preparator.py 20.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
# -*- coding: utf-8 -*-

import codecs
import numpy
import os
import random

from lxml import etree
from itertools import combinations
from natsort import natsorted

from gensim.models.word2vec import Word2Vec


TEST_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), 'data', 'test-prepared'))
TRAIN_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), 'data', 'train-prepared'))

ANNO_PATH = TEST_PATH
OUT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), 'data',
                                        'test.csv'))
EACH_TEXT_SEPARATELLY = False

CONTEXT = 5
W2V_SIZE = 50
MODEL = os.path.abspath(os.path.join(os.path.dirname(__file__), 'models',
                                     '%d' % W2V_SIZE,
                                     'w2v_allwiki_nkjpfull_%d.model' % W2V_SIZE))
POSSIBLE_HEADS = [u'§', u'%', u'*', u'"', u'„', u'&', u'-']
NEG_PROPORTION = 1
RANDOM_VECTORS = True

DEBUG = False
POS_COUNT = 0
NEG_COUNT = 0
ALL_WORDS = 0
UNKNONW_WORDS = 0


def main():
    model = Word2Vec.load(MODEL)
    try:
        create_data_vectors(model)
    finally:
        print 'Unknown words: ', UNKNONW_WORDS
        print 'All words: ', ALL_WORDS
        print 'Positives: ', POS_COUNT
        print 'Negatives: ', NEG_COUNT


def create_data_vectors(model):
    features_file = None
    if not EACH_TEXT_SEPARATELLY:
        features_file = codecs.open(OUT_PATH, 'wt', 'utf-8')

    anno_files = os.listdir(ANNO_PATH)
    anno_files = natsorted(anno_files)
    for filename in anno_files:
        if filename.endswith('.mmax'):
            print '=======> ', filename
            textname = filename.replace('.mmax', '')

            mentions_path = os.path.join(ANNO_PATH, '%s_mentions.xml' % textname)
            tree = etree.parse(mentions_path)
            mentions = tree.xpath("//ns:markable", namespaces={'ns': 'www.eml.org/NameSpaces/mention'})
            positives, negatives = diff_mentions(mentions)

            if DEBUG:
                print 'Positives:'
                print len(positives)

                print 'Negatives:'
                print len(negatives)

            words_path = os.path.join(ANNO_PATH, '%s_words.xml' % textname)
            mentions_dict = markables_level_2_dict(mentions_path, words_path)

            if EACH_TEXT_SEPARATELLY:
                text_features_path = os.path.join(OUT_PATH, '%s.csv' % textname)
                features_file = codecs.open(text_features_path, 'wt', 'utf-8')
            write_features(features_file, positives, negatives, mentions_dict, model, textname)

    if not EACH_TEXT_SEPARATELLY:
        features_file.close()


def diff_mentions(mentions):
    sets, clustered_mensions = get_sets(mentions)
    positives = get_positives(sets)
    positives, negatives = get_negatives_and_update_positives(clustered_mensions, positives)
    if len(negatives) != len(positives) and NEG_PROPORTION == 1:
        print u'Niezgodna liczba przypadków pozytywnych i negatywnych!'
    return positives, negatives


def get_sets(mentions):
    sets = {}
    clustered_mensions = []
    for mention in mentions:
        set_id = mention.attrib['mention_group']
        if set_id == 'empty' or set_id == '' or mention.attrib['mention_head'] in POSSIBLE_HEADS:
            pass
        elif set_id not in sets:
            sets[set_id] = [mention.attrib['span']]
            clustered_mensions.append(mention.attrib['span'])
        elif set_id in sets:
            sets[set_id].append(mention.attrib['span'])
            clustered_mensions.append(mention.attrib['span'])
        else:
            print u'Coś poszło nie tak przy wyszukiwaniu klastrów!'

    sets_to_remove = []
    for set_id in sets:
        if len(sets[set_id]) < 2:
            sets_to_remove.append(set_id)
            if len(sets[set_id]) == 1:
                print u'Removing clustered mention: ', sets[set_id][0]
                clustered_mensions.remove(sets[set_id][0])

    for set_id in sets_to_remove:
        print u'Removing set: ', set_id
        sets.pop(set_id)

    return sets, clustered_mensions


def get_positives(sets):
    positives = []
    for set_id in sets:
        coref_set = sets[set_id]
        positives.extend(list(combinations(coref_set, 2)))
    return positives


def get_negatives_and_update_positives(clustered_mensions, positives):
    all_pairs = list(combinations(clustered_mensions, 2))
    all_pairs = set(all_pairs)
    negatives = [pair for pair in all_pairs if pair not in positives]
    samples_count = NEG_PROPORTION * len(positives)
    if samples_count > len(negatives):
        samples_count = len(negatives)
        if NEG_PROPORTION == 1:
            positives = random.sample(set(positives), samples_count)
        print u'Więcej przypadków pozytywnych niż negatywnych!'
    negatives = random.sample(set(negatives), samples_count)
    return positives, negatives


def write_features(features_file, positives, negatives, mentions_dict, model, textname):
    global POS_COUNT
    POS_COUNT += len(positives)
    for pair in positives:
        pair_features = []
        if DEBUG:
            pair_features = ['%s>%s:%s' % (textname, pair[0], pair[1])]
        pair_features.extend(get_features(pair, mentions_dict, model))
        pair_features.append(1)
        features_file.write(u'%s\n' % u'\t'.join([unicode(feature) for feature in pair_features]))

    global NEG_COUNT
    NEG_COUNT += len(negatives)
    for pair in negatives:
        pair_features = []
        if DEBUG:
            pair_features = ['%s>%s:%s' % (textname, pair[0], pair[1])]
        pair_features.extend(get_features(pair, mentions_dict, model))
        pair_features.append(0)
        features_file.write(u'%s\n' % u'\t'.join([unicode(feature) for feature in pair_features]))


def get_features(pair, mentions_dict, model):
    features = []
    ante = pair[0]
    ana = pair[1]
    ante_features = get_mention_features(ante, mentions_dict, model)
    features.extend(ante_features)
    ana_features = get_mention_features(ana, mentions_dict, model)
    features.extend(ana_features)
    pair_features = get_pair_features(pair, mentions_dict)
    features.extend(pair_features)
    return features


def get_mention_features(mention_span, mentions_dict, model):
    features = []
    mention = get_mention_by_attr(mentions_dict, 'span', mention_span)

    if DEBUG:
        features.append(mention['head_base'])
    head_vec = get_wv(model, mention['head_base'])
    features.extend(list(head_vec))

    if DEBUG:
        features.append(mention['words'][0]['base'])
    first_vec = get_wv(model, mention['words'][0]['base'])
    features.extend(list(first_vec))

    if DEBUG:
        features.append(mention['words'][-1]['base'])
    last_vec = get_wv(model, mention['words'][-1]['base'])
    features.extend(list(last_vec))

    if len(mention['follow_context']) > 0:
        if DEBUG:
            features.append(mention['follow_context'][0]['base'])
        after_1_vec = get_wv(model, mention['follow_context'][0]['base'])
        features.extend(list(after_1_vec))
    else:
        if DEBUG:
            features.append('None')
        features.extend([0.0] * W2V_SIZE)
    if len(mention['follow_context']) > 1:
        if DEBUG:
            features.append(mention['follow_context'][1]['base'])
        after_2_vec = get_wv(model, mention['follow_context'][1]['base'])
        features.extend(list(after_2_vec))
    else:
        if DEBUG:
            features.append('None')
        features.extend([0.0] * W2V_SIZE)

    if len(mention['prec_context']) > 0:
        if DEBUG:
            features.append(mention['prec_context'][-1]['base'])
        prec_1_vec = get_wv(model, mention['prec_context'][-1]['base'])
        features.extend(list(prec_1_vec))
    else:
        if DEBUG:
            features.append('None')
        features.extend([0.0] * W2V_SIZE)
    if len(mention['prec_context']) > 1:
        if DEBUG:
            features.append(mention['prec_context'][-2]['base'])
        prec_2_vec = get_wv(model, mention['prec_context'][-2]['base'])
        features.extend(list(prec_2_vec))
    else:
        if DEBUG:
            features.append('None')
        features.extend([0.0] * W2V_SIZE)

    if DEBUG:
        features.append(u' '.join([word['orth'] for word in mention['prec_context']]))
    prec_vec = get_context_vec(mention['prec_context'], model)
    features.extend(list(prec_vec))

    if DEBUG:
        features.append(u' '.join([word['orth'] for word in mention['follow_context']]))
    follow_vec = get_context_vec(mention['follow_context'], model)
    features.extend(list(follow_vec))

    if DEBUG:
        features.append(u' '.join([word['orth'] for word in mention['words']]))
    mention_vec = get_context_vec(mention['words'], model)
    features.extend(list(mention_vec))

    if DEBUG:
        features.append(u' '.join([word['orth'] for word in mention['sentence']]))
    sentence_vec = get_context_vec(mention['sentence'], model)
    features.extend(list(sentence_vec))

    return features


def get_wv(model, lemma, random=True):
    global ALL_WORDS
    global UNKNONW_WORDS
    vec = None
    if random:
        vec = random_vec()
    ALL_WORDS += 1
    try:
        vec = model.wv[lemma]
    except KeyError:
        UNKNONW_WORDS += 1
    return vec


def random_vec():
    return numpy.asarray([random.uniform(-0.25, 0.25) for i in range(0, W2V_SIZE)], dtype=numpy.float32)


def get_context_vec(words, model):
    vec = numpy.zeros(W2V_SIZE, dtype=numpy.float32)
    unknown_count = 0
    if len(words) != 0:
        for word in words:
            word_vec = get_wv(model, word['base'], RANDOM_VECTORS)
            if word_vec is None:
                unknown_count += 1
            else:
                vec += word_vec
        significant_words = len(words) - unknown_count
        if significant_words != 0:
            vec = vec/float(significant_words)
        else:
            vec = random_vec()
    return vec


def get_pair_features(pair, mentions_dict):
    ante = get_mention_by_attr(mentions_dict, 'span', pair[0])
    ana = get_mention_by_attr(mentions_dict, 'span', pair[1])

    features = []
    mnts_intersect = pair_intersect(ante, ana)

    words_dist = [0] * 11
    words_bucket = 0
    if mnts_intersect != 1:
        words_bucket = get_distance_bucket(ana['start_in_words'] - ante['end_in_words'] - 1)
    if DEBUG:
        features.append('Bucket %d' % words_bucket)
    words_dist[words_bucket] = 1
    features.extend(words_dist)

    mentions_dist = [0] * 11
    mentions_bucket = 0
    if mnts_intersect != 1:
        mentions_bucket = get_distance_bucket(ana['position_in_mentions'] - ante['position_in_mentions'] - 1)
    if words_bucket == 10:
        mentions_bucket = 10
    if DEBUG:
        features.append('Bucket %d' % mentions_bucket)
    mentions_dist[mentions_bucket] = 1
    features.extend(mentions_dist)

    if DEBUG:
        features.append('Other features')
    features.append(mnts_intersect)
    features.append(head_match(ante, ana))
    features.append(exact_match(ante, ana))
    features.append(base_match(ante, ana))

    if len(mentions_dict) > 100:
        features.append(1)
    else:
        features.append(0)

    return features


def get_distance_bucket(distance):
    if distance >= 0 and distance <= 4:
        return distance
    elif distance >= 5 and distance <= 7:
        return 5
    elif distance >= 8 and distance <= 15:
        return 6
    elif distance >= 16 and distance <= 31:
        return 7
    elif distance >= 32 and distance <= 63:
        return 8
    elif distance >= 64:
        return 9
    else:
        print u'Coś poszło nie tak przy kubełkowaniu!!'
    return 10


def pair_intersect(ante, ana):
    for ante_word in ante['words']:
        for ana_word in ana['words']:
            if ana_word['id'] == ante_word['id']:
                return 1
    return 0


def head_match(ante, ana):
    if ante['head_orth'].lower() == ana['head_orth'].lower():
        return 1
    return 0


def exact_match(ante, ana):
    if ante['text'].lower() == ana['text'].lower():
        return 1
    return 0


def base_match(ante, ana):
    if ante['lemmatized_text'].lower() == ana['lemmatized_text'].lower():
        return 1
    return 0


def markables_level_2_dict(markables_path, words_path, namespace='www.eml.org/NameSpaces/mention'):
    markables_dicts = []
    markables_tree = etree.parse(markables_path)
    markables = markables_tree.xpath("//ns:markable", namespaces={'ns': namespace})

    words = get_words(words_path)

    for idx, markable in enumerate(markables):
        span = markable.attrib['span']
        if not get_mention_by_attr(markables_dicts, 'span', span):

            dominant = ''
            if 'dominant' in markable.attrib:
                dominant = markable.attrib['dominant']

            head_orth = markable.attrib['mention_head']
            if head_orth not in POSSIBLE_HEADS:
                mention_words = span_to_words(span, words)

                prec_context, follow_context, sentence, mnt_start_position, mnt_end_position = get_context(mention_words, words)

                head_base = get_head_base(head_orth, mention_words)
                markables_dicts.append({'id': markable.attrib['id'],
                                        'set': markable.attrib['mention_group'],
                                        'text': span_to_text(span, words, 'orth'),
                                        'lemmatized_text': span_to_text(span, words, 'base'),
                                        'words': mention_words,
                                        'span': span,
                                        'head_orth': head_orth,
                                        'head_base': head_base,
                                        'dominant': dominant,
                                        'node': markable,
                                        'prec_context': prec_context,
                                        'follow_context': follow_context,
                                        'sentence': sentence,
                                        'position_in_mentions': idx,
                                        'start_in_words': mnt_start_position,
                                        'end_in_words': mnt_end_position})
        else:
            print 'Zduplikowana wzmianka: %s' % span

    return markables_dicts


def get_context(mention_words, words):
    prec_context = []
    follow_context = []
    sentence = []
    mnt_start_position = -1
    first_word = mention_words[0]
    last_word = mention_words[-1]
    for idx, word in enumerate(words):
        if word['id'] == first_word['id']:
            prec_context = get_prec_context(idx, words)
            mnt_start_position = get_mention_start(first_word, words)
        if word['id'] == last_word['id']:
            follow_context = get_follow_context(idx, words)
            sentence = get_sentence(idx, words)
            mnt_end_position = get_mention_end(last_word, words)
            break
    return prec_context, follow_context, sentence, mnt_start_position, mnt_end_position


def get_prec_context(mention_start, words):
    context = []
    context_start = mention_start - 1
    while context_start >= 0:
        if not word_to_ignore(words[context_start]):
            context.append(words[context_start])
        if len(context) == CONTEXT:
            break
        context_start -= 1
    context.reverse()
    return context


def get_mention_start(first_word, words):
    start = 0
    for word in words:
        if not word_to_ignore(word):
            start += 1
        if word['id'] == first_word['id']:
            break
    return start


def get_mention_end(last_word, words):
    end = 0
    for word in words:
        if not word_to_ignore(word):
            end += 1
        if word['id'] == last_word['id']:
            break
    return end


def get_follow_context(mention_end, words):
    context = []
    context_end = mention_end + 1
    while context_end < len(words):
        if not word_to_ignore(words[context_end]):
            context.append(words[context_end])
        if len(context) == CONTEXT:
            break
        context_end += 1
    return context


def get_sentence(word_idx, words):
    sentence_start = get_sentence_start(words, word_idx)
    sentence_end = get_sentence_end(words, word_idx)
    sentence = [word for word in words[sentence_start:sentence_end+1] if not word_to_ignore(word)]
    return sentence


def get_sentence_start(words, word_idx):
    search_start = word_idx
    while word_idx >= 0:
        if words[word_idx]['lastinsent'] and search_start != word_idx:
            return word_idx+1
        word_idx -= 1
    return 0


def get_sentence_end(words, word_idx):
    while word_idx < len(words):
        if words[word_idx]['lastinsent']:
            return word_idx
        word_idx += 1
    return len(words) - 1


def get_head_base(head_orth, words):
    for word in words:
        if word['orth'].lower() == head_orth.lower() or word['orth'] == head_orth:
            return word['base']
    return None


def get_words(filepath):
    tree = etree.parse(filepath)
    words = []
    for word in tree.xpath("//word"):
        hasnps = False
        if 'hasnps' in word.attrib and word.attrib['hasnps'] == 'true':
            hasnps = True
        lastinsent = False
        if 'lastinsent' in word.attrib and word.attrib['lastinsent'] == 'true':
            lastinsent = True
        words.append({'id': word.attrib['id'],
                      'orth': word.text,
                      'base': word.attrib['base'],
                      'hasnps': hasnps,
                      'lastinsent': lastinsent,
                      'ctag': word.attrib['ctag']})
    return words


def get_mention_by_attr(mentions, attr_name, value):
    for mention in mentions:
        if mention[attr_name] == value:
            return mention
    return None


def get_mention_index_by_attr(mentions, attr_name, value):
    for idx, mention in enumerate(mentions):
        if mention[attr_name] == value:
            return idx
    return None


def span_to_text(span, words, form):
    fragments = span.split(',')
    mention_parts = []
    for fragment in fragments:
        mention_parts.append(fragment_to_text(fragment, words, form))
    return u' [...] '.join(mention_parts)


def fragment_to_text(fragment, words, form):
    if '..' in fragment:
        text = get_multiword_text(fragment, words, form)
    else:
        text = get_one_word_text(fragment, words, form)
    return text


def get_multiword_text(fragment, words, form):
    mention_parts = []
    boundaries = fragment.split('..')
    start_id = boundaries[0]
    end_id = boundaries[1]
    in_string = False
    for word in words:
        if word['id'] == start_id:
            in_string = True
        if in_string and not word_to_ignore(word):
            mention_parts.append(word)
        if word['id'] == end_id:
            break
    return to_text(mention_parts, form)


def to_text(words, form):
    text = ''
    for idx, word in enumerate(words):
        if word['hasnps'] or idx == 0:
            text += word[form]
        else:
            text += u' %s' % word[form]
    return text


def get_one_word_text(word_id, words, form):
    this_word = (word for word in words if word['id'] == word_id).next()
    if word_to_ignore(this_word):
        print this_word
    return this_word[form]


def span_to_words(span, words):
    fragments = span.split(',')
    mention_parts = []
    for fragment in fragments:
        mention_parts.extend(fragment_to_words(fragment, words))
    return mention_parts


def fragment_to_words(fragment, words):
    mention_parts = []
    if '..' in fragment:
        mention_parts.extend(get_multiword(fragment, words))
    else:
        mention_parts.extend(get_word(fragment, words))
    return mention_parts


def get_multiword(fragment, words):
    mention_parts = []
    boundaries = fragment.split('..')
    start_id = boundaries[0]
    end_id = boundaries[1]
    in_string = False
    for word in words:
        if word['id'] == start_id:
            in_string = True
        if in_string and not word_to_ignore(word):
            mention_parts.append(word)
        if word['id'] == end_id:
            break
    return mention_parts


def get_word(word_id, words):
    for word in words:
        if word['id'] == word_id:
            if not word_to_ignore(word):
                return [word]
            else:
                return []
    return []


def word_to_ignore(word):
    if word['ctag'] == 'interp':
        return True
    return False


if __name__ == '__main__':
    main()