stanford.py
21.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
#!/usr/bin/env python
'''
Conversion scripts related to Stanford tools.
Author: Pontus Stenetorp <pontus stenetorp se>
Version: 2012-06-26
'''
# TODO: Currently pretty much every single call re-parses the XML, optimise?
# TODO: We could potentially put the lemma into a comment
from __future__ import with_statement
from collections import defaultdict
from itertools import chain
from sys import argv, path as sys_path, stderr, stdout
from os.path import dirname, join as path_join
from xml.etree import ElementTree
from ptbesc import unescape as ptb_unescape
try:
from collections import namedtuple
except ImportError:
sys_path.append(path_join(dirname(__file__), '..', '..', 'lib'))
from altnamedtuple import namedtuple
try:
from annotation import (BinaryRelationAnnotation, EquivAnnotation,
TextBoundAnnotation)
except ImportError:
sys_path.append(path_join(dirname(__file__), '..'))
from annotation import (BinaryRelationAnnotation, EquivAnnotation,
TextBoundAnnotation)
Token = namedtuple('Token', ('word', 'lemma', 'start', 'end', 'pos', 'ner', ))
def _escape_pos_tags(pos):
pos_res = pos
for _from, to in (
("'", '__SINGLEQUOTE__', ),
('"', '__DOUBLEQUOTE__', ),
('$', '__DOLLAR__', ),
(',', '__COMMA__', ),
('.', '__DOT__', ),
(':', '__COLON__', ),
('`', '__BACKTICK__', ),
):
pos_res = pos_res.replace(_from, to)
return pos_res
def _token_by_ids(soup):
token_by_ids = defaultdict(dict)
for sent_e in _find_sentences_element(soup).getiterator('sentence'):
sent_id = int(sent_e.get('id'))
for tok_e in sent_e.getiterator('token'):
tok_id = int(tok_e.get('id'))
tok_word = unicode(tok_e.find('word').text)
tok_lemma = unicode(tok_e.find('lemma').text)
tok_start = int(tok_e.find('CharacterOffsetBegin').text)
tok_end = int(tok_e.find('CharacterOffsetEnd').text)
tok_pos = unicode(tok_e.find('POS').text)
tok_ner = unicode(tok_e.find('NER').text)
token_by_ids[sent_id][tok_id] = Token(
word=tok_word,
lemma=tok_lemma,
start=tok_start,
end=tok_end,
# Escape the PoS since brat dislike $ and .
pos=_escape_pos_tags(tok_pos),
ner=tok_ner
)
return token_by_ids
def _tok_it(token_by_ids):
for s_id in sorted(k for k in token_by_ids):
for t_id in sorted(k for k in token_by_ids[s_id]):
yield s_id, t_id, token_by_ids[s_id][t_id]
def _soup(xml):
return ElementTree.fromstring(xml.encode('utf-8'))
def token_offsets(xml):
soup = _soup(xml)
token_by_ids = _token_by_ids(soup)
return [(tok.start, tok.end) for _, _, tok in _tok_it(token_by_ids)]
def sentence_offsets(xml):
soup = _soup(xml)
token_by_ids = _token_by_ids(soup)
sent_min_max = defaultdict(lambda : (2**32, -1, ))
for s_id, _, tok in _tok_it(token_by_ids):
s_entry = sent_min_max[s_id]
sent_min_max[s_id] = (min(tok.start, s_entry[0]), max(tok.end, s_entry[1]), )
return sorted((s_start, s_end) for s_start, s_end in sent_min_max.itervalues())
def text(xml):
# It would be nice to have access to the original text, but this actually
# isn't a part of the XML. Constructing it isn't that easy either, you
# would have to assume that each "missing" character is a space, but you
# don't really have any guarantee that this is the case...
soup = _soup(xml)
token_by_ids = _token_by_ids(soup)
# Get the presumed length of the text
max_offset = -1
for _, _, tok in _tok_it(token_by_ids):
max_offset = max(max_offset, tok.end)
# Then re-construct what we believe the text to be
text = list(' ' * max_offset)
for _, _, tok in _tok_it(token_by_ids):
# Also unescape any PTB escapes in the text while we are at it
# Note: Since Stanford actually doesn't do all the escapings properly
# this will sometimes fail! Hint: Try "*/\*".
unesc_word = ptb_unescape(tok.word)
text[tok.start:len(unesc_word)] = unesc_word
return u''.join(text)
def _pos(xml, start_id=1):
soup = _soup(xml)
token_by_ids = _token_by_ids(soup)
curr_id = start_id
for s_id, t_id, tok in _tok_it(token_by_ids):
yield s_id, t_id, TextBoundAnnotation(((tok.start, tok.end, ), ),
'T%s' % curr_id, tok.pos, '')
curr_id += 1
def pos(xml, start_id=1):
return (a for _, _, a in _pos(xml, start_id=start_id))
def ner(xml, start_id=1):
soup = _soup(xml)
token_by_ids = _token_by_ids(soup)
# Stanford only has Inside and Outside tags, so conversion is easy
nes = []
last_ne_tok = None
prev_tok = None
for _, _, tok in _tok_it(token_by_ids):
if tok.ner != 'O':
if last_ne_tok is None:
# Start of an NE from nothing
last_ne_tok = tok
elif tok.ner != last_ne_tok.ner:
# Change in NE type
nes.append((last_ne_tok.start, prev_tok.end, last_ne_tok.ner, ))
last_ne_tok = tok
else:
# Continuation of the last NE, move along
pass
elif last_ne_tok is not None:
# NE ended
nes.append((last_ne_tok.start, prev_tok.end, last_ne_tok.ner, ))
last_ne_tok = None
prev_tok = tok
else:
# Do we need to terminate the last named entity?
if last_ne_tok is not None:
nes.append((last_ne_tok.start, prev_tok.end, last_ne_tok.ner, ))
curr_id = start_id
for start, end, _type in nes:
yield TextBoundAnnotation(((start, end), ), 'T%s' % curr_id, _type, '')
curr_id += 1
def coref(xml, start_id=1):
soup = _soup(xml)
token_by_ids = _token_by_ids(soup)
docs_e = soup.findall('document')
assert len(docs_e) == 1
docs_e = docs_e[0]
# Despite the name, this element contains conferences (note the "s")
corefs_e = docs_e.findall('coreference')
if not corefs_e:
# No coreferences to process
raise StopIteration
assert len(corefs_e) == 1
corefs_e = corefs_e[0]
curr_id = start_id
for coref_e in corefs_e:
if corefs_e.tag != 'coreference':
# To be on the safe side
continue
# This tag is now a full corference chain
chain = []
for mention_e in coref_e.getiterator('mention'):
# Note: There is a "representative" attribute signalling the most
# "suitable" mention, we are currently not using this
# Note: We don't use the head information for each mention
sentence_id = int(mention_e.find('sentence').text)
start_tok_id = int(mention_e.find('start').text)
end_tok_id = int(mention_e.find('end').text) - 1
mention_id = 'T%s' % (curr_id, )
chain.append(mention_id)
curr_id += 1
yield TextBoundAnnotation(
((token_by_ids[sentence_id][start_tok_id].start,
token_by_ids[sentence_id][end_tok_id].end), ),
mention_id, 'Mention', '')
yield EquivAnnotation('Coreference', chain, '')
def _find_sentences_element(soup):
# Find the right portion of the XML and do some limited sanity checking
docs_e = soup.findall('document')
assert len(docs_e) == 1
docs_e = docs_e[0]
sents_e = docs_e.findall('sentences')
assert len(sents_e) == 1
sents_e = sents_e[0]
return sents_e
def _dep(xml, source_element='basic-dependencies'):
soup = _soup(xml)
token_by_ids = _token_by_ids(soup)
ann_by_ids = defaultdict(dict)
for s_id, t_id, ann in _pos(xml):
ann_by_ids[s_id][t_id] = ann
yield ann
curr_rel_id = 1
for sent_e in _find_sentences_element(soup).getiterator('sentence'):
sent_id = int(sent_e.get('id'))
# Attempt to find dependencies as distinctly named elements as they
# were stored in the Stanford XML format prior to 2013.
deps_e = sent_e.findall(source_element)
if len(deps_e) == 0:
# Perhaps we are processing output following the newer standard,
# check for the same identifier but as a type attribute for
# general "dependencies" elements.
deps_e = list(e for e in sent_e.getiterator('dependencies')
if e.attrib['type'] == source_element)
assert len(deps_e) == 1
deps_e = deps_e[0]
for dep_e in deps_e:
if dep_e.tag != 'dep':
# To be on the safe side
continue
dep_type = dep_e.get('type')
assert dep_type is not None
if dep_type == 'root':
# Skip dependencies to the root node, this behaviour conforms
# with how we treated the pre-2013 format.
continue
gov_tok_id = int(dep_e.find('governor').get('idx'))
dep_tok_id = int(dep_e.find('dependent').get('idx'))
yield BinaryRelationAnnotation(
'R%s' % curr_rel_id, dep_type,
'Governor', ann_by_ids[sent_id][gov_tok_id].id,
'Dependent', ann_by_ids[sent_id][dep_tok_id].id,
''
)
curr_rel_id += 1
def basic_dep(xml):
return _dep(xml)
def collapsed_dep(xml):
return _dep(xml, source_element='collapsed-dependencies')
def collapsed_ccproc_dep(xml):
return _dep(xml, source_element='collapsed-ccprocessed-dependencies')
if __name__ == '__main__':
STANFORD_XML = '''<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="CoreNLP-to-HTML.xsl" type="text/xsl"?>
<root>
<document>
<sentences>
<sentence id="1">
<tokens>
<token id="1">
<word>Stanford</word>
<lemma>Stanford</lemma>
<CharacterOffsetBegin>0</CharacterOffsetBegin>
<CharacterOffsetEnd>8</CharacterOffsetEnd>
<POS>NNP</POS>
<NER>ORGANIZATION</NER>
</token>
<token id="2">
<word>University</word>
<lemma>University</lemma>
<CharacterOffsetBegin>9</CharacterOffsetBegin>
<CharacterOffsetEnd>19</CharacterOffsetEnd>
<POS>NNP</POS>
<NER>ORGANIZATION</NER>
</token>
<token id="3">
<word>is</word>
<lemma>be</lemma>
<CharacterOffsetBegin>20</CharacterOffsetBegin>
<CharacterOffsetEnd>22</CharacterOffsetEnd>
<POS>VBZ</POS>
<NER>O</NER>
</token>
<token id="4">
<word>located</word>
<lemma>located</lemma>
<CharacterOffsetBegin>23</CharacterOffsetBegin>
<CharacterOffsetEnd>30</CharacterOffsetEnd>
<POS>JJ</POS>
<NER>O</NER>
</token>
<token id="5">
<word>in</word>
<lemma>in</lemma>
<CharacterOffsetBegin>31</CharacterOffsetBegin>
<CharacterOffsetEnd>33</CharacterOffsetEnd>
<POS>IN</POS>
<NER>O</NER>
</token>
<token id="6">
<word>California</word>
<lemma>California</lemma>
<CharacterOffsetBegin>34</CharacterOffsetBegin>
<CharacterOffsetEnd>44</CharacterOffsetEnd>
<POS>NNP</POS>
<NER>LOCATION</NER>
</token>
<token id="7">
<word>.</word>
<lemma>.</lemma>
<CharacterOffsetBegin>44</CharacterOffsetBegin>
<CharacterOffsetEnd>45</CharacterOffsetEnd>
<POS>.</POS>
<NER>O</NER>
</token>
</tokens>
<parse>(ROOT (S (NP (NNP Stanford) (NNP University)) (VP (VBZ is) (ADJP (JJ located) (PP (IN in) (NP (NNP California))))) (. .))) </parse>
<basic-dependencies>
<dep type="nn">
<governor idx="2">University</governor>
<dependent idx="1">Stanford</dependent>
</dep>
<dep type="nsubj">
<governor idx="4">located</governor>
<dependent idx="2">University</dependent>
</dep>
<dep type="cop">
<governor idx="4">located</governor>
<dependent idx="3">is</dependent>
</dep>
<dep type="prep">
<governor idx="4">located</governor>
<dependent idx="5">in</dependent>
</dep>
<dep type="pobj">
<governor idx="5">in</governor>
<dependent idx="6">California</dependent>
</dep>
</basic-dependencies>
<collapsed-dependencies>
<dep type="nn">
<governor idx="2">University</governor>
<dependent idx="1">Stanford</dependent>
</dep>
<dep type="nsubj">
<governor idx="4">located</governor>
<dependent idx="2">University</dependent>
</dep>
<dep type="cop">
<governor idx="4">located</governor>
<dependent idx="3">is</dependent>
</dep>
<dep type="prep_in">
<governor idx="4">located</governor>
<dependent idx="6">California</dependent>
</dep>
</collapsed-dependencies>
<collapsed-ccprocessed-dependencies>
<dep type="nn">
<governor idx="2">University</governor>
<dependent idx="1">Stanford</dependent>
</dep>
<dep type="nsubj">
<governor idx="4">located</governor>
<dependent idx="2">University</dependent>
</dep>
<dep type="cop">
<governor idx="4">located</governor>
<dependent idx="3">is</dependent>
</dep>
<dep type="prep_in">
<governor idx="4">located</governor>
<dependent idx="6">California</dependent>
</dep>
</collapsed-ccprocessed-dependencies>
</sentence>
<sentence id="2">
<tokens>
<token id="1">
<word>It</word>
<lemma>it</lemma>
<CharacterOffsetBegin>46</CharacterOffsetBegin>
<CharacterOffsetEnd>48</CharacterOffsetEnd>
<POS>PRP</POS>
<NER>O</NER>
</token>
<token id="2">
<word>is</word>
<lemma>be</lemma>
<CharacterOffsetBegin>49</CharacterOffsetBegin>
<CharacterOffsetEnd>51</CharacterOffsetEnd>
<POS>VBZ</POS>
<NER>O</NER>
</token>
<token id="3">
<word>a</word>
<lemma>a</lemma>
<CharacterOffsetBegin>52</CharacterOffsetBegin>
<CharacterOffsetEnd>53</CharacterOffsetEnd>
<POS>DT</POS>
<NER>O</NER>
</token>
<token id="4">
<word>great</word>
<lemma>great</lemma>
<CharacterOffsetBegin>54</CharacterOffsetBegin>
<CharacterOffsetEnd>59</CharacterOffsetEnd>
<POS>JJ</POS>
<NER>O</NER>
</token>
<token id="5">
<word>university</word>
<lemma>university</lemma>
<CharacterOffsetBegin>60</CharacterOffsetBegin>
<CharacterOffsetEnd>70</CharacterOffsetEnd>
<POS>NN</POS>
<NER>O</NER>
</token>
<token id="6">
<word>.</word>
<lemma>.</lemma>
<CharacterOffsetBegin>70</CharacterOffsetBegin>
<CharacterOffsetEnd>71</CharacterOffsetEnd>
<POS>.</POS>
<NER>O</NER>
</token>
</tokens>
<parse>(ROOT (S (NP (PRP It)) (VP (VBZ is) (NP (DT a) (JJ great) (NN university))) (. .))) </parse>
<basic-dependencies>
<dep type="nsubj">
<governor idx="5">university</governor>
<dependent idx="1">It</dependent>
</dep>
<dep type="cop">
<governor idx="5">university</governor>
<dependent idx="2">is</dependent>
</dep>
<dep type="det">
<governor idx="5">university</governor>
<dependent idx="3">a</dependent>
</dep>
<dep type="amod">
<governor idx="5">university</governor>
<dependent idx="4">great</dependent>
</dep>
</basic-dependencies>
<collapsed-dependencies>
<dep type="nsubj">
<governor idx="5">university</governor>
<dependent idx="1">It</dependent>
</dep>
<dep type="cop">
<governor idx="5">university</governor>
<dependent idx="2">is</dependent>
</dep>
<dep type="det">
<governor idx="5">university</governor>
<dependent idx="3">a</dependent>
</dep>
<dep type="amod">
<governor idx="5">university</governor>
<dependent idx="4">great</dependent>
</dep>
</collapsed-dependencies>
<collapsed-ccprocessed-dependencies>
<dep type="nsubj">
<governor idx="5">university</governor>
<dependent idx="1">It</dependent>
</dep>
<dep type="cop">
<governor idx="5">university</governor>
<dependent idx="2">is</dependent>
</dep>
<dep type="det">
<governor idx="5">university</governor>
<dependent idx="3">a</dependent>
</dep>
<dep type="amod">
<governor idx="5">university</governor>
<dependent idx="4">great</dependent>
</dep>
</collapsed-ccprocessed-dependencies>
</sentence>
</sentences>
<coreference>
<coreference>
<mention representative="true">
<sentence>1</sentence>
<start>1</start>
<end>3</end>
<head>2</head>
</mention>
<mention>
<sentence>2</sentence>
<start>1</start>
<end>2</end>
<head>1</head>
</mention>
<mention>
<sentence>2</sentence>
<start>3</start>
<end>6</end>
<head>5</head>
</mention>
</coreference>
</coreference>
</document>
</root>
'''
def _test_xml(xml_string):
stdout.write('Text:\n')
stdout.write(text(xml_string).encode('utf-8'))
stdout.write('\n')
stdout.write('\n')
stdout.write('Part-of-speech:\n')
for ann in pos(xml_string):
stdout.write(unicode(ann))
stdout.write('\n')
stdout.write('\n')
stdout.write('Named Entity Recoginiton:\n')
for ann in ner(xml_string):
stdout.write(unicode(ann))
stdout.write('\n')
stdout.write('\n')
stdout.write('Co-reference:\n')
for ann in coref(xml_string):
stdout.write(unicode(ann))
stdout.write('\n')
stdout.write('\n')
stdout.write('Basic dependencies:\n')
for ann in basic_dep(xml_string):
stdout.write(unicode(ann))
stdout.write('\n')
stdout.write('\n')
stdout.write('Basic dependencies:\n')
for ann in basic_dep(xml_string):
stdout.write(unicode(ann))
stdout.write('\n')
stdout.write('\n')
stdout.write('Collapsed dependencies:\n')
for ann in collapsed_dep(xml_string):
stdout.write(unicode(ann))
stdout.write('\n')
stdout.write('\n')
stdout.write('Collapsed CC-processed dependencies:\n')
for ann in collapsed_ccproc_dep(xml_string):
stdout.write(unicode(ann))
stdout.write('\n')
stdout.write('\n')
stdout.write('Token boundaries:\n')
stdout.write(unicode(token_offsets(xml_string)))
stdout.write('\n')
stdout.write('\n')
stdout.write('Sentence boundaries:\n')
stdout.write(unicode(sentence_offsets(xml_string)))
stdout.write('\n')
if len(argv) < 2:
xml_strings = (('<string>', STANFORD_XML), )
else:
def _xml_gen():
for xml_path in argv[1:]:
with open(xml_path, 'r') as xml_file:
# We assume UTF-8 here, otherwise ElemenTree will bork
yield (xml_path, xml_file.read().decode('utf-8'))
xml_strings = _xml_gen()
for xml_source, xml_string in xml_strings:
try:
print >> stderr, xml_source
_test_xml(xml_string)
except:
print >> stderr, 'Crashed on:', xml_source
raise