norm.py 19.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
#!/usr/bin/env python
# -*- Mode: Python; tab-width: 4; indent-tabs-mode: nil; coding: utf-8; -*-
# vim:set ft=python ts=4 sw=4 sts=4 autoindent:

'''
Normalization support.
'''

import normdb
import simstringdb
import sdistance
from datetime import datetime
from message import Messager

from normdb import string_norm_form
from document import real_directory
from projectconfig import ProjectConfiguration

# whether to display alignment scores in search result table
DISPLAY_SEARCH_SCORES = False

# maximum alignment score (tsuruoka_local)
MAX_SCORE = 1000

# maximum alignment score (tsuruoka_local) difference allowed between
# the score for a string s and the best known score before excluding s
# from consideration
MAX_DIFF_TO_BEST_SCORE = 200

# maximum number of search results to return
MAX_SEARCH_RESULT_NUMBER = 1000

NORM_LOOKUP_DEBUG = True

REPORT_LOOKUP_TIMINGS = False

# debugging
def _check_DB_version(database):
    # TODO; not implemented yet for new-style SQL DBs.
    pass

def _report_timings(dbname, start, msg=None):
    delta = datetime.now() - start
    strdelta = str(delta).replace('0:00:0','') # take out zero min & hour
    queries = normdb.get_query_count(dbname)
    normdb.reset_query_count(dbname)
    Messager.info("Processed " + str(queries) + " queries in " + strdelta +
                  (msg if msg is not None else ""))

def _get_db_path(database, collection):
    if collection is None:
        # TODO: default to WORK_DIR config?
        return None
    else:
        try:
            conf_dir = real_directory(collection)
            projectconf = ProjectConfiguration(conf_dir)
            norm_conf = projectconf.get_normalization_config()
            for entry in norm_conf:
                dbname, dbpath = entry[0], entry[3]
                if dbname == database:                    
                    return dbpath
            # not found in config.
            Messager.warning('DB '+database+' not defined in config for '+
                             collection+', falling back on default.')
            return None
        except Exception:
            # whatever goes wrong, just warn and fall back on the default.
            Messager.warning('Failed to get DB path from config for '+
                             collection+', falling back on default.')
            return None

def norm_get_name(database, key, collection=None):
    if NORM_LOOKUP_DEBUG:
        _check_DB_version(database)
    if REPORT_LOOKUP_TIMINGS:
        lookup_start = datetime.now()

    dbpath = _get_db_path(database, collection)
    if dbpath is None:
        # full path not configured, fall back on name as default
        dbpath = database

    try:
        data = normdb.data_by_id(dbpath, key)
    except normdb.dbNotFoundError, e:
        Messager.warning(str(e))
        data = None

    # just grab the first one (sorry, this is a bit opaque)
    if data is not None:
        value = data[0][0][1]
    else:
        value = None

    if REPORT_LOOKUP_TIMINGS:
        _report_timings(database, lookup_start)

    # echo request for sync
    json_dic = {
        'database' : database,
        'key' : key,
        'value' : value
        }
    return json_dic

def norm_get_data(database, key, collection=None):
    if NORM_LOOKUP_DEBUG:
        _check_DB_version(database)
    if REPORT_LOOKUP_TIMINGS:
        lookup_start = datetime.now()

    dbpath = _get_db_path(database, collection)
    if dbpath is None:
        # full path not configured, fall back on name as default
        dbpath = database

    try:
        data = normdb.data_by_id(dbpath, key)
    except normdb.dbNotFoundError, e:
        Messager.warning(str(e))
        data = None

    if data is None:
        Messager.warning("Failed to get data for " + database + ":" + key)

    if REPORT_LOOKUP_TIMINGS:
        _report_timings(database, lookup_start)

    # echo request for sync
    json_dic = {
        'database' : database,
        'key' : key,
        'value' : data
        }
    return json_dic    

# TODO: deprecated, confirm unnecessary and remove.
# def norm_get_ids(database, name, collection=None):
#     if NORM_LOOKUP_DEBUG:
#         _check_DB_version(database)
#     if REPORT_LOOKUP_TIMINGS:
#         lookup_start = datetime.now()
#
#     dbpath = _get_db_path(database, collection)
#     if dbpath is None:
#         # full path not configured, fall back on name as default
#         dbpath = database
#
#     keys = normdb.ids_by_name(dbpath, name)
#
#     if REPORT_LOOKUP_TIMINGS:
#         _report_timings(database, lookup_start)
#
#     # echo request for sync
#     json_dic = {
#         'database' : database,
#         'value' : name,
#         'keys' : keys,
#         }
#     return json_dic

def _format_datas(datas, scores=None, matched=None):
    # helper for norm_search(), formats data from DB into a table
    # for client, sort by scores if given.

    if scores is None:
        scores = {}
    if matched is None:
        matched = {}

    # chop off all but the first two groups of label:value pairs for
    # each key; latter ones are assumed to be additional information
    # not intended for display of search results. 
    # TODO: avoid the unnecessary queries for this information.
    cropped = {}
    for key in datas:
        cropped[key] = datas[key][:2]
    datas = cropped

    # organize into a table format with separate header and data
    # (this matches the collection browser data format)
    unique_labels = []
    seen_label = {}
    for key in datas:
        # check for dups within each entry
        seen_label_for_key = {}
        for i, group in enumerate(datas[key]):
            for label, value in group:
                if label not in seen_label:
                    # store with group index to sort all labels by
                    # group idx first
                    unique_labels.append((i, label))
                seen_label[label] = True
                if label in seen_label_for_key:
                    # too noisy, and not really harmful now that matching
                    # values are preferred for repeated labels.
#                     Messager.warning("Repeated label (%s) in normalization data not supported" % label)
                    pass
                seen_label_for_key[label] = True

    # sort unique labels by group index (should be otherwise stable,
    # holds since python 2.3), and flatten
    unique_labels.sort(lambda a,b: cmp(a[0],b[0]))
    unique_labels = [a[1] for a in unique_labels]

    # ID is first field, and datatype is "string" for all labels
    header = [(label, "string") for label in ["ID"] + unique_labels]

    if DISPLAY_SEARCH_SCORES:
        header += [("score", "int")]

    # construct items, sorted by score first, ID second (latter for stability)
    sorted_keys = sorted(datas.keys(), lambda a,b: cmp((scores.get(b,0),b),
                                                       (scores.get(a,0),a)))

    items = []
    for key in sorted_keys:
        # make dict for lookup. In case of duplicates (e.g. multiple
        # "synonym" entries), prefer ones that were matched.
        # TODO: prefer more exact matches when multiple found.
        data_dict = {}
        for group in datas[key]:
            for label, value in group:
                if label not in data_dict or (value in matched and
                                              data_dict[label] not in matched):
                    data_dict[label] = value
        # construct item
        item = [str(key)]
        for label in unique_labels:
            if label in data_dict:
                item.append(data_dict[label])
            else:
                item.append('')
        
        if DISPLAY_SEARCH_SCORES:
            item += [str(scores.get(key))]

        items.append(item)

    return header, items

def _norm_filter_score(score, best_score=MAX_SCORE):
    return score < best_score - MAX_DIFF_TO_BEST_SCORE

# TODO: get rid of arbitrary max_cost default constant
def _norm_score(substring, name, max_cost=500):
    # returns an integer score representing the similarity of the given
    # substring to the given name (larger is better).
    cache = _norm_score.__cache
    if (substring, name) not in cache:
        cost = sdistance.tsuruoka_local(substring, name, max_cost=max_cost)
        # debugging
        #Messager.info('%s --- %s: %d (max %d)' % (substring, name, cost, max_cost))
        score = MAX_SCORE - cost
        cache[(substring, name)] = score
    # TODO: should we avoid exceeding max_cost? Cached values might.
    return cache[(substring, name)]
_norm_score.__cache = {}

def _norm_search_name_attr(database, name, attr,
                           matched, score_by_id, score_by_str,
                           best_score=0, exactmatch=False,
                           threshold=simstringdb.DEFAULT_THRESHOLD):
    # helper for norm_search, searches for matches where given name
    # appears either in full or as an approximate substring of a full
    # name (if exactmatch is False) in given DB. If attr is not None,
    # requires its value to appear as an attribute of the entry with
    # the matched name. Updates matched, score_by_id, and
    # score_by_str, returns best_score.

    # If there are no strict substring matches for a given attribute
    # in the simstring DB, we can be sure that no query can succeed,
    # and can fail early.
    # TODO: this would be more effective (as would some other things)
    # if the attributes were in a separate simstring DB from the
    # names.
    if attr is not None:
        utfattr = attr.encode('UTF-8')
        normattr = string_norm_form(utfattr)
        if not simstringdb.ssdb_supstring_exists(normattr, database, 1.0):
            # debugging
            #Messager.info('Early norm search fail on "%s"' % attr)
            return best_score

    if exactmatch:
        # only candidate string is given name
        strs = [name]
        ss_norm_score = { string_norm_form(name): 1.0 }
    else:
        # expand to substrings using simstring
        # simstring requires UTF-8
        utfname = name.encode('UTF-8')
        normname = string_norm_form(utfname)
        str_scores = simstringdb.ssdb_supstring_lookup(normname, database,
                                                       threshold, True)
        strs = [s[0] for s in str_scores]
        ss_norm_score = dict(str_scores)

        # TODO: recreate this older filter; watch out for which name to use!
#         # filter to strings not already considered
#         strs = [s for s in strs if (normname, s) not in score_by_str]

    # look up IDs
    if attr is None:
        id_names = normdb.ids_by_names(database, strs, False, True)
    else:
        id_names = normdb.ids_by_names_attr(database, strs, attr, False, True)

    # sort by simstring (n-gram overlap) score to prioritize likely
    # good hits.
    # TODO: this doesn't seem to be having a very significant effect.
    # consider removing as unnecessary complication (ss_norm_score also).
    id_name_scores = [(i, n, ss_norm_score[string_norm_form(n)]) 
                      for i, n in id_names]
    id_name_scores.sort(lambda a,b: cmp(b[2],a[2]))
    id_names = [(i, n) for i, n, s in id_name_scores]

    # update matches and scores
    for i, n in id_names:
        if n not in matched:
            matched[n] = set()
        matched[n].add(i)

        max_cost = MAX_SCORE - best_score + MAX_DIFF_TO_BEST_SCORE + 1
        if (name, n) not in score_by_str:
            # TODO: decide whether to use normalized or unnormalized strings
            # for scoring here.
            #score_by_str[(name, n)] = _norm_score(name, n, max_cost)
            score_by_str[(name, n)] = _norm_score(string_norm_form(name), string_norm_form(n), max_cost)
        score = score_by_str[(name, n)]
        best_score = max(score, best_score)

        score_by_id[i] = max(score_by_id.get(i, -1),
                             score_by_str[(name, n)])

        # stop if max count reached
        if len(score_by_id) > MAX_SEARCH_RESULT_NUMBER:
            Messager.info('Note: more than %d search results, only retrieving top matches' % MAX_SEARCH_RESULT_NUMBER)
            break

    return best_score

def _norm_search_impl(database, name, collection=None, exactmatch=False):
    if NORM_LOOKUP_DEBUG:
        _check_DB_version(database)
    if REPORT_LOOKUP_TIMINGS:
        lookup_start = datetime.now()

    dbpath = _get_db_path(database, collection)
    if dbpath is None:
        # full path not configured, fall back on name as default
        dbpath = database

    # maintain map from searched names to matching IDs and scores for
    # ranking
    matched = {}
    score_by_id = {}
    score_by_str = {}

    # look up hits where name appears in full
    best_score = _norm_search_name_attr(dbpath, name, None,
                                        matched, score_by_id, score_by_str,
                                        0, exactmatch)

    # if there are no hits and we only have a simple candidate string,
    # look up with a low threshold
    if best_score == 0 and len(name.split()) == 1:
        best_score = _norm_search_name_attr(dbpath, name, None,
                                            matched, score_by_id, score_by_str,
                                            0, exactmatch, 0.5)

    # if there are no good hits, also consider only part of the input
    # as name and the rest as an attribute.
    # TODO: reconsider arbitrary cutoff
    if best_score < 900 and not exactmatch:
        parts = name.split()        

        # prioritize having the attribute after the name
        for i in range(len(parts)-1, 0, -1):
            # TODO: this early termination is sub-optimal: it's not
            # possible to know in advance which way of splitting the
            # query into parts yields best results. Reconsider.
            if len(score_by_id) > MAX_SEARCH_RESULT_NUMBER:
                break

            start = ' '.join(parts[:i])
            end   = ' '.join(parts[i:])            

            # query both ways (start is name, end is attr and vice versa)
            best_score = _norm_search_name_attr(dbpath, start, end,
                                                matched, score_by_id, 
                                                score_by_str,
                                                best_score, exactmatch)
            best_score = _norm_search_name_attr(dbpath, end, start,
                                                matched, score_by_id, 
                                                score_by_str,
                                                best_score, exactmatch)

    # flatten to single set of IDs
    ids = reduce(set.union, matched.values(), set())

    # filter ids that now (after all queries complete) fail
    # TODO: are we sure that this is a good idea?
    ids = set([i for i in ids 
               if not _norm_filter_score(score_by_id[i], best_score)])

    # TODO: avoid unnecessary queries: datas_by_ids queries for names,
    # attributes and infos, but _format_datas only uses the first two.
    datas = normdb.datas_by_ids(dbpath, ids)
    
    header, items = _format_datas(datas, score_by_id, matched)

    if REPORT_LOOKUP_TIMINGS:
        _report_timings(database, lookup_start, 
                        ", retrieved " + str(len(items)) + " items")
                        
    # echo request for sync
    json_dic = {
        'database' : database,
        'query'    : name,
        'header'   : header,
        'items'    : items,
        }
    return json_dic

def norm_search(database, name, collection=None, exactmatch=False):
    try:
        return _norm_search_impl(database, name, collection, exactmatch)
    except simstringdb.ssdbNotFoundError, e:
        Messager.warning(str(e))
        return { 
            'database' : database,
            'query' : name,
            'header' : [],
            'items' : []
            }

def _test():
    # test
    test_cases = {
        'UniProt' : {
            'Runx3' : 'Q64131',
            'Runx3 mouse' : 'Q64131',
            'Runx1' : 'Q03347',
            'Runx1 mouse' : 'Q03347',
            'Eomes' : 'O54839',
            'Eomes mouse' : 'O54839',
            'granzyme B' : 'P04187',
            'granzyme B mouse' : 'P04187',
            'INF-gamma' : 'P01580',
            'INF-gamma mouse' : 'P01580',
            'IL-2' : 'P04351',
            'IL-2 mouse' : 'P04351',
            'T-bet' : 'Q9JKD8',
            'T-bet mouse' : 'Q9JKD8',
            'GATA-1' : 'P15976',
            'GATA-1 human' : 'P15976',
            'Interleukin-10' : 'P22301',
            'Interleukin-10 human' : 'P22301',
            'Interleukin-12' : 'P29459',
            'Interleukin-12 human' : 'P29459',
            'interferon-gamma' : 'P01579',
            'interferon-gamma human' : 'P01579',
            'interferon gamma human' : 'P01579',
            'Fas ligand' : 'P48023',
            'Fas ligand human' : 'P48023',
            'IkappaB-alpha' : 'P25963',
            'IkappaB-alpha human' : 'P25963',
            'transforming growth factor (TGF)-beta1' : 'P01137',
            'transforming growth factor (TGF)-beta1 human' : 'P01137',
            'transforming growth factor beta1 human' : 'P01137',
            'tumor necrosis factor alpha' : 'P01375',
            'tumor necrosis factor alpha human' : 'P01375',
            'Epstein-Barr virus latent membrane protein LMP1' : 'Q1HVB3',
            'TATA box binding protein' : 'P20226',
            'TATA box binding protein human' : 'P20226',
            'HIV protease' : '??????', # TODO
            'human immunodeficiency virus type 1 (HIV) protease' : '??????', # TODO
            }
        }

    overall_start = datetime.now()
    query_count, hit_count = 0, 0
    misses = []
    for DB in test_cases:
        for query in test_cases[DB]:
            target = test_cases[DB][query]
            start = datetime.now()
            results = norm_search(DB, query)
            delta = datetime.now() - start
            found = False
            found_rank = -1
            for rank, item in enumerate(results['items']):
                id_ = item[0]
                if id_ == target:
                    found = True
                    found_rank = rank+1
                    break
            strdelta = str(delta).replace('0:00:0','').replace('0:00:','')
            print "%s: '%s' <- '%s' rank %d/%d (%s sec)" % ('  ok' if found 
                                                            else 'MISS',
                                                            target, query, 
                                                            found_rank,
                                                            len(results['items']),
                                                            strdelta)
            query_count += 1
            if found:
                hit_count += 1
            else:
                misses.append((query, target))

    if len(misses) != 0:
        print
        print "MISSED:"
        for query, target in misses:
            print "%s '%s'" % (target, query)

    delta = datetime.now() - overall_start
    strdelta = str(delta).replace('0:00:0','').replace('0:00:','')
    print
    print "Found %d / %d in %s" % (hit_count, query_count, strdelta)

def _profile_test():
    # runs _test() with profiling, storing results in "norm.profile".
    # To see a profile, run e.g.
    # python -c 'import pstats; pstats.Stats("norm.profile").strip_dirs().sort_stats("time").print_stats()' | less
    import cProfile
    import os.path
    cProfile.run('_test()', 'norm.profile')

if __name__ == '__main__':
    _test() # normal
    #_profile_test() # profiled