preparator.py
20.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
# -*- coding: utf-8 -*-
import codecs
import numpy
import os
import random
from lxml import etree
from itertools import combinations
from natsort import natsorted
from gensim.models.word2vec import Word2Vec
TEST_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), 'data', 'test-prepared'))
TRAIN_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), 'data', 'train-prepared'))
ANNO_PATH = TEST_PATH
OUT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), 'data',
'test.csv'))
EACH_TEXT_SEPARATELLY = False
CONTEXT = 5
W2V_SIZE = 50
MODEL = os.path.abspath(os.path.join(os.path.dirname(__file__), 'models',
'%d' % W2V_SIZE,
'w2v_allwiki_nkjpfull_%d.model' % W2V_SIZE))
POSSIBLE_HEADS = [u'§', u'%', u'*', u'"', u'„', u'&', u'-']
NEG_PROPORTION = 1
RANDOM_VECTORS = True
DEBUG = False
POS_COUNT = 0
NEG_COUNT = 0
ALL_WORDS = 0
UNKNONW_WORDS = 0
def main():
model = Word2Vec.load(MODEL)
try:
create_data_vectors(model)
finally:
print 'Unknown words: ', UNKNONW_WORDS
print 'All words: ', ALL_WORDS
print 'Positives: ', POS_COUNT
print 'Negatives: ', NEG_COUNT
def create_data_vectors(model):
features_file = None
if not EACH_TEXT_SEPARATELLY:
features_file = codecs.open(OUT_PATH, 'wt', 'utf-8')
anno_files = os.listdir(ANNO_PATH)
anno_files = natsorted(anno_files)
for filename in anno_files:
if filename.endswith('.mmax'):
print '=======> ', filename
textname = filename.replace('.mmax', '')
mentions_path = os.path.join(ANNO_PATH, '%s_mentions.xml' % textname)
tree = etree.parse(mentions_path)
mentions = tree.xpath("//ns:markable", namespaces={'ns': 'www.eml.org/NameSpaces/mention'})
positives, negatives = diff_mentions(mentions)
if DEBUG:
print 'Positives:'
print len(positives)
print 'Negatives:'
print len(negatives)
words_path = os.path.join(ANNO_PATH, '%s_words.xml' % textname)
mentions_dict = markables_level_2_dict(mentions_path, words_path)
if EACH_TEXT_SEPARATELLY:
text_features_path = os.path.join(OUT_PATH, '%s.csv' % textname)
features_file = codecs.open(text_features_path, 'wt', 'utf-8')
write_features(features_file, positives, negatives, mentions_dict, model, textname)
if not EACH_TEXT_SEPARATELLY:
features_file.close()
def diff_mentions(mentions):
sets, clustered_mensions = get_sets(mentions)
positives = get_positives(sets)
positives, negatives = get_negatives_and_update_positives(clustered_mensions, positives)
if len(negatives) != len(positives) and NEG_PROPORTION == 1:
print u'Niezgodna liczba przypadków pozytywnych i negatywnych!'
return positives, negatives
def get_sets(mentions):
sets = {}
clustered_mensions = []
for mention in mentions:
set_id = mention.attrib['mention_group']
if set_id == 'empty' or set_id == '' or mention.attrib['mention_head'] in POSSIBLE_HEADS:
pass
elif set_id not in sets:
sets[set_id] = [mention.attrib['span']]
clustered_mensions.append(mention.attrib['span'])
elif set_id in sets:
sets[set_id].append(mention.attrib['span'])
clustered_mensions.append(mention.attrib['span'])
else:
print u'Coś poszło nie tak przy wyszukiwaniu klastrów!'
sets_to_remove = []
for set_id in sets:
if len(sets[set_id]) < 2:
sets_to_remove.append(set_id)
if len(sets[set_id]) == 1:
print u'Removing clustered mention: ', sets[set_id][0]
clustered_mensions.remove(sets[set_id][0])
for set_id in sets_to_remove:
print u'Removing set: ', set_id
sets.pop(set_id)
return sets, clustered_mensions
def get_positives(sets):
positives = []
for set_id in sets:
coref_set = sets[set_id]
positives.extend(list(combinations(coref_set, 2)))
return positives
def get_negatives_and_update_positives(clustered_mensions, positives):
all_pairs = list(combinations(clustered_mensions, 2))
all_pairs = set(all_pairs)
negatives = [pair for pair in all_pairs if pair not in positives]
samples_count = NEG_PROPORTION * len(positives)
if samples_count > len(negatives):
samples_count = len(negatives)
if NEG_PROPORTION == 1:
positives = random.sample(set(positives), samples_count)
print u'Więcej przypadków pozytywnych niż negatywnych!'
negatives = random.sample(set(negatives), samples_count)
return positives, negatives
def write_features(features_file, positives, negatives, mentions_dict, model, textname):
global POS_COUNT
POS_COUNT += len(positives)
for pair in positives:
pair_features = []
if DEBUG:
pair_features = ['%s>%s:%s' % (textname, pair[0], pair[1])]
pair_features.extend(get_features(pair, mentions_dict, model))
pair_features.append(1)
features_file.write(u'%s\n' % u'\t'.join([unicode(feature) for feature in pair_features]))
global NEG_COUNT
NEG_COUNT += len(negatives)
for pair in negatives:
pair_features = []
if DEBUG:
pair_features = ['%s>%s:%s' % (textname, pair[0], pair[1])]
pair_features.extend(get_features(pair, mentions_dict, model))
pair_features.append(0)
features_file.write(u'%s\n' % u'\t'.join([unicode(feature) for feature in pair_features]))
def get_features(pair, mentions_dict, model):
features = []
ante = pair[0]
ana = pair[1]
ante_features = get_mention_features(ante, mentions_dict, model)
features.extend(ante_features)
ana_features = get_mention_features(ana, mentions_dict, model)
features.extend(ana_features)
pair_features = get_pair_features(pair, mentions_dict)
features.extend(pair_features)
return features
def get_mention_features(mention_span, mentions_dict, model):
features = []
mention = get_mention_by_attr(mentions_dict, 'span', mention_span)
if DEBUG:
features.append(mention['head_base'])
head_vec = get_wv(model, mention['head_base'])
features.extend(list(head_vec))
if DEBUG:
features.append(mention['words'][0]['base'])
first_vec = get_wv(model, mention['words'][0]['base'])
features.extend(list(first_vec))
if DEBUG:
features.append(mention['words'][-1]['base'])
last_vec = get_wv(model, mention['words'][-1]['base'])
features.extend(list(last_vec))
if len(mention['follow_context']) > 0:
if DEBUG:
features.append(mention['follow_context'][0]['base'])
after_1_vec = get_wv(model, mention['follow_context'][0]['base'])
features.extend(list(after_1_vec))
else:
if DEBUG:
features.append('None')
features.extend([0.0] * W2V_SIZE)
if len(mention['follow_context']) > 1:
if DEBUG:
features.append(mention['follow_context'][1]['base'])
after_2_vec = get_wv(model, mention['follow_context'][1]['base'])
features.extend(list(after_2_vec))
else:
if DEBUG:
features.append('None')
features.extend([0.0] * W2V_SIZE)
if len(mention['prec_context']) > 0:
if DEBUG:
features.append(mention['prec_context'][-1]['base'])
prec_1_vec = get_wv(model, mention['prec_context'][-1]['base'])
features.extend(list(prec_1_vec))
else:
if DEBUG:
features.append('None')
features.extend([0.0] * W2V_SIZE)
if len(mention['prec_context']) > 1:
if DEBUG:
features.append(mention['prec_context'][-2]['base'])
prec_2_vec = get_wv(model, mention['prec_context'][-2]['base'])
features.extend(list(prec_2_vec))
else:
if DEBUG:
features.append('None')
features.extend([0.0] * W2V_SIZE)
if DEBUG:
features.append(u' '.join([word['orth'] for word in mention['prec_context']]))
prec_vec = get_context_vec(mention['prec_context'], model)
features.extend(list(prec_vec))
if DEBUG:
features.append(u' '.join([word['orth'] for word in mention['follow_context']]))
follow_vec = get_context_vec(mention['follow_context'], model)
features.extend(list(follow_vec))
if DEBUG:
features.append(u' '.join([word['orth'] for word in mention['words']]))
mention_vec = get_context_vec(mention['words'], model)
features.extend(list(mention_vec))
if DEBUG:
features.append(u' '.join([word['orth'] for word in mention['sentence']]))
sentence_vec = get_context_vec(mention['sentence'], model)
features.extend(list(sentence_vec))
return features
def get_wv(model, lemma, random=True):
global ALL_WORDS
global UNKNONW_WORDS
vec = None
if random:
vec = random_vec()
ALL_WORDS += 1
try:
vec = model.wv[lemma]
except KeyError:
UNKNONW_WORDS += 1
return vec
def random_vec():
return numpy.asarray([random.uniform(-0.25, 0.25) for i in range(0, W2V_SIZE)], dtype=numpy.float32)
def get_context_vec(words, model):
vec = numpy.zeros(W2V_SIZE, dtype=numpy.float32)
unknown_count = 0
if len(words) != 0:
for word in words:
word_vec = get_wv(model, word['base'], RANDOM_VECTORS)
if word_vec is None:
unknown_count += 1
else:
vec += word_vec
significant_words = len(words) - unknown_count
if significant_words != 0:
vec = vec/float(significant_words)
else:
vec = random_vec()
return vec
def get_pair_features(pair, mentions_dict):
ante = get_mention_by_attr(mentions_dict, 'span', pair[0])
ana = get_mention_by_attr(mentions_dict, 'span', pair[1])
features = []
mnts_intersect = pair_intersect(ante, ana)
words_dist = [0] * 11
words_bucket = 0
if mnts_intersect != 1:
words_bucket = get_distance_bucket(ana['start_in_words'] - ante['end_in_words'] - 1)
if DEBUG:
features.append('Bucket %d' % words_bucket)
words_dist[words_bucket] = 1
features.extend(words_dist)
mentions_dist = [0] * 11
mentions_bucket = 0
if mnts_intersect != 1:
mentions_bucket = get_distance_bucket(ana['position_in_mentions'] - ante['position_in_mentions'] - 1)
if words_bucket == 10:
mentions_bucket = 10
if DEBUG:
features.append('Bucket %d' % mentions_bucket)
mentions_dist[mentions_bucket] = 1
features.extend(mentions_dist)
if DEBUG:
features.append('Other features')
features.append(mnts_intersect)
features.append(head_match(ante, ana))
features.append(exact_match(ante, ana))
features.append(base_match(ante, ana))
if len(mentions_dict) > 100:
features.append(1)
else:
features.append(0)
return features
def get_distance_bucket(distance):
if distance >= 0 and distance <= 4:
return distance
elif distance >= 5 and distance <= 7:
return 5
elif distance >= 8 and distance <= 15:
return 6
elif distance >= 16 and distance <= 31:
return 7
elif distance >= 32 and distance <= 63:
return 8
elif distance >= 64:
return 9
else:
print u'Coś poszło nie tak przy kubełkowaniu!!'
return 10
def pair_intersect(ante, ana):
for ante_word in ante['words']:
for ana_word in ana['words']:
if ana_word['id'] == ante_word['id']:
return 1
return 0
def head_match(ante, ana):
if ante['head_orth'].lower() == ana['head_orth'].lower():
return 1
return 0
def exact_match(ante, ana):
if ante['text'].lower() == ana['text'].lower():
return 1
return 0
def base_match(ante, ana):
if ante['lemmatized_text'].lower() == ana['lemmatized_text'].lower():
return 1
return 0
def markables_level_2_dict(markables_path, words_path, namespace='www.eml.org/NameSpaces/mention'):
markables_dicts = []
markables_tree = etree.parse(markables_path)
markables = markables_tree.xpath("//ns:markable", namespaces={'ns': namespace})
words = get_words(words_path)
for idx, markable in enumerate(markables):
span = markable.attrib['span']
if not get_mention_by_attr(markables_dicts, 'span', span):
dominant = ''
if 'dominant' in markable.attrib:
dominant = markable.attrib['dominant']
head_orth = markable.attrib['mention_head']
if head_orth not in POSSIBLE_HEADS:
mention_words = span_to_words(span, words)
prec_context, follow_context, sentence, mnt_start_position, mnt_end_position = get_context(mention_words, words)
head_base = get_head_base(head_orth, mention_words)
markables_dicts.append({'id': markable.attrib['id'],
'set': markable.attrib['mention_group'],
'text': span_to_text(span, words, 'orth'),
'lemmatized_text': span_to_text(span, words, 'base'),
'words': mention_words,
'span': span,
'head_orth': head_orth,
'head_base': head_base,
'dominant': dominant,
'node': markable,
'prec_context': prec_context,
'follow_context': follow_context,
'sentence': sentence,
'position_in_mentions': idx,
'start_in_words': mnt_start_position,
'end_in_words': mnt_end_position})
else:
print 'Zduplikowana wzmianka: %s' % span
return markables_dicts
def get_context(mention_words, words):
prec_context = []
follow_context = []
sentence = []
mnt_start_position = -1
first_word = mention_words[0]
last_word = mention_words[-1]
for idx, word in enumerate(words):
if word['id'] == first_word['id']:
prec_context = get_prec_context(idx, words)
mnt_start_position = get_mention_start(first_word, words)
if word['id'] == last_word['id']:
follow_context = get_follow_context(idx, words)
sentence = get_sentence(idx, words)
mnt_end_position = get_mention_end(last_word, words)
break
return prec_context, follow_context, sentence, mnt_start_position, mnt_end_position
def get_prec_context(mention_start, words):
context = []
context_start = mention_start - 1
while context_start >= 0:
if not word_to_ignore(words[context_start]):
context.append(words[context_start])
if len(context) == CONTEXT:
break
context_start -= 1
context.reverse()
return context
def get_mention_start(first_word, words):
start = 0
for word in words:
if not word_to_ignore(word):
start += 1
if word['id'] == first_word['id']:
break
return start
def get_mention_end(last_word, words):
end = 0
for word in words:
if not word_to_ignore(word):
end += 1
if word['id'] == last_word['id']:
break
return end
def get_follow_context(mention_end, words):
context = []
context_end = mention_end + 1
while context_end < len(words):
if not word_to_ignore(words[context_end]):
context.append(words[context_end])
if len(context) == CONTEXT:
break
context_end += 1
return context
def get_sentence(word_idx, words):
sentence_start = get_sentence_start(words, word_idx)
sentence_end = get_sentence_end(words, word_idx)
sentence = [word for word in words[sentence_start:sentence_end+1] if not word_to_ignore(word)]
return sentence
def get_sentence_start(words, word_idx):
search_start = word_idx
while word_idx >= 0:
if words[word_idx]['lastinsent'] and search_start != word_idx:
return word_idx+1
word_idx -= 1
return 0
def get_sentence_end(words, word_idx):
while word_idx < len(words):
if words[word_idx]['lastinsent']:
return word_idx
word_idx += 1
return len(words) - 1
def get_head_base(head_orth, words):
for word in words:
if word['orth'].lower() == head_orth.lower() or word['orth'] == head_orth:
return word['base']
return None
def get_words(filepath):
tree = etree.parse(filepath)
words = []
for word in tree.xpath("//word"):
hasnps = False
if 'hasnps' in word.attrib and word.attrib['hasnps'] == 'true':
hasnps = True
lastinsent = False
if 'lastinsent' in word.attrib and word.attrib['lastinsent'] == 'true':
lastinsent = True
words.append({'id': word.attrib['id'],
'orth': word.text,
'base': word.attrib['base'],
'hasnps': hasnps,
'lastinsent': lastinsent,
'ctag': word.attrib['ctag']})
return words
def get_mention_by_attr(mentions, attr_name, value):
for mention in mentions:
if mention[attr_name] == value:
return mention
return None
def get_mention_index_by_attr(mentions, attr_name, value):
for idx, mention in enumerate(mentions):
if mention[attr_name] == value:
return idx
return None
def span_to_text(span, words, form):
fragments = span.split(',')
mention_parts = []
for fragment in fragments:
mention_parts.append(fragment_to_text(fragment, words, form))
return u' [...] '.join(mention_parts)
def fragment_to_text(fragment, words, form):
if '..' in fragment:
text = get_multiword_text(fragment, words, form)
else:
text = get_one_word_text(fragment, words, form)
return text
def get_multiword_text(fragment, words, form):
mention_parts = []
boundaries = fragment.split('..')
start_id = boundaries[0]
end_id = boundaries[1]
in_string = False
for word in words:
if word['id'] == start_id:
in_string = True
if in_string and not word_to_ignore(word):
mention_parts.append(word)
if word['id'] == end_id:
break
return to_text(mention_parts, form)
def to_text(words, form):
text = ''
for idx, word in enumerate(words):
if word['hasnps'] or idx == 0:
text += word[form]
else:
text += u' %s' % word[form]
return text
def get_one_word_text(word_id, words, form):
this_word = (word for word in words if word['id'] == word_id).next()
if word_to_ignore(this_word):
print this_word
return this_word[form]
def span_to_words(span, words):
fragments = span.split(',')
mention_parts = []
for fragment in fragments:
mention_parts.extend(fragment_to_words(fragment, words))
return mention_parts
def fragment_to_words(fragment, words):
mention_parts = []
if '..' in fragment:
mention_parts.extend(get_multiword(fragment, words))
else:
mention_parts.extend(get_word(fragment, words))
return mention_parts
def get_multiword(fragment, words):
mention_parts = []
boundaries = fragment.split('..')
start_id = boundaries[0]
end_id = boundaries[1]
in_string = False
for word in words:
if word['id'] == start_id:
in_string = True
if in_string and not word_to_ignore(word):
mention_parts.append(word)
if word['id'] == end_id:
break
return mention_parts
def get_word(word_id, words):
for word in words:
if word['id'] == word_id:
if not word_to_ignore(word):
return [word]
else:
return []
return []
def word_to_ignore(word):
if word['ctag'] == 'interp':
return True
return False
if __name__ == '__main__':
main()