tei.py
14.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import gzip
import os
import shutil
from lxml import etree
import conf
from corneferencer.entities import Mention, Text
from corneferencer.utils import eprint
NKJP_NS = 'http://www.nkjp.pl/ns/1.0'
TEI_NS = 'http://www.tei-c.org/ns/1.0'
XI_NS = 'http://www.w3.org/2001/XInclude'
XML_NS = 'http://www.w3.org/XML/1998/namespace'
NSMAP = {None: TEI_NS,
'nkjp': NKJP_NS,
'xi': XI_NS}
def read(inpath, clear_mentions=conf.CLEAR_INPUT):
textname = os.path.basename(inpath)
text = Text(textname)
# essential layers
ann_segmentation = os.path.join(inpath, 'ann_segmentation.xml.gz')
ann_morphosyntax = os.path.join(inpath, 'ann_morphosyntax.xml.gz')
ann_mentions = os.path.join(inpath, 'ann_mentions.xml.gz')
# additional layers
ann_coreference = os.path.join(inpath, 'ann_coreference.xml.gz')
if os.path.exists(ann_segmentation):
pass
else:
eprint("Error: missing segmentation layer for text %s!" % textname)
return None
if os.path.exists(ann_morphosyntax):
(segments, segments_ids) = read_morphosyntax(ann_morphosyntax)
else:
eprint("Error: missing morphosyntax layer for text %s!" % textname)
return None
if os.path.exists(ann_mentions):
text.mentions = read_mentions(ann_mentions, segments, segments_ids)
else:
eprint("Error: missing mentions layer for text %s!" % textname)
return None
if os.path.exists(ann_coreference) and not clear_mentions:
add_coreference_layer(ann_coreference, text)
return text
# morphosyntax
def read_morphosyntax(ann_archive):
segments_dict = {}
segments_ids = []
ann_file = gzip.open(ann_archive, 'rb')
parser = etree.XMLParser(encoding="utf-8")
tree = etree.parse(ann_file, parser)
body = tree.xpath('//xmlns:body', namespaces={'xmlns': TEI_NS})[0]
paragraphs = body.xpath(".//xmlns:p", namespaces={'xmlns': TEI_NS})
for par in paragraphs:
sentences = par.xpath(".//xmlns:s", namespaces={'xmlns': TEI_NS})
for sent_id, sent in enumerate(sentences):
segments = sent.xpath(".//xmlns:seg", namespaces={'xmlns': TEI_NS})
for seg_id, seg in enumerate(segments):
lastinsent = False
lastinpar = False
if seg_id == len(segments) - 1:
lastinsent = True
if sent_id == len(sentences) - 1:
lastinpar = True
segment = read_segment(seg, lastinsent, lastinpar)
segments_dict[segment['id']] = segment
segments_ids.append(segment['id'])
return segments_dict, segments_ids
def read_segment(seg, lastinsent, lastinpar):
hasnps = False
base = ''
ctag = ''
msd = ''
orth = ''
idx = seg.attrib['{%s}id' % XML_NS]
for f in seg.xpath(".//xmlns:f", namespaces={'xmlns': TEI_NS}):
if f.attrib['name'] == 'orth':
orth = get_f_string(f)
elif f.attrib['name'] == 'nps':
hasnps = get_f_bin_value(f)
elif f.attrib['name'] == 'interpretation':
interpretation = get_f_string(f)
(base, ctag, msd) = parse_interpretation(interpretation)
return {'id': idx,
'orth': orth,
'base': base,
'hasnps': hasnps,
'lastinsent': lastinsent,
'lastinpar': lastinpar,
'ctag': ctag,
'msd': msd,
'number': get_number(msd),
'person': get_person(msd),
'gender': get_gender(msd)}
def get_f_string(f):
return f.getchildren()[0].text
def get_f_bin_value(f):
value = False
if f.getchildren()[0].attrib['value'] == 'true':
value = True
return value
def parse_interpretation(interpretation):
split = interpretation.split(':')
if interpretation.startswith(':'):
base = ':'
ctag = 'interp'
msd = ''
elif len(split) > 2:
base = split[0]
ctag = split[1]
msd = ':'.join(split[2:])
else:
base = split[0]
ctag = split[1]
msd = ''
return base, ctag, msd
def get_gender(msd):
tags = msd.split(':')
if 'm1' in tags:
return 'm1'
elif 'm2' in tags:
return 'm2'
elif 'm3' in tags:
return 'm3'
elif 'f' in tags:
return 'f'
elif 'n' in tags:
return 'n'
else:
return 'unk'
def get_person(msd):
tags = msd.split(':')
if 'pri' in tags:
return 'pri'
elif 'sec' in tags:
return 'sec'
elif 'ter' in tags:
return 'ter'
else:
return 'unk'
def get_number(msd):
tags = msd.split(':')
if 'sg' in tags:
return 'sg'
elif 'pl' in tags:
return 'pl'
else:
return 'unk'
# mentions
def read_mentions(ann_archive, segments, segments_ids):
mentions = []
ann_file = gzip.open(ann_archive, 'rb')
parser = etree.XMLParser(encoding="utf-8")
tree = etree.parse(ann_file, parser)
body = tree.xpath('//xmlns:body', namespaces={'xmlns': TEI_NS})[0]
paragraphs = body.xpath(".//xmlns:p", namespaces={'xmlns': TEI_NS})
mnt_id = 0
for par_id, par in enumerate(paragraphs):
sentences = par.xpath(".//xmlns:s", namespaces={'xmlns': TEI_NS})
for sent_id, sent in enumerate(sentences):
mention_nodes = sent.xpath(".//xmlns:seg", namespaces={'xmlns': TEI_NS})
for mnt in mention_nodes:
mnt_id += 1
mention = get_mention(mnt, mnt_id, segments, segments_ids, par_id, sent_id)
mentions.append(mention)
return mentions
def get_mention(mention, mnt_id, segments, segments_ids, paragraph_id, sentence_id):
idx = mention.attrib['{%s}id' % XML_NS]
mnt_segments = []
for ptr in mention.xpath(".//xmlns:ptr", namespaces={'xmlns': TEI_NS}):
seg_id = ptr.attrib['target'].split('#')[-1]
if not word_to_ignore(segments[seg_id]):
mnt_segments.append(segments[seg_id])
semh = None
for f in mention.xpath(".//xmlns:f", namespaces={'xmlns': TEI_NS}):
if f.attrib['name'] == 'semh':
semh_id = get_fval(f).split('#')[-1]
semh = segments[semh_id]
if len(mnt_segments) == 0:
mnt_segments.append(semh)
(sent_segments, prec_context, follow_context,
first_in_sentence, first_in_paragraph) = get_context(mnt_segments, segments, segments_ids)
mention = Mention(mnt_id=idx,
text=to_text(mnt_segments, 'orth'),
lemmatized_text=to_text(mnt_segments, 'base'),
words=mnt_segments,
span=None,
head_orth=semh['orth'],
head=semh,
node=mention,
prec_context=prec_context,
follow_context=follow_context,
sentence=sent_segments,
sentence_id=sentence_id,
paragraph_id=paragraph_id,
position_in_mentions=mnt_id,
start_in_words=segments_ids.index(mnt_segments[0]['id']),
end_in_words=segments_ids.index(mnt_segments[-1]['id']),
rarest=get_rarest_word(mnt_segments),
first_in_sentence=first_in_sentence,
first_in_paragraph=first_in_paragraph,
set_id=None,
dominant=None,)
return mention
def get_context(mention_words, segments, segments_ids):
prec_context = []
follow_context = []
sentence = []
first_word = mention_words[0]
last_word = mention_words[-1]
first_in_sentence = False
first_in_paragraph = False
for idx, morph_id in enumerate(segments_ids):
word = segments[morph_id]
if word['id'] == first_word['id']:
prec_context = get_prec_context(idx, segments, segments_ids)
if idx == 0 or segments[segments_ids[idx-1]]['lastinsent']:
first_in_sentence = True
if idx == 0 or segments[segments_ids[idx-1]]['lastinpar']:
first_in_paragraph = True
if word['id'] == last_word['id']:
follow_context = get_follow_context(idx, segments, segments_ids)
sentence = get_sentence(idx, segments, segments_ids)
break
return (sentence, prec_context, follow_context, first_in_sentence, first_in_paragraph)
def get_prec_context(mention_start, segments, segments_ids):
context = []
context_start = mention_start - 1
while context_start >= 0:
if not word_to_ignore(segments[segments_ids[context_start]]):
context.append(segments[segments_ids[context_start]])
if len(context) == conf.CONTEXT:
break
context_start -= 1
context.reverse()
return context
def get_follow_context(mention_end, segments, segments_ids):
context = []
context_end = mention_end + 1
while context_end < len(segments):
if not word_to_ignore(segments[segments_ids[context_end]]):
context.append(segments[segments_ids[context_end]])
if len(context) == conf.CONTEXT:
break
context_end += 1
return context
def get_sentence(word_idx, segments, segments_ids):
sentence_start = get_sentence_start(segments, segments_ids, word_idx)
sentence_end = get_sentence_end(segments, segments_ids, word_idx)
sentence = [segments[morph_id] for morph_id in segments_ids[sentence_start:sentence_end + 1]
if not word_to_ignore(segments[morph_id])]
return sentence
def get_sentence_start(segments, segments_ids, word_idx):
search_start = word_idx
while word_idx >= 0:
if segments[segments_ids[word_idx]]['lastinsent'] and search_start != word_idx:
return word_idx + 1
word_idx -= 1
return 0
def get_sentence_end(segments, segments_ids, word_idx):
while word_idx < len(segments):
if segments[segments_ids[word_idx]]['lastinsent']:
return word_idx
word_idx += 1
return len(segments) - 1
def word_to_ignore(word):
if word['ctag'] == 'interp':
return True
return False
def to_text(words, form):
text = ''
for idx, word in enumerate(words):
if word['hasnps'] or idx == 0:
text += word[form]
else:
text += u' %s' % word[form]
return text
def get_fval(f):
return f.attrib['fVal']
def get_rarest_word(words):
min_freq = 0
rarest_word = words[0]
for i, word in enumerate(words):
word_freq = 0
if word['base'] in conf.FREQ_LIST:
word_freq = conf.FREQ_LIST[word['base']]
if i == 0 or word_freq < min_freq:
min_freq = word_freq
rarest_word = word
return rarest_word
# coreference
def add_coreference_layer(ann_archive, text):
ann_file = gzip.open(ann_archive, 'rb')
parser = etree.XMLParser(encoding="utf-8")
tree = etree.parse(ann_file, parser)
body = tree.xpath('//xmlns:body', namespaces={'xmlns': TEI_NS})[0]
parts = body.xpath(".//xmlns:p", namespaces={'xmlns': TEI_NS})
for par in parts:
coreferences = par.xpath(".//xmlns:seg", namespaces={'xmlns': TEI_NS})
for cor in coreferences:
add_coreference(cor, text)
def add_coreference(coref, text):
idx = coref.attrib['{%s}id' % XML_NS]
coref_type = None
dominant = None
for f in coref.xpath(".//xmlns:f", namespaces={'xmlns': TEI_NS}):
if f.attrib['name'] == 'type':
coref_type = get_fval(f)
elif f.attrib['name'] == 'dominant':
dominant = get_fval(f)
if coref_type == 'ident':
for ptr in coref.xpath(".//xmlns:ptr", namespaces={'xmlns': TEI_NS}):
mnt_id = ptr.attrib['target'].split('#')[-1]
mention = text.get_mention(mnt_id)
mention.set = idx
mention.dominant = dominant
# write
def write(inpath, outpath, text):
if not os.path.exists(outpath):
os.mkdir(outpath)
for filename in os.listdir(inpath):
if not filename.startswith('ann_coreference'):
layer_inpath = os.path.join(inpath, filename)
layer_outpath = os.path.join(outpath, filename)
copy_layer(layer_inpath, layer_outpath)
coref_outpath = os.path.join(outpath, 'ann_coreference.xml.gz')
write_coreference(coref_outpath, text)
def copy_layer(src, dest):
shutil.copyfile(src, dest)
def write_coreference(outpath, text):
root, tei = write_header()
write_body(tei, text)
with gzip.open(outpath, 'wb') as output_file:
output_file.write(etree.tostring(root, pretty_print=True,
xml_declaration=True, encoding='UTF-8'))
def write_header():
root = etree.Element('teiCorpus', nsmap=NSMAP)
corpus_xinclude = etree.SubElement(root, etree.QName(XI_NS, 'include'))
corpus_xinclude.attrib['href'] = 'PCC_header.xml'
tei = etree.SubElement(root, 'TEI')
tei_xinclude = etree.SubElement(tei, etree.QName(XI_NS, 'include'))
tei_xinclude.attrib['href'] = 'header.xml'
return root, tei
def write_body(tei, text):
text_node = etree.SubElement(tei, 'text')
body = etree.SubElement(text_node, 'body')
p = etree.SubElement(body, 'p')
sets = text.get_sets()
for set_id in sets:
comment_text = create_set_comment(sets[set_id])
p.append(etree.Comment(comment_text))
seg = etree.SubElement(p, 'seg')
seg.attrib[etree.QName(XML_NS, 'id')] = set_id.replace('set', 'coreference')
fs = etree.SubElement(seg, 'fs')
fs.attrib['type'] = 'coreference'
f_type = etree.SubElement(fs, 'f')
f_type.attrib['name'] = 'type'
f_type.attrib['fVal'] = 'ident'
dominant = get_dominant(sets[set_id])
f_dominant = etree.SubElement(fs, 'f')
f_dominant.attrib['name'] = 'dominant'
f_dominant.attrib['fVal'] = dominant
for mnt in sets[set_id]:
ptr = etree.SubElement(seg, 'ptr')
ptr.attrib['target'] = 'ann_mentions.xml#%s' % mnt.id
def create_set_comment(mentions):
mentions_orths = [mnt.text for mnt in mentions]
return ' %s ' % '; '.join(mentions_orths)
def get_dominant(mentions):
longest_mention = mentions[0]
for mnt in mentions:
if len(mnt.words) > len(longest_mention.words):
longest_mention = mnt
return longest_mention.text