Commit 87c8a5217622d56975dd60990bde7a6e7ebd9ea5
1 parent
07ecdd41
10-fold cross validation of the model
Showing
1 changed file
with
207 additions
and
0 deletions
cross_validation.ipynb
0 → 100644
1 | +{ | |
2 | + "cells": [ | |
3 | + { | |
4 | + "cell_type": "code", | |
5 | + "execution_count": null, | |
6 | + "metadata": { | |
7 | + "collapsed": false, | |
8 | + "deletable": true, | |
9 | + "editable": true | |
10 | + }, | |
11 | + "outputs": [], | |
12 | + "source": [ | |
13 | + "from keras.models import Model\n", | |
14 | + "from keras.layers import Input, Dense, Dropout, Activation, BatchNormalization\n", | |
15 | + "from keras.optimizers import SGD, Adam\n", | |
16 | + "import numpy as np\n", | |
17 | + "from sklearn.model_selection import StratifiedKFold" | |
18 | + ] | |
19 | + }, | |
20 | + { | |
21 | + "cell_type": "markdown", | |
22 | + "metadata": { | |
23 | + "deletable": true, | |
24 | + "editable": true | |
25 | + }, | |
26 | + "source": [ | |
27 | + "# Preparing data" | |
28 | + ] | |
29 | + }, | |
30 | + { | |
31 | + "cell_type": "code", | |
32 | + "execution_count": null, | |
33 | + "metadata": { | |
34 | + "collapsed": true, | |
35 | + "deletable": true, | |
36 | + "editable": true | |
37 | + }, | |
38 | + "outputs": [], | |
39 | + "source": [ | |
40 | + "filename = 'input_data.csv'\n", | |
41 | + "raw_data = open(filename, 'rt')\n", | |
42 | + "data = np.loadtxt(raw_data, delimiter= '\\t')" | |
43 | + ] | |
44 | + }, | |
45 | + { | |
46 | + "cell_type": "code", | |
47 | + "execution_count": null, | |
48 | + "metadata": { | |
49 | + "collapsed": false, | |
50 | + "deletable": true, | |
51 | + "editable": true | |
52 | + }, | |
53 | + "outputs": [], | |
54 | + "source": [ | |
55 | + "print data.shape" | |
56 | + ] | |
57 | + }, | |
58 | + { | |
59 | + "cell_type": "markdown", | |
60 | + "metadata": { | |
61 | + "deletable": true, | |
62 | + "editable": true | |
63 | + }, | |
64 | + "source": [ | |
65 | + "Our dataset consists of ~466K examples (pairs of mentions), each example described by 1126 features. Labels say whether a pair belongs to the same cluster (1) or not (0)." | |
66 | + ] | |
67 | + }, | |
68 | + { | |
69 | + "cell_type": "code", | |
70 | + "execution_count": null, | |
71 | + "metadata": { | |
72 | + "collapsed": true, | |
73 | + "deletable": true, | |
74 | + "editable": true | |
75 | + }, | |
76 | + "outputs": [], | |
77 | + "source": [ | |
78 | + "size_of_dataset = 466852\n", | |
79 | + "number_of_features = 1126\n", | |
80 | + "\n", | |
81 | + "X = data[:,0:1126]\n", | |
82 | + "Y = data[:,1126] #last column consists of labels\n" | |
83 | + ] | |
84 | + }, | |
85 | + { | |
86 | + "cell_type": "markdown", | |
87 | + "metadata": { | |
88 | + "deletable": true, | |
89 | + "editable": true | |
90 | + }, | |
91 | + "source": [ | |
92 | + "# 10-fold cross validation of the neural network model" | |
93 | + ] | |
94 | + }, | |
95 | + { | |
96 | + "cell_type": "code", | |
97 | + "execution_count": null, | |
98 | + "metadata": { | |
99 | + "collapsed": false, | |
100 | + "deletable": true, | |
101 | + "editable": true | |
102 | + }, | |
103 | + "outputs": [], | |
104 | + "source": [ | |
105 | + "seed = 1\n", | |
106 | + "kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)\n", | |
107 | + "cvscores = []\n", | |
108 | + "precision_scores = []\n", | |
109 | + "recall_scores = []\n", | |
110 | + "f1_scores = []\n", | |
111 | + "\n", | |
112 | + "for train, test in kfold.split(X, Y):\n", | |
113 | + "\n", | |
114 | + " inputs = Input(shape=(number_of_features,))\n", | |
115 | + " output_from_1st_layer = Dense(1000, activation='relu')(inputs)\n", | |
116 | + " output_from_1st_layer = Dropout(0.5)(output_from_1st_layer)\n", | |
117 | + " output_from_1st_layer = BatchNormalization()(output_from_1st_layer)\n", | |
118 | + " output_from_2nd_layer = Dense(500, activation='relu')(output_from_1st_layer)\n", | |
119 | + " output_from_2nd_layer = Dropout(0.5)(output_from_2nd_layer)\n", | |
120 | + " output_from_2nd_layer = BatchNormalization()(output_from_2nd_layer)\n", | |
121 | + " output = Dense(1, activation='sigmoid')(output_from_2nd_layer)\n", | |
122 | + "\n", | |
123 | + " model = Model(inputs, output)\n", | |
124 | + " model.compile(optimizer='Adam',loss='binary_crossentropy',metrics=['accuracy'])\n", | |
125 | + " model.fit(X[train], Y[train], batch_size=256, nb_epoch=25)\n", | |
126 | + " \n", | |
127 | + " # evaluate the model\n", | |
128 | + " scores = model.evaluate(X[test], Y[test])\n", | |
129 | + " print(\"%s: %.2f%%\" % (model.metrics_names[1], scores[1]*100))\n", | |
130 | + " cvscores.append(scores[1] * 100)\n", | |
131 | + "\n", | |
132 | + " #calculate other metrics: precision, recall, f1\n", | |
133 | + " predictions = model.predict(X[test])\n", | |
134 | + " true_positives = 0.0\n", | |
135 | + " false_positives = 0.0\n", | |
136 | + " true_negatives = 0.0\n", | |
137 | + " false_negatives = 0.0\n", | |
138 | + "\n", | |
139 | + " for i in range(len(X[test])):\n", | |
140 | + " if (predictions[i]<0.5 and Y[test][i]==0): true_negatives += 1 \n", | |
141 | + " if (predictions[i]<0.5 and Y[test][i]==1): false_negatives += 1\n", | |
142 | + " if (predictions[i]>=0.5 and Y[test][i]==1): true_positives += 1\n", | |
143 | + " if (predictions[i]>=0.5 and Y[test][i]==0): false_positives += 1 \n", | |
144 | + " \n", | |
145 | + " precision = true_positives/(true_positives+false_positives)\n", | |
146 | + " recall = true_positives/(true_positives+false_negatives)\n", | |
147 | + " f1 = 2*(precision*recall)/(precision+recall)\n", | |
148 | + "\n", | |
149 | + " precision_scores.append(precision)\n", | |
150 | + " recall_scores.append(recall)\n", | |
151 | + " f1_scores.append(f1)\n", | |
152 | + "\n", | |
153 | + " print ('Precision: ' + repr(precision))\n", | |
154 | + " print ('Recall: ' + repr(recall))\n", | |
155 | + " print ('F1: ' + repr(f1))" | |
156 | + ] | |
157 | + }, | |
158 | + { | |
159 | + "cell_type": "markdown", | |
160 | + "metadata": { | |
161 | + "collapsed": false, | |
162 | + "deletable": true, | |
163 | + "editable": true | |
164 | + }, | |
165 | + "source": [ | |
166 | + "# Summary" | |
167 | + ] | |
168 | + }, | |
169 | + { | |
170 | + "cell_type": "code", | |
171 | + "execution_count": null, | |
172 | + "metadata": { | |
173 | + "collapsed": true, | |
174 | + "deletable": true, | |
175 | + "editable": true | |
176 | + }, | |
177 | + "outputs": [], | |
178 | + "source": [ | |
179 | + "print(\"%.2f%% (+/- %.2f%%)\" % (np.mean(cvscores), np.std(cvscores)))\n", | |
180 | + "print(\"%.2f%% (+/- %.2f%%)\" % (np.mean(precision_scores), np.std(precision_scores)))\n", | |
181 | + "print(\"%.2f%% (+/- %.2f%%)\" % (np.mean(recall_scores), np.std(recall_scores)))\n", | |
182 | + "print(\"%.2f%% (+/- %.2f%%)\" % (np.mean(f1_scores), np.std(f1_scores)))" | |
183 | + ] | |
184 | + } | |
185 | + ], | |
186 | + "metadata": { | |
187 | + "kernelspec": { | |
188 | + "display_name": "Python 2", | |
189 | + "language": "python", | |
190 | + "name": "python2" | |
191 | + }, | |
192 | + "language_info": { | |
193 | + "codemirror_mode": { | |
194 | + "name": "ipython", | |
195 | + "version": 2 | |
196 | + }, | |
197 | + "file_extension": ".py", | |
198 | + "mimetype": "text/x-python", | |
199 | + "name": "python", | |
200 | + "nbconvert_exporter": "python", | |
201 | + "pygments_lexer": "ipython2", | |
202 | + "version": "2.7.10" | |
203 | + } | |
204 | + }, | |
205 | + "nbformat": 4, | |
206 | + "nbformat_minor": 2 | |
207 | +} | |
... | ... |