs": [],
  91 + "source": [
  92 + "model.load_weights(\"weights_2017_05_10.h5\")"
  93 + ]
  94 + },
  95 + {
  96 + "cell_type": "markdown",
  97 + "metadata": {},
  98 + "source": [
  99 + "# Evaluation"
  100 + ]
  101 + },
  102 + {
  103 + "cell_type": "markdown",
  104 + "metadata": {},
  105 + "source": [
  106 + "First, calculate predictions for test set"
  107 + ]
  108 + },
  109 + {
  110 + "cell_type": "code",
  111 + "execution_count": 6,
  112 + "metadata": {
  113 + "collapsed": true
  114 + },
  115 + "outputs": [],
  116 + "source": [
  117 + " predictions = model.predict(test_set)"
  118 + ]
  119 + },
  120 + {
  121 + "cell_type": "markdown",
  122 + "metadata": {},
  123 + "source": [
  124 + "Now we can calculate basic metrics"
  125 + ]
  126 + },
  127 + {
  128 + "cell_type": "code",
  129 + "execution_count": 7,
  130 + "metadata": {},
  131 + "outputs": [
  132 + {
  133 + "name": "stdout",
  134 + "output_type": "stream",
  135 + "text": [
  136 + "Accuracy:0.7316259444607988\n",
  137 + "Precision: 0.7378337531486147\n",
  138 + "Recall: 0.7185752134236091\n",
  139 + "F1: 0.7280771525154107\n"
  140 + ]
  141 + }
  142 + ],
  143 + "source": [
  144 + " true_positives = 0.0\n",
  145 + " false_positives = 0.0\n",
  146 + " true_negatives = 0.0\n",
  147 + " false_negatives = 0.0\n",
  148 + "\n",
  149 + " for i in range(len(test_set)):\n",
  150 + " if (predictions[i]<0.5 and test_labels[i]==0): true_negatives += 1 \n",
  151 + " if (predictions[i]<0.5 and test_labels[i]==1): false_negatives += 1\n",
  152 + " if (predictions[i]>=0.5 and test_labels[i]==1): true_positives += 1\n",
  153 + " if (predictions[i]>=0.5 and test_labels[i]==0): false_positives += 1 \n",
  154 + " \n",
  155 + " accuracy = (true_positives+true_negatives)/len(test_set)\n",
  156 + " precision = true_positives/(true_positives+false_positives)\n",
  157 + " recall = true_positives/(true_positives+false_negatives)\n",
  158 + " f1 = 2*(precision*recall)/(precision+recall)\n",
  159 + "\n",
  160 + " print ('Accuracy:' + repr(accuracy))\n",
  161 + " print ('Precision: ' + repr(precision))\n",
  162 + " print ('Recall: ' + repr(recall))\n",
  163 + " print ('F1: ' + repr(f1))"
  164 + ]
  165 + }
  166 + ],
  167 + "metadata": {
  168 + "kernelspec": {
  169 + "display_name": "Python 2",
  170 + "language": "python",
  171 + "name": "python2"
  172 + },
  173 + "language_info": {
  174 + "codemirror_mode": {
  175 + "name": "ipython",
  176 + "version": 2
  177 + },
  178 + "file_extension": ".py",
  179 + "mimetype": "text/x-python",
  180 + "name": "python",
  181 + "nbconvert_exporter": "python",
  182 + "pygments_lexer": "ipython2",
  183 + "version": "2.7.6"
  184 + }
  185 + },
  186 + "nbformat": 4,
  187 + "nbformat_minor": 2
  188 +}
... ...