search.py
56.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
#!/usr/bin/env python
# -*- Mode: Python; tab-width: 4; indent-tabs-mode: nil; coding: utf-8; -*-
# vim:set ft=python ts=4 sw=4 sts=4 autoindent:
# Search-related functionality for BioNLP Shared Task - style
# annotations.
from __future__ import with_statement
import re
import annotation
from message import Messager
from document import real_directory, relative_directory
### Constants
DEFAULT_EMPTY_STRING = "***"
REPORT_SEARCH_TIMINGS = False
DEFAULT_RE_FLAGS = re.UNICODE
###
if REPORT_SEARCH_TIMINGS:
from sys import stderr
from datetime import datetime
# Search result number may be restricted to limit server load and
# communication issues for searches in large collections that (perhaps
# unintentionally) result in very large numbers of hits
try:
from config import MAX_SEARCH_RESULT_NUMBER
except ImportError:
# unlimited
MAX_SEARCH_RESULT_NUMBER = -1
# TODO: nested_types restriction not consistently enforced in
# searches.
class SearchMatchSet(object):
"""
Represents a set of matches to a search. Each match is represented
as an (ann_obj, ann) pair, where ann_obj is an Annotations object
an ann an Annotation belonging to the corresponding ann_obj.
"""
def __init__(self, criterion, matches=None):
if matches is None:
matches = []
self.criterion = criterion
self.__matches = matches
def add_match(self, ann_obj, ann):
self.__matches.append((ann_obj, ann))
def sort_matches(self):
# sort by document name
self.__matches.sort(lambda a,b: cmp(a[0].get_document(),b[0].get_document()))
def limit_to(self, num):
# don't limit to less than one match
if len(self.__matches) > num and num > 0:
self.__matches = self.__matches[:num]
return True
else:
return False
# TODO: would be better with an iterator
def get_matches(self):
return self.__matches
def __len__(self):
return len(self.__matches)
class TextMatch(object):
"""
Represents a text span matching a query.
"""
def __init__(self, start, end, text, sentence=None):
self.start = start
self.end = end
self.text = text
self.sentence = sentence
def first_start(self):
# mimic first_start() for TextBoundAnnotation
return self.start
def last_end(self):
# mimic last_end() for TextBoundAnnotation
return self.end
def reference_id(self):
# mimic reference_id for annotations
# this is the form expected by client Util.param()
return [self.start, self.end]
def reference_text(self):
return "%s-%s" % (self.start, self.end)
def get_text(self):
return self.text
def __str__(self):
# Format like textbound, but w/o ID or type
return u'%d %d\t%s' % (self.start, self.end, self.text)
# Note search matches need to combine aspects of the note with aspects
# of the annotation it's attached to, so we'll represent such matches
# with this separate class.
class NoteMatch(object):
"""
Represents a note (comment) matching a query.
"""
def __init__(self, note, ann, start=0, end=0):
self.note = note
self.ann = ann
self.start = start
self.end = end
# for format_results
self.text = note.get_text()
try:
self.type = ann.type
except AttributeError:
# nevermind
pass
def first_start(self):
return self.start
def last_end(self):
return self.end
def reference_id(self):
# return reference to annotation that the note is attached to
# (not the note itself)
return self.ann.reference_id()
def reference_text(self):
# as above
return self.ann.reference_text()
def get_text(self):
return self.note.get_text()
def __str__(self):
assert False, "INTERNAL ERROR: not implemented"
def __filenames_to_annotations(filenames):
"""
Given file names, returns corresponding Annotations objects.
"""
# TODO: error output should be done via messager to allow
# both command-line and GUI invocations
global REPORT_SEARCH_TIMINGS
if REPORT_SEARCH_TIMINGS:
process_start = datetime.now()
anns = []
for fn in filenames:
try:
# remove suffixes for Annotations to prompt parsing of all
# annotation files.
nosuff_fn = fn.replace(".ann","").replace(".a1","").replace(".a2","").replace(".rel","")
ann_obj = annotation.TextAnnotations(nosuff_fn, read_only=True)
anns.append(ann_obj)
except annotation.AnnotationFileNotFoundError:
print >> sys.stderr, "%s:\tFailed: file not found" % fn
except annotation.AnnotationNotFoundError, e:
print >> sys.stderr, "%s:\tFailed: %s" % (fn, e)
if len(anns) != len(filenames):
print >> sys.stderr, "Note: only checking %d/%d given files" % (len(anns), len(filenames))
if REPORT_SEARCH_TIMINGS:
process_delta = datetime.now() - process_start
print >> stderr, "filenames_to_annotations: processed in", str(process_delta.seconds)+"."+str(process_delta.microseconds/10000), "seconds"
return anns
def __directory_to_annotations_recursive(directory):
"""
hacking to enable full corpus search
"""
from document import real_directory,_listdir, relative_directory
from os.path import join as path_join
from os.path import isdir
real_dir = real_directory(directory)
annos = __directory_to_annotations(directory)
for fn in _listdir(real_dir):
path = path_join(real_dir, fn)
if isdir(path):
annos.extend(__directory_to_annotations_recursive(relative_directory(path)))
return annos
def __directory_to_annotations(directory):
"""
Given a directory, returns Annotations objects for contained files.
"""
# TODO: put this shared functionality in a more reasonable place
from document import real_directory,_listdir
from os.path import join as path_join
real_dir = real_directory(directory)
# Get the document names
base_names = [fn[0:-4] for fn in _listdir(real_dir) if fn.endswith('txt')]
filenames = [path_join(real_dir, bn) for bn in base_names]
return __filenames_to_annotations(filenames)
def __document_to_annotations(directory, document):
"""
Given a directory and a document, returns an Annotations object
for the file.
"""
# TODO: put this shared functionality in a more reasonable place
from document import real_directory
from os.path import join as path_join
real_dir = real_directory(directory)
filenames = [path_join(real_dir, document)]
return __filenames_to_annotations(filenames)
def __doc_or_dir_to_annotations(directory, document, scope):
"""
Given a directory, a document, and a scope specification
with the value "collection" or "document" selecting between
the two, returns Annotations object for either the specific
document identified (scope=="document") or all documents in
the given directory (scope=="collection").
"""
# TODO: lots of magic values here; try to avoid this
if scope == "collection":
## hack to enable full corpus search
return __directory_to_annotations_recursive("/")
elif scope == "document":
# NOTE: "/NO-DOCUMENT/" is a workaround for a brat
# client-server comm issue (issue #513).
if document == "" or document == "/NO-DOCUMENT/":
Messager.warning('No document selected for search in document.')
return []
else:
return __document_to_annotations(directory, document)
else:
Messager.error('Unrecognized search scope specification %s' % scope)
return []
def _get_text_type_ann_map(ann_objs, restrict_types=None, ignore_types=None, nested_types=None):
"""
Helper function for search. Given annotations, returns a
dict-of-dicts, outer key annotation text, inner type, values
annotation objects.
"""
# treat None and empty list uniformly
restrict_types = [] if restrict_types is None else restrict_types
ignore_types = [] if ignore_types is None else ignore_types
nested_types = [] if nested_types is None else nested_types
text_type_ann_map = {}
for ann_obj in ann_objs:
for t in ann_obj.get_textbounds():
if t.type in ignore_types:
continue
if restrict_types != [] and t.type not in restrict_types:
continue
if t.text not in text_type_ann_map:
text_type_ann_map[t.text] = {}
if t.type not in text_type_ann_map[t.text]:
text_type_ann_map[t.text][t.type] = []
text_type_ann_map[t.text][t.type].append((ann_obj,t))
return text_type_ann_map
def _get_offset_ann_map(ann_objs, restrict_types=None, ignore_types=None):
"""
Helper function for search. Given annotations, returns a dict
mapping offsets in text into the set of annotations spanning each
offset.
"""
# treat None and empty list uniformly
restrict_types = [] if restrict_types is None else restrict_types
ignore_types = [] if ignore_types is None else ignore_types
offset_ann_map = {}
for ann_obj in ann_objs:
for t in ann_obj.get_textbounds():
if t.type in ignore_types:
continue
if restrict_types != [] and t.type not in restrict_types:
continue
for t_start, t_end in t.spans:
for o in range(t_start, t_end):
if o not in offset_ann_map:
offset_ann_map[o] = set()
offset_ann_map[o].add(t)
return offset_ann_map
def eq_text_neq_type_spans(ann_objs, restrict_types=None, ignore_types=None, nested_types=None):
"""
Searches for annotated spans that match in string content but
disagree in type in given Annotations objects.
"""
# treat None and empty list uniformly
restrict_types = [] if restrict_types is None else restrict_types
ignore_types = [] if ignore_types is None else ignore_types
nested_types = [] if nested_types is None else nested_types
# TODO: nested_types constraints not applied
matches = SearchMatchSet("Text marked with different types")
text_type_ann_map = _get_text_type_ann_map(ann_objs, restrict_types, ignore_types, nested_types)
for text in text_type_ann_map:
if len(text_type_ann_map[text]) < 2:
# all matching texts have same type, OK
continue
types = text_type_ann_map[text].keys()
# avoiding any() etc. to be compatible with python 2.4
if restrict_types != [] and len([t for t in types if t in restrict_types]) == 0:
# Does not involve any of the types restricted do
continue
# debugging
#print >> sys.stderr, "Text marked with %d different types:\t%s\t: %s" % (len(text_type_ann_map[text]), text, ", ".join(["%s (%d occ.)" % (type, len(text_type_ann_map[text][type])) for type in text_type_ann_map[text]]))
for type in text_type_ann_map[text]:
for ann_obj, ann in text_type_ann_map[text][type]:
# debugging
#print >> sys.stderr, "\t%s %s" % (ann.source_id, ann)
matches.add_match(ann_obj, ann)
return matches
def _get_offset_sentence_map(s):
"""
Helper, sentence-splits and returns a mapping from character
offsets to sentence number.
"""
from ssplit import regex_sentence_boundary_gen
m = {} # TODO: why is this a dict and not an array?
sprev, snum = 0, 1 # note: sentences indexed from 1
for sstart, send in regex_sentence_boundary_gen(s):
# if there are extra newlines (i.e. more than one) in between
# the previous end and the current start, those need to be
# added to the sentence number
snum += max(0,len([nl for nl in s[sprev:sstart] if nl == "\n"]) - 1)
for o in range(sprev, send):
m[o] = snum
sprev = send
snum += 1
return m
def _split_and_tokenize(s):
"""
Helper, sentence-splits and tokenizes, returns array comparable to
what you would get from re.split(r'(\s+)', s).
"""
from ssplit import regex_sentence_boundary_gen
from tokenise import gtb_token_boundary_gen
tokens = []
sprev = 0
for sstart, send in regex_sentence_boundary_gen(s):
if sprev != sstart:
# between-sentence space
tokens.append(s[sprev:sstart])
stext = s[sstart:send]
tprev, tend = 0, 0
for tstart, tend in gtb_token_boundary_gen(stext):
if tprev != tstart:
# between-token space
tokens.append(s[sstart+tprev:sstart+tstart])
tokens.append(s[sstart+tstart:sstart+tend])
tprev = tend
if tend != len(stext):
# sentence-final space
tokens.append(stext[tend:])
sprev = send
if sprev != len(s):
# document-final space
tokens.append(s[sprev:])
assert "".join(tokens) == s, "INTERNAL ERROR\n'%s'\n'%s'" % ("".join(tokens),s)
return tokens
def _split_tokens_more(tokens):
"""
Search-specific extra tokenization.
More aggressive than the general visualization-oriented tokenization.
"""
pre_nonalnum_RE = re.compile(r'^(\W+)(.+)$', flags=DEFAULT_RE_FLAGS)
post_nonalnum_RE = re.compile(r'^(.+?)(\W+)$', flags=DEFAULT_RE_FLAGS)
new_tokens = []
for t in tokens:
m = pre_nonalnum_RE.match(t)
if m:
pre, t = m.groups()
new_tokens.append(pre)
m = post_nonalnum_RE.match(t)
if m:
t, post = m.groups()
new_tokens.append(t)
new_tokens.append(post)
else:
new_tokens.append(t)
# sanity
assert ''.join(tokens) == ''.join(new_tokens), "INTERNAL ERROR"
return new_tokens
def eq_text_partially_marked(ann_objs, restrict_types=None, ignore_types=None, nested_types=None):
"""
Searches for spans that match in string content but are not all
marked.
"""
# treat None and empty list uniformly
restrict_types = [] if restrict_types is None else restrict_types
ignore_types = [] if ignore_types is None else ignore_types
nested_types = [] if nested_types is None else nested_types
# TODO: check that constraints are properly applied
matches = SearchMatchSet("Text marked partially")
text_type_ann_map = _get_text_type_ann_map(ann_objs, restrict_types, ignore_types, nested_types)
max_length_tagged = max([len(s) for s in text_type_ann_map]+[0])
# TODO: faster and less hacky way to detect missing annotations
text_untagged_map = {}
for ann_obj in ann_objs:
doctext = ann_obj.get_document_text()
# TODO: proper tokenization.
# NOTE: this will include space.
#tokens = re.split(r'(\s+)', doctext)
try:
tokens = _split_and_tokenize(doctext)
tokens = _split_tokens_more(tokens)
except:
# TODO: proper error handling
print >> sys.stderr, "ERROR: failed tokenization in %s, skipping" % ann_obj._input_files[0]
continue
# document-specific map
offset_ann_map = _get_offset_ann_map([ann_obj])
# this one too
sentence_num = _get_offset_sentence_map(doctext)
start_offset = 0
for start in range(len(tokens)):
for end in range(start, len(tokens)):
s = "".join(tokens[start:end])
end_offset = start_offset + len(s)
if len(s) > max_length_tagged:
# can't hit longer strings, none tagged
break
if s not in text_type_ann_map:
# consistently untagged
continue
# Some matching is tagged; this is considered
# inconsistent (for this check) if the current span
# has no fully covering tagging. Note that type
# matching is not considered here.
start_spanning = offset_ann_map.get(start_offset, set())
end_spanning = offset_ann_map.get(end_offset-1, set()) # NOTE: -1 needed, see _get_offset_ann_map()
if len(start_spanning & end_spanning) == 0:
if s not in text_untagged_map:
text_untagged_map[s] = []
text_untagged_map[s].append((ann_obj, start_offset, end_offset, s, sentence_num[start_offset]))
start_offset += len(tokens[start])
# form match objects, grouping by text
for text in text_untagged_map:
assert text in text_type_ann_map, "INTERNAL ERROR"
# collect tagged and untagged cases for "compressing" output
# in cases where one is much more common than the other
tagged = []
untagged = []
for type_ in text_type_ann_map[text]:
for ann_obj, ann in text_type_ann_map[text][type_]:
#matches.add_match(ann_obj, ann)
tagged.append((ann_obj, ann))
for ann_obj, start, end, s, snum in text_untagged_map[text]:
# TODO: need a clean, standard way of identifying a text span
# that does not involve an annotation; this is a bit of a hack
tm = TextMatch(start, end, s, snum)
#matches.add_match(ann_obj, tm)
untagged.append((ann_obj, tm))
# decide how to output depending on relative frequency
freq_ratio_cutoff = 3
cutoff_limit = 5
if (len(tagged) > freq_ratio_cutoff * len(untagged) and
len(tagged) > cutoff_limit):
# cut off all but cutoff_limit from tagged
for ann_obj, m in tagged[:cutoff_limit]:
matches.add_match(ann_obj, m)
for ann_obj, m in untagged:
matches.add_match(ann_obj, m)
print "(note: omitting %d instances of tagged '%s')" % (len(tagged)-cutoff_limit, text.encode('utf-8'))
elif (len(untagged) > freq_ratio_cutoff * len(tagged) and
len(untagged) > cutoff_limit):
# cut off all but cutoff_limit from tagged
for ann_obj, m in tagged:
matches.add_match(ann_obj, m)
for ann_obj, m in untagged[:cutoff_limit]:
matches.add_match(ann_obj, m)
print "(note: omitting %d instances of untagged '%s')" % (len(untagged)-cutoff_limit, text.encode('utf-8'))
else:
# include all
for ann_obj, m in tagged + untagged:
matches.add_match(ann_obj, m)
return matches
def check_type_consistency(ann_objs, restrict_types=None, ignore_types=None, nested_types=None):
"""
Searches for inconsistent types in given Annotations
objects. Returns a list of SearchMatchSet objects, one for each
checked criterion that generated matches for the search.
"""
match_sets = []
m = eq_text_neq_type_spans(ann_objs, restrict_types=restrict_types, ignore_types=ignore_types, nested_types=nested_types)
if len(m) != 0:
match_sets.append(m)
return match_sets
def check_missing_consistency(ann_objs, restrict_types=None, ignore_types=None, nested_types=None):
"""
Searches for potentially missing annotations in given Annotations
objects. Returns a list of SearchMatchSet objects, one for each
checked criterion that generated matches for the search.
"""
match_sets = []
m = eq_text_partially_marked(ann_objs, restrict_types=restrict_types, ignore_types=ignore_types, nested_types=nested_types)
if len(m) != 0:
match_sets.append(m)
return match_sets
def _get_match_regex(text, text_match="word", match_case=False,
whole_string=False):
"""
Helper for the various search_anns_for_ functions.
"""
regex_flags = DEFAULT_RE_FLAGS
if not match_case:
regex_flags = regex_flags | re.IGNORECASE
if text is None:
text = ''
# interpret special value standing in for empty string (#924)
if text == DEFAULT_EMPTY_STRING:
text = ''
if text_match == "word":
# full word match: require word boundaries or, optionally,
# whole string boundaries
if whole_string:
return re.compile(r'^'+re.escape(text)+r'$', regex_flags)
else:
return re.compile(r'\b'+re.escape(text)+r'\b', regex_flags)
elif text_match == "substring":
# any substring match, as text (nonoverlapping matches)
return re.compile(re.escape(text), regex_flags)
elif text_match == "regex":
try:
return re.compile(text, regex_flags)
except: # whatever (sre_constants.error, other?)
Messager.warning('Given string "%s" is not a valid regular expression.' % text)
return None
else:
Messager.error('Unrecognized search match specification "%s"' % text_match)
return None
def search_anns_for_textbound(ann_objs, text, restrict_types=None,
ignore_types=None, nested_types=None,
text_match="word", match_case=False,
entities_only=False):
"""
Searches for the given text in the Textbound annotations in the
given Annotations objects. Returns a SearchMatchSet object.
"""
global REPORT_SEARCH_TIMINGS
if REPORT_SEARCH_TIMINGS:
process_start = datetime.now()
# treat None and empty list uniformly
restrict_types = [] if restrict_types is None else restrict_types
ignore_types = [] if ignore_types is None else ignore_types
nested_types = [] if nested_types is None else nested_types
description = "Textbounds containing text '%s'" % text
if restrict_types != []:
description = description + ' (of type %s)' % (",".join(restrict_types))
if nested_types != []:
description = description + ' (nesting annotation of type %s)' % (",".join(nested_types))
matches = SearchMatchSet(description)
# compile a regular expression according to arguments for matching
match_regex = _get_match_regex(text, text_match, match_case)
if match_regex is None:
# something went wrong, return empty
return matches
for ann_obj in ann_objs:
# collect per-document (ann_obj) for sorting
ann_matches = []
if entities_only:
candidates = ann_obj.get_textbounds()
else:
candidates = ann_obj.get_entities()
for t in candidates:
if t.type in ignore_types:
continue
if restrict_types != [] and t.type not in restrict_types:
continue
if (text != None and text != "" and
text != DEFAULT_EMPTY_STRING and not match_regex.search(t.get_text())):
continue
if nested_types != []:
# TODO: massively inefficient
nested = [x for x in ann_obj.get_textbounds()
if x != t and t.contains(x)]
if len([x for x in nested if x.type in nested_types]) == 0:
continue
ann_matches.append(t)
# sort by start offset
ann_matches.sort(lambda a,b: cmp((a.first_start(),-a.last_end()),
(b.first_start(),-b.last_end())))
# add to overall collection
for t in ann_matches:
matches.add_match(ann_obj, t)
# MAX_SEARCH_RESULT_NUMBER <= 0 --> no limit
if len(matches) > MAX_SEARCH_RESULT_NUMBER and MAX_SEARCH_RESULT_NUMBER > 0:
Messager.warning('Search result limit (%d) exceeded, stopping search.' % MAX_SEARCH_RESULT_NUMBER)
break
matches.limit_to(MAX_SEARCH_RESULT_NUMBER)
# sort by document name for output
matches.sort_matches()
if REPORT_SEARCH_TIMINGS:
process_delta = datetime.now() - process_start
print >> stderr, "search_anns_for_textbound: processed in", str(process_delta.seconds)+"."+str(process_delta.microseconds/10000), "seconds"
return matches
def search_anns_for_note(ann_objs, text, category,
restrict_types=None, ignore_types=None,
text_match="word", match_case=False):
"""
Searches for the given text in the comment annotations in the
given Annotations objects. Returns a SearchMatchSet object.
"""
global REPORT_SEARCH_TIMINGS
if REPORT_SEARCH_TIMINGS:
process_start = datetime.now()
# treat None and empty list uniformly
restrict_types = [] if restrict_types is None else restrict_types
ignore_types = [] if ignore_types is None else ignore_types
if category is not None:
description = "Comments on %s containing text '%s'" % (category, text)
else:
description = "Comments containing text '%s'" % text
if restrict_types != []:
description = description + ' (of type %s)' % (",".join(restrict_types))
matches = SearchMatchSet(description)
# compile a regular expression according to arguments for matching
match_regex = _get_match_regex(text, text_match, match_case)
if match_regex is None:
# something went wrong, return empty
return matches
for ann_obj in ann_objs:
# collect per-document (ann_obj) for sorting
ann_matches = []
candidates = ann_obj.get_oneline_comments()
for n in candidates:
a = ann_obj.get_ann_by_id(n.target)
if a.type in ignore_types:
continue
if restrict_types != [] and a.type not in restrict_types:
continue
if (text != None and text != "" and
text != DEFAULT_EMPTY_STRING and not match_regex.search(n.get_text())):
continue
ann_matches.append(NoteMatch(n,a))
ann_matches.sort(lambda a,b: cmp((a.first_start(),-a.last_end()),
(b.first_start(),-b.last_end())))
# add to overall collection
for t in ann_matches:
matches.add_match(ann_obj, t)
# MAX_SEARCH_RESULT_NUMBER <= 0 --> no limit
if len(matches) > MAX_SEARCH_RESULT_NUMBER and MAX_SEARCH_RESULT_NUMBER > 0:
Messager.warning('Search result limit (%d) exceeded, stopping search.' % MAX_SEARCH_RESULT_NUMBER)
break
matches.limit_to(MAX_SEARCH_RESULT_NUMBER)
# sort by document name for output
matches.sort_matches()
if REPORT_SEARCH_TIMINGS:
process_delta = datetime.now() - process_start
print >> stderr, "search_anns_for_textbound: processed in", str(process_delta.seconds)+"."+str(process_delta.microseconds/10000), "seconds"
return matches
def search_anns_for_relation(ann_objs, arg1, arg1type, arg2, arg2type,
restrict_types=None, ignore_types=None,
text_match="word", match_case=False):
"""
Searches the given Annotations objects for relation annotations
matching the given specification. Returns a SearchMatchSet object.
"""
global REPORT_SEARCH_TIMINGS
if REPORT_SEARCH_TIMINGS:
process_start = datetime.now()
# treat None and empty list uniformly
restrict_types = [] if restrict_types is None else restrict_types
ignore_types = [] if ignore_types is None else ignore_types
# TODO: include args in description
description = "Relations"
if restrict_types != []:
description = description + ' (of type %s)' % (",".join(restrict_types))
matches = SearchMatchSet(description)
# compile regular expressions according to arguments for matching
arg1_match_regex, arg2_match_regex = None, None
if arg1 is not None:
arg1_match_regex = _get_match_regex(arg1, text_match, match_case)
if arg2 is not None:
arg2_match_regex = _get_match_regex(arg2, text_match, match_case)
if ((arg1 is not None and arg1_match_regex is None) or
(arg2 is not None and arg2_match_regex is None)):
# something went wrong, return empty
return matches
for ann_obj in ann_objs:
# collect per-document (ann_obj) for sorting
ann_matches = []
# binary relations and equivs need to be treated separately due
# to different structure (not a great design there)
for r in ann_obj.get_relations():
if r.type in ignore_types:
continue
if restrict_types != [] and r.type not in restrict_types:
continue
# argument constraints
if arg1 is not None or arg1type is not None:
arg1ent = ann_obj.get_ann_by_id(r.arg1)
if arg1 is not None and not arg1_match_regex.search(arg1ent.get_text()):
continue
if arg1type is not None and arg1type != arg1ent.type:
continue
if arg2 is not None or arg2type is not None:
arg2ent = ann_obj.get_ann_by_id(r.arg2)
if arg2 is not None and not arg2_match_regex.search(arg2ent.get_text()):
continue
if arg2type is not None and arg2type != arg2.type:
continue
ann_matches.append(r)
for r in ann_obj.get_equivs():
if r.type in ignore_types:
continue
if restrict_types != [] and r.type not in restrict_types:
continue
# argument constraints. This differs from that for non-equiv
# for relations as equivs are symmetric, so the arg1-arg2
# distinction can be ignored.
# TODO: this can match the same thing twice, which most
# likely isn't what a user expects: for example, having
# 'Protein' for both arg1type and arg2type can still match
# an equiv between 'Protein' and 'Gene'.
match_found = False
for arg, argtype, arg_match_regex in ((arg1, arg1type, arg1_match_regex),
(arg2, arg2type, arg2_match_regex)):
match_found = False
for aeid in r.entities:
argent = ann_obj.get_ann_by_id(aeid)
if arg is not None and not arg_match_regex.search(argent.get_text()):
continue
if argtype is not None and argtype != argent.type:
continue
match_found = True
break
if not match_found:
break
if not match_found:
continue
ann_matches.append(r)
# TODO: sort, e.g. by offset of participant occurring first
#ann_matches.sort(lambda a,b: cmp(???))
# add to overall collection
for r in ann_matches:
matches.add_match(ann_obj, r)
# MAX_SEARCH_RESULT_NUMBER <= 0 --> no limit
if len(matches) > MAX_SEARCH_RESULT_NUMBER and MAX_SEARCH_RESULT_NUMBER > 0:
Messager.warning('Search result limit (%d) exceeded, stopping search.' % MAX_SEARCH_RESULT_NUMBER)
break
matches.limit_to(MAX_SEARCH_RESULT_NUMBER)
# sort by document name for output
matches.sort_matches()
if REPORT_SEARCH_TIMINGS:
process_delta = datetime.now() - process_start
print >> stderr, "search_anns_for_relation: processed in", str(process_delta.seconds)+"."+str(process_delta.microseconds/10000), "seconds"
return matches
def search_anns_for_event(ann_objs, trigger_text, args,
restrict_types=None, ignore_types=None,
text_match="word", match_case=False):
"""
Searches the given Annotations objects for Event annotations
matching the given specification. Returns a SearchMatchSet object.
"""
global REPORT_SEARCH_TIMINGS
if REPORT_SEARCH_TIMINGS:
process_start = datetime.now()
# treat None and empty list uniformly
restrict_types = [] if restrict_types is None else restrict_types
ignore_types = [] if ignore_types is None else ignore_types
# TODO: include args in description
description = "Event triggered by text containing '%s'" % trigger_text
if restrict_types != []:
description = description + ' (of type %s)' % (",".join(restrict_types))
matches = SearchMatchSet(description)
# compile a regular expression according to arguments for matching
if trigger_text is not None:
trigger_match_regex = _get_match_regex(trigger_text, text_match, match_case)
if trigger_match_regex is None:
# something went wrong, return empty
return matches
for ann_obj in ann_objs:
# collect per-document (ann_obj) for sorting
ann_matches = []
for e in ann_obj.get_events():
if e.type in ignore_types:
continue
if restrict_types != [] and e.type not in restrict_types:
continue
try:
t_ann = ann_obj.get_ann_by_id(e.trigger)
except:
# TODO: specific exception
Messager.error('Failed to retrieve trigger annotation %s, skipping event %s in search' % (e.trigger, e.id))
# TODO: make options for "text included" vs. "text matches"
if (trigger_text != None and trigger_text != "" and
trigger_text != DEFAULT_EMPTY_STRING and
not trigger_match_regex.search(t_ann.text)):
continue
# interpret unconstrained (all blank values) argument
# "constraints" as no constraint
arg_constraints = []
for arg in args:
if arg['role'] != '' or arg['type'] != '' or arg['text'] != '':
arg_constraints.append(arg)
args = arg_constraints
# argument constraints, if any
if len(args) > 0:
missing_match = False
for arg in args:
for s in ('role', 'type', 'text'):
assert s in arg, "Error: missing mandatory field '%s' in event search" % s
found_match = False
for role, aid in e.args:
if arg['role'] is not None and arg['role'] != '' and arg['role'] != role:
# mismatch on role
continue
arg_ent = ann_obj.get_ann_by_id(aid)
if (arg['type'] is not None and arg['type'] != '' and
arg['type'] != arg_ent.type):
# mismatch on type
continue
if (arg['text'] is not None and arg['text'] != ''):
# TODO: it would be better to pre-compile regexs for
# all arguments with text constraints
match_regex = _get_match_regex(arg['text'], text_match, match_case)
if match_regex is None:
return matches
# TODO: there has to be a better way ...
if isinstance(arg_ent, annotation.EventAnnotation):
# compare against trigger text
text_ent = ann_obj.get_ann_by_id(ann_ent.trigger)
else:
# compare against entity text
text_ent = arg_ent
if not match_regex.search(text_ent.get_text()):
# mismatch on text
continue
found_match = True
break
if not found_match:
missing_match = True
break
if missing_match:
continue
ann_matches.append((t_ann, e))
# sort by trigger start offset
ann_matches.sort(lambda a,b: cmp((a[0].first_start(),-a[0].last_end()),
(b[0].first_start(),-b[0].last_end())))
# add to overall collection
for t_obj, e in ann_matches:
matches.add_match(ann_obj, e)
# MAX_SEARCH_RESULT_NUMBER <= 0 --> no limit
if len(matches) > MAX_SEARCH_RESULT_NUMBER and MAX_SEARCH_RESULT_NUMBER > 0:
Messager.warning('Search result limit (%d) exceeded, stopping search.' % MAX_SEARCH_RESULT_NUMBER)
break
matches.limit_to(MAX_SEARCH_RESULT_NUMBER)
# sort by document name for output
matches.sort_matches()
if REPORT_SEARCH_TIMINGS:
process_delta = datetime.now() - process_start
print >> stderr, "search_anns_for_event: processed in", str(process_delta.seconds)+"."+str(process_delta.microseconds/10000), "seconds"
return matches
def search_anns_for_text(ann_objs, text,
restrict_types=None, ignore_types=None, nested_types=None,
text_match="word", match_case=False):
"""
Searches for the given text in the document texts of the given
Annotations objects. Returns a SearchMatchSet object.
"""
global REPORT_SEARCH_TIMINGS
if REPORT_SEARCH_TIMINGS:
process_start = datetime.now()
# treat None and empty list uniformly
restrict_types = [] if restrict_types is None else restrict_types
ignore_types = [] if ignore_types is None else ignore_types
nested_types = [] if nested_types is None else nested_types
description = "Text matching '%s'" % text
if restrict_types != []:
description = description + ' (embedded in %s)' % (",".join(restrict_types))
if ignore_types != []:
description = description + ' (not embedded in %s)' % ",".join(ignore_types)
matches = SearchMatchSet(description)
# compile a regular expression according to arguments for matching
match_regex = _get_match_regex(text, text_match, match_case)
if match_regex is None:
# something went wrong, return empty
return matches
# main search loop
for ann_obj in ann_objs:
doctext = ann_obj.get_document_text()
for m in match_regex.finditer(doctext):
# only need to care about embedding annotations if there's
# some annotation-based restriction
#if restrict_types == [] and ignore_types == []:
# TODO: _extremely_ naive and slow way to find embedding
# annotations. Use some reasonable data structure
# instead.
embedding = []
# if there are no type restrictions, we can skip this bit
if restrict_types != [] or ignore_types != []:
for t in ann_obj.get_textbounds():
if t.contains(m):
embedding.append(t)
# Note interpretation of ignore_types here: if the text
# span is embedded in one or more of the ignore_types or
# the ignore_types include the special value "ANY", the
# match is ignored.
if len([e for e in embedding if e.type in ignore_types or "ANY" in ignore_types]) != 0:
continue
if restrict_types != [] and len([e for e in embedding if e.type in restrict_types]) == 0:
continue
# TODO: need a clean, standard way of identifying a text span
# that does not involve an annotation; this is a bit of a hack
tm = TextMatch(m.start(), m.end(), m.group())
matches.add_match(ann_obj, tm)
# MAX_SEARCH_RESULT_NUMBER <= 0 --> no limit
if len(matches) > MAX_SEARCH_RESULT_NUMBER and MAX_SEARCH_RESULT_NUMBER > 0:
Messager.warning('Search result limit (%d) exceeded, stopping search.' % MAX_SEARCH_RESULT_NUMBER)
break
matches.limit_to(MAX_SEARCH_RESULT_NUMBER)
if REPORT_SEARCH_TIMINGS:
process_delta = datetime.now() - process_start
print >> stderr, "search_anns_for_text: processed in", str(process_delta.seconds)+"."+str(process_delta.microseconds/10000), "seconds"
return matches
def format_results(matches, concordancing=False, context_length=50):
"""
Given matches to a search (a SearchMatchSet), formats the results
for the client, returning a dictionary with the results in the
expected format.
"""
# decided to give filename only, remove this bit if the decision
# sticks
from document import relative_directory
from os.path import basename, dirname
# sanity
if concordancing:
try:
context_length = int(context_length)
assert context_length > 0, "format_results: invalid context length ('%s')" % str(context_length)
except:
# whatever goes wrong ...
Messager.warning('Context length should be an integer larger than zero.')
return {}
# the search response format is built similarly to that of the
# directory listing.
response = {}
# fill in header for search result browser
response['header'] = [('Document', 'string'),
('Annotation', 'string')]
# determine which additional fields can be shown; depends on the
# type of the results
# TODO: this is much uglier than necessary, revise
include_type = True
try:
for ann_obj, ann in matches.get_matches():
ann.type
except AttributeError:
include_type = False
include_text = True
try:
for ann_obj, ann in matches.get_matches():
ann.text
except AttributeError:
include_text = False
include_trigger_text = True
try:
for ann_obj, ann in matches.get_matches():
ann.trigger
except AttributeError:
include_trigger_text = False
include_context = False
if include_text and concordancing:
include_context = True
try:
for ann_obj, ann in matches.get_matches():
ann.first_start()
ann.last_end()
except AttributeError:
include_context = False
include_trigger_context = False
if include_trigger_text and concordancing and not include_context:
include_trigger_context = True
try:
for ann_obj, ann in matches.get_matches():
trigger = ann_obj.get_ann_by_id(ann.trigger)
trigger.first_start()
trigger.last_end()
except AttributeError:
include_trigger_context = False
# extend header fields in order of data fields
if include_type:
response['header'].append(('Type', 'string'))
if include_context or include_trigger_context:
# right-aligned string
response['header'].append(('Left context', 'string-reverse'))
if include_text:
# center-align text when concordancing, default otherwise
if include_context or include_trigger_context:
response['header'].append(('Text', 'string-center'))
else:
response['header'].append(('Text', 'string'))
if include_trigger_text:
response['header'].append(('Trigger text', 'string'))
if include_context or include_trigger_context:
response['header'].append(('Right context', 'string'))
# gather sets of reference IDs by document to highlight
# all matches in a document at once
matches_by_doc = {}
for ann_obj, ann in matches.get_matches():
docid = basename(ann_obj.get_document())
if docid not in matches_by_doc:
matches_by_doc[docid] = []
matches_by_doc[docid].append(ann.reference_id())
# fill in content
items = []
for ann_obj, ann in matches.get_matches():
# First value ("a") signals that the item points to a specific
# annotation, not a collection (directory) or document.
# second entry is non-listed "pointer" to annotation
docid = basename(ann_obj.get_document())
# matches in the same doc other than the focus match
other_matches = [rid for rid in matches_by_doc[docid]
if rid != ann.reference_id()]
items.append(["a", { 'matchfocus' : [ann.reference_id()],
'match' : other_matches,
'dir' : dirname(relative_directory(ann_obj.get_document()))+"/"
},
docid, ann.reference_text()])
if include_type:
items[-1].append(ann.type)
if include_context:
context_ann = ann
elif include_trigger_context:
context_ann = ann_obj.get_ann_by_id(ann.trigger)
else:
context_ann = None
if context_ann is not None:
# left context
start = max(context_ann.first_start() - context_length, 0)
doctext = ann_obj.get_document_text()
items[-1].append(doctext[start:context_ann.first_start()])
if include_text:
items[-1].append(ann.text)
if include_trigger_text:
try:
items[-1].append(ann_obj.get_ann_by_id(ann.trigger).text)
except:
# TODO: specific exception
items[-1].append("(ERROR)")
if context_ann is not None:
# right context
end = min(context_ann.last_end() + context_length,
len(ann_obj.get_document_text()))
doctext = ann_obj.get_document_text()
items[-1].append(doctext[context_ann.last_end():end])
response['items'] = items
return response
### brat interface functions ###
def _to_bool(s):
"""
Given a string representing a boolean value sent over
JSON, returns the corresponding actual boolean.
"""
if s == "true":
return True
elif s == "false":
return False
else:
assert False, "Error: '%s' is not a JSON boolean" % s
def search_text(collection, document, scope="collection",
concordancing="false", context_length=50,
text_match="word", match_case="false",
text=""):
directory = collection
# Interpret JSON booleans
concordancing = _to_bool(concordancing)
match_case = _to_bool(match_case)
ann_objs = __doc_or_dir_to_annotations(directory, document, scope)
matches = search_anns_for_text(ann_objs, text,
text_match=text_match,
match_case=match_case)
results = format_results(matches, concordancing, context_length)
results['collection'] = directory
return results
def search_entity(collection, document, scope="collection",
concordancing="false", context_length=50,
text_match="word", match_case="false",
type=None, text=DEFAULT_EMPTY_STRING):
directory = collection
# Interpret JSON booleans
concordancing = _to_bool(concordancing)
match_case = _to_bool(match_case)
ann_objs = __doc_or_dir_to_annotations(directory, document, scope)
restrict_types = []
if type is not None and type != "":
restrict_types.append(type)
matches = search_anns_for_textbound(ann_objs, text,
restrict_types=restrict_types,
text_match=text_match,
match_case=match_case)
results = format_results(matches, concordancing, context_length)
results['collection'] = directory
return results
def search_note(collection, document, scope="collection",
concordancing="false", context_length=50,
text_match="word", match_case="false",
category=None, type=None, text=DEFAULT_EMPTY_STRING):
directory = collection
# Interpret JSON booleans
concordancing = _to_bool(concordancing)
match_case = _to_bool(match_case)
ann_objs = __doc_or_dir_to_annotations(directory, document, scope)
restrict_types = []
if type is not None and type != "":
restrict_types.append(type)
matches = search_anns_for_note(ann_objs, text, category,
restrict_types=restrict_types,
text_match=text_match,
match_case=match_case)
results = format_results(matches, concordancing, context_length)
results['collection'] = directory
return results
def search_event(collection, document, scope="collection",
concordancing="false", context_length=50,
text_match="word", match_case="false",
type=None, trigger=DEFAULT_EMPTY_STRING, args={}):
directory = collection
# Interpret JSON booleans
concordancing = _to_bool(concordancing)
match_case = _to_bool(match_case)
ann_objs = __doc_or_dir_to_annotations(directory, document, scope)
restrict_types = []
if type is not None and type != "":
restrict_types.append(type)
# to get around lack of JSON object parsing in dispatcher, parse
# args here.
# TODO: parse JSON in dispatcher; this is far from the right place to do this..
from jsonwrap import loads
args = loads(args)
matches = search_anns_for_event(ann_objs, trigger, args,
restrict_types=restrict_types,
text_match=text_match,
match_case=match_case)
results = format_results(matches, concordancing, context_length)
results['collection'] = directory
return results
def search_relation(collection, document, scope="collection",
concordancing="false", context_length=50,
text_match="word", match_case="false",
type=None, arg1=None, arg1type=None,
arg2=None, arg2type=None):
directory = collection
# Interpret JSON booleans
concordancing = _to_bool(concordancing)
match_case = _to_bool(match_case)
ann_objs = __doc_or_dir_to_annotations(directory, document, scope)
restrict_types = []
if type is not None and type != "":
restrict_types.append(type)
matches = search_anns_for_relation(ann_objs, arg1, arg1type,
arg2, arg2type,
restrict_types=restrict_types,
text_match=text_match,
match_case=match_case)
results = format_results(matches, concordancing, context_length)
results['collection'] = directory
return results
### filename list interface functions (e.g. command line) ###
def search_files_for_text(filenames, text, restrict_types=None, ignore_types=None, nested_types=None):
"""
Searches for the given text in the given set of files.
"""
anns = __filenames_to_annotations(filenames)
return search_anns_for_text(anns, text, restrict_types=restrict_types, ignore_types=ignore_types, nested_types=nested_types)
def search_files_for_textbound(filenames, text, restrict_types=None, ignore_types=None, nested_types=None, entities_only=False):
"""
Searches for the given text in textbound annotations in the given
set of files.
"""
anns = __filenames_to_annotations(filenames)
return search_anns_for_textbound(anns, text, restrict_types=restrict_types, ignore_types=ignore_types, nested_types=nested_types, entities_only=entities_only)
# TODO: filename list interface functions for event and relation search
def check_files_type_consistency(filenames, restrict_types=None, ignore_types=None, nested_types=None):
"""
Searches for inconsistent annotations in the given set of files.
"""
anns = __filenames_to_annotations(filenames)
return check_type_consistency(anns, restrict_types=restrict_types, ignore_types=ignore_types, nested_types=nested_types)
def check_files_missing_consistency(filenames, restrict_types=None, ignore_types=None, nested_types=None):
"""
Searches for potentially missing annotations in the given set of files.
"""
anns = __filenames_to_annotations(filenames)
return check_missing_consistency(anns, restrict_types=restrict_types, ignore_types=ignore_types, nested_types=nested_types)
def argparser():
import argparse
ap=argparse.ArgumentParser(description="Search BioNLP Shared Task annotations.")
ap.add_argument("-v", "--verbose", default=False, action="store_true", help="Verbose output.")
ap.add_argument("-ct", "--consistency-types", default=False, action="store_true", help="Search for inconsistently typed annotations.")
ap.add_argument("-cm", "--consistency-missing", default=False, action="store_true", help="Search for potentially missing annotations.")
ap.add_argument("-t", "--text", metavar="TEXT", help="Search for matching text.")
ap.add_argument("-b", "--textbound", metavar="TEXT", help="Search for textbound matching text.")
ap.add_argument("-e", "--entity", metavar="TEXT", help="Search for entity matching text.")
ap.add_argument("-r", "--restrict", metavar="TYPE", nargs="+", help="Restrict to given types.")
ap.add_argument("-i", "--ignore", metavar="TYPE", nargs="+", help="Ignore given types.")
ap.add_argument("-n", "--nested", metavar="TYPE", nargs="+", help="Require type to be nested.")
ap.add_argument("files", metavar="FILE", nargs="+", help="Files to verify.")
return ap
def main(argv=None):
import sys
import os
import urllib
# ignore search result number limits on command-line invocations
global MAX_SEARCH_RESULT_NUMBER
MAX_SEARCH_RESULT_NUMBER = -1
if argv is None:
argv = sys.argv
arg = argparser().parse_args(argv[1:])
# TODO: allow multiple searches
if arg.textbound is not None:
matches = [search_files_for_textbound(arg.files, arg.textbound,
restrict_types=arg.restrict,
ignore_types=arg.ignore,
nested_types=arg.nested)]
elif arg.entity is not None:
matches = [search_files_for_textbound(arg.files, arg.textbound,
restrict_types=arg.restrict,
ignore_types=arg.ignore,
nested_types=arg.nested,
entities_only=True)]
elif arg.text is not None:
matches = [search_files_for_text(arg.files, arg.text,
restrict_types=arg.restrict,
ignore_types=arg.ignore,
nested_types=arg.nested)]
elif arg.consistency_types:
matches = check_files_type_consistency(arg.files,
restrict_types=arg.restrict,
ignore_types=arg.ignore,
nested_types=arg.nested)
elif arg.consistency_missing:
matches = check_files_missing_consistency(arg.files,
restrict_types=arg.restrict,
ignore_types=arg.ignore,
nested_types=arg.nested)
else:
print >> sys.stderr, "Please specify action (-h for help)"
return 1
# guessing at the likely URL
import getpass
username = getpass.getuser()
for m in matches:
print m.criterion
for ann_obj, ann in m.get_matches():
# TODO: get rid of specific URL hack and similar
baseurl='http://127.0.0.1/~%s/brat/#/' % username
# sorry about this
if isinstance(ann, TextMatch):
annp = "%s~%s" % (ann.reference_id()[0], ann.reference_id()[1])
else:
annp = ann.reference_id()[0]
anns = unicode(ann).rstrip()
annloc = ann_obj.get_document().replace("data/","")
outs = u"\t%s%s?focus=%s (%s)" % (baseurl, annloc, annp, anns)
print outs.encode('utf-8')
if __name__ == "__main__":
import sys
# on command-line invocations, don't limit the number of results
# as the user has direct control over the system.
MAX_SEARCH_RESULT_NUMBER = -1
sys.exit(main(sys.argv))