Commit 042043dc829c57fde38152366514c932c1c1fd2b
1 parent
44d0a5f2
Minor fixes.
Showing
2 changed files
with
9 additions
and
9 deletions
corneferencer/resolvers/features.py
... | ... | @@ -229,7 +229,7 @@ def check_one_way_acronym(acronym, expression): |
229 | 229 | for expr2 in expr1.split(): |
230 | 230 | expr2 = expr2.strip() |
231 | 231 | if expr2: |
232 | - initials += unicode(expr2[0]).upper() | |
232 | + initials += str(expr2[0]).upper() | |
233 | 233 | if acronym == initials: |
234 | 234 | return 1; |
235 | 235 | return 0; |
... | ... |
corneferencer/resolvers/resolve.py
... | ... | @@ -37,7 +37,7 @@ def entity_based(text): |
37 | 37 | last_set_id = 0 |
38 | 38 | for i, ana in enumerate(text.mentions): |
39 | 39 | if i > 0: |
40 | - print ('!!!!!!!!!!%s!!!!!!!!!!!!' % ana.text) | |
40 | + # print ('!!!!!!!!!!%s!!!!!!!!!!!!' % ana.text) | |
41 | 41 | best_fit = get_best_set(sets, ana) |
42 | 42 | if best_fit is not None: |
43 | 43 | ana.set = best_fit['set_id'] |
... | ... | @@ -54,14 +54,14 @@ def entity_based(text): |
54 | 54 | 'mentions': [ana]}) |
55 | 55 | ana.set = str_set_id |
56 | 56 | last_set_id += 1 |
57 | - print (ana.set) | |
58 | - for ss in sets: | |
59 | - print (';;;'.join(['%s:%s' % (ss['set_id'], mnt.text) for mnt in ss['mentions']])) | |
57 | + # print (ana.set) | |
58 | + # for ss in sets: | |
59 | + # print (';;;'.join(['%s:%s' % (ss['set_id'], mnt.text) for mnt in ss['mentions']])) | |
60 | 60 | |
61 | 61 | remove_singletons(sets) |
62 | - print (';'.join([ss['set_id'] for ss in sets])) | |
63 | - for ss in sets: | |
64 | - print (';;;'.join(['%s:%s' % (ss['set_id'], mnt.text) for mnt in ss['mentions']])) | |
62 | + # print (';'.join([ss['set_id'] for ss in sets])) | |
63 | + # for ss in sets: | |
64 | + # print (';;;'.join(['%s:%s' % (ss['set_id'], mnt.text) for mnt in ss['mentions']])) | |
65 | 65 | |
66 | 66 | |
67 | 67 | def get_best_set(sets, ana): |
... | ... | @@ -82,7 +82,7 @@ def predict_set(mentions, ana): |
82 | 82 | sample = numpy.asarray([pair_vec], dtype=numpy.float32) |
83 | 83 | prediction = NEURAL_MODEL.predict(sample)[0] |
84 | 84 | prediction_sum += prediction |
85 | - print(mnt.text, prediction, ana.text) | |
85 | + # print(mnt.text, prediction, ana.text) | |
86 | 86 | return prediction_sum / float(len(mentions)) |
87 | 87 | |
88 | 88 | |
... | ... |