utils.py
960 Bytes
from __future__ import print_function
import sys
from keras.models import Model
from keras.layers import Input, Dense, Dropout, Activation, BatchNormalization
def eprint(*args, **kwargs):
print(*args, file=sys.stderr, **kwargs)
def initialize_neural_model(number_of_features):
inputs = Input(shape=(number_of_features,))
output_from_1st_layer = Dense(1000, activation='relu')(inputs)
output_from_1st_layer = Dropout(0.5)(output_from_1st_layer)
output_from_1st_layer = BatchNormalization()(output_from_1st_layer)
output_from_2nd_layer = Dense(500, activation='relu')(output_from_1st_layer)
output_from_2nd_layer = Dropout(0.5)(output_from_2nd_layer)
output_from_2nd_layer = BatchNormalization()(output_from_2nd_layer)
output = Dense(1, activation='sigmoid')(output_from_2nd_layer)
model = Model(inputs, output)
model.compile(optimizer='Adam', loss='binary_crossentropy', metrics=['accuracy'])
return model