diff --git a/for_investigation.ipynb b/for_investigation.ipynb new file mode 100644 index 0000000..3e3e95e --- /dev/null +++ b/for_investigation.ipynb @@ -0,0 +1,188 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "from keras.models import Model\n", + "from keras.layers import Input, Dense, Dropout, Activation, BatchNormalization\n", + "from keras.optimizers import SGD, Adam\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "filename = 'test_set.csv'\n", + "raw_data = open(filename, 'rt')\n", + "test_data = np.loadtxt(raw_data, delimiter= '\\t')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "number_of_features = 1126\n", + "test_set = test_data[:,0:1126]\n", + "test_labels = test_data[:,1126] #last column consists of labels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Neural network configuration" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "inputs = Input(shape=(number_of_features,))\n", + "output_from_1st_layer = Dense(1000, activation='relu')(inputs)\n", + "output_from_1st_layer = Dropout(0.5)(output_from_1st_layer)\n", + "output_from_1st_layer = BatchNormalization()(output_from_1st_layer)\n", + "output_from_2nd_layer = Dense(500, activation='relu')(output_from_1st_layer)\n", + "output_from_2nd_layer = Dropout(0.5)(output_from_2nd_layer)\n", + "output_from_2nd_layer = BatchNormalization()(output_from_2nd_layer)\n", + "output = Dense(1, activation='sigmoid')(output_from_2nd_layer)\n", + "\n", + "model = Model(inputs, output)\n", + "model.compile(optimizer='Adam',loss='binary_crossentropy',metrics=['accuracy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's load weights learnt earlier" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "model.load_weights(\"weights_2017_05_10.h5\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Evaluation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, calculate predictions for test set" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + " predictions = model.predict(test_set)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can calculate basic metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy:0.7316259444607988\n", + "Precision: 0.7378337531486147\n", + "Recall: 0.7185752134236091\n", + "F1: 0.7280771525154107\n" + ] + } + ], + "source": [ + " true_positives = 0.0\n", + " false_positives = 0.0\n", + " true_negatives = 0.0\n", + " false_negatives = 0.0\n", + "\n", + " for i in range(len(test_set)):\n", + " if (predictions[i]<0.5 and test_labels[i]==0): true_negatives += 1 \n", + " if (predictions[i]<0.5 and test_labels[i]==1): false_negatives += 1\n", + " if (predictions[i]>=0.5 and test_labels[i]==1): true_positives += 1\n", + " if (predictions[i]>=0.5 and test_labels[i]==0): false_positives += 1 \n", + " \n", + " accuracy = (true_positives+true_negatives)/len(test_set)\n", + " precision = true_positives/(true_positives+false_positives)\n", + " recall = true_positives/(true_positives+false_negatives)\n", + " f1 = 2*(precision*recall)/(precision+recall)\n", + "\n", + " print ('Accuracy:' + repr(accuracy))\n", + " print ('Precision: ' + repr(precision))\n", + " print ('Recall: ' + repr(recall))\n", + " print ('F1: ' + repr(f1))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}