features.py 14.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
import math
import numpy
import random
import re

import conf
from corneferencer.resolvers import constants


# mention features
def head_vec(mention):
    head_base = mention.head_orth
    if mention.head is not None:
        head_base = mention.head['base']
    return list(get_wv(conf.W2V_MODEL, head_base))


def first_word_vec(mention):
    return list(get_wv(conf.W2V_MODEL, mention.words[0]['base']))


def last_word_vec(mention):
    return list(get_wv(conf.W2V_MODEL, mention.words[-1]['base']))


def first_after_vec(mention):
    if len(mention.follow_context) > 0:
        vec = list(get_wv(conf.W2V_MODEL, mention.follow_context[0]['base']))
    else:
        vec = [0.0] * conf.W2V_SIZE
    return vec


def second_after_vec(mention):
    if len(mention.follow_context) > 1:
        vec = list(get_wv(conf.W2V_MODEL, mention.follow_context[1]['base']))
    else:
        vec = [0.0] * conf.W2V_SIZE
    return vec


def first_before_vec(mention):
    if len(mention.prec_context) > 0:
        vec = list(get_wv(conf.W2V_MODEL, mention.prec_context[-1]['base']))
    else:
        vec = [0.0] * conf.W2V_SIZE
    return vec


def second_before_vec(mention):
    if len(mention.prec_context) > 1:
        vec = list(get_wv(conf.W2V_MODEL, mention.prec_context[-2]['base']))
    else:
        vec = [0.0] * conf.W2V_SIZE
    return vec


def preceding_context_vec(mention):
    return list(get_context_vec(mention.prec_context, conf.W2V_MODEL))


def following_context_vec(mention):
    return list(get_context_vec(mention.follow_context, conf.W2V_MODEL))


def mention_vec(mention):
    return list(get_context_vec(mention.words, conf.W2V_MODEL))


def sentence_vec(mention):
    return list(get_context_vec(mention.sentence, conf.W2V_MODEL))


def mention_type(mention):
    type_vec = [0.0] * 4
    if mention.head is None:
        type_vec[3] = 1.0
    elif mention.head['ctag'] in constants.NOUN_TAGS:
        type_vec[0] = 1.0
    elif mention.head['ctag'] in constants.PPRON_TAGS:
        type_vec[1] = 1.0
    elif mention.head['ctag'] in constants.ZERO_TAGS:
        type_vec[2] = 1.0
    else:
        type_vec[3] = 1.0
    return type_vec


def is_first_second_person(mention):
    if mention.head is None:
        return 0.0
    if mention.head['person'] in constants.FIRST_SECOND_PERSON:
        return 1.0
    return 0.0


def is_demonstrative(mention):
    if mention.words[0]['base'].lower() in constants.INDICATIVE_PRONS_BASES:
        return 1.0
    return 0.0


def is_demonstrative_nominal(mention):
    if mention.head is None:
        return 0.0
    if is_demonstrative(mention) and mention.head['ctag'] in constants.NOUN_TAGS:
        return 1.0
    return 0.0


def is_demonstrative_pronoun(mention):
    if mention.head is None:
        return 0.0
    if (is_demonstrative(mention) and
            (mention.head['ctag'] in constants.PPRON_TAGS or mention.head['ctag'] in constants.ZERO_TAGS)):
        return 1.0
    return 0.0


def is_refl_pronoun(mention):
    if mention.head is None:
        return 0.0
    if mention.head['ctag'] in constants.SIEBIE_TAGS:
        return 1.0
    return 0.0


def is_first_in_sentence(mention):
    if mention.first_in_sentence:
        return 1.0
    return 0.0


def is_zero_or_pronoun(mention):
    if mention.head is None:
        return 0.0
    if mention.head['ctag'] in constants.PPRON_TAGS or mention.head['ctag'] in constants.ZERO_TAGS:
        return 1.0
    return 0.0


def head_contains_digit(mention):
    _digits = re.compile('\d')
    if _digits.search(mention.head_orth):
        return 1.0
    return 0.0


def mention_contains_digit(mention):
    _digits = re.compile('\d')
    if _digits.search(mention.text):
        return 1.0
    return 0.0


def contains_letter(mention):
    if any(c.isalpha() for c in mention.text):
        return 1.0
    return 0.0


def post_modified(mention):
    if mention.head_orth != mention.words[-1]['orth']:
        return 1.0
    return 0.0


# pair features
def distances_vec(ante, ana):
    vec = []

    mnts_intersect = pair_intersect(ante, ana)

    words_dist = [0.0] * 11
    words_bucket = 0
    if mnts_intersect != 1.0:
        words_bucket = get_distance_bucket(ana.start_in_words - ante.end_in_words)
    words_dist[words_bucket] = 1.0
    vec.extend(words_dist)

    mentions_dist = [0.0] * 11
    mentions_bucket = 0
    if mnts_intersect != 1.0:
        mentions_bucket = get_distance_bucket(ana.position_in_mentions - ante.position_in_mentions)
    if words_bucket == 10:
        mentions_bucket = 10
    mentions_dist[mentions_bucket] = 1.0
    vec.extend(mentions_dist)

    vec.append(mnts_intersect)

    return vec


def pair_intersect(ante, ana):
    for ante_word in ante.words:
        for ana_word in ana.words:
            if ana_word['id'] == ante_word['id']:
                return 1.0
    return 0.0


def head_match(ante, ana):
    if ante.head_orth.lower() == ana.head_orth.lower():
        return 1.0
    return 0.0


def exact_match(ante, ana):
    if ante.text.lower() == ana.text.lower():
        return 1.0
    return 0.0


def base_match(ante, ana):
    if ante.lemmatized_text.lower() == ana.lemmatized_text.lower():
        return 1.0
    return 0.0


def ante_contains_rarest_from_ana(ante, ana):
    ana_rarest = ana.rarest
    for word in ante.words:
        if word['base'] == ana_rarest['base']:
            return 1.0
    return 0.0


def agreement(ante, ana, tag_name):
    agr_vec = [0.0] * 3
    if (ante.head is None or ana.head is None or
            ante.head[tag_name] == 'unk' or ana.head[tag_name] == 'unk'):
        agr_vec[2] = 1.0
    elif ante.head[tag_name] == ana.head[tag_name]:
        agr_vec[0] = 1.0
    else:
        agr_vec[1] = 1.0
    return agr_vec


def is_acronym(ante, ana):
    if ana.text.upper() == ana.text:
        return check_one_way_acronym(ana.text, ante.text)
    if ante.text.upper() == ante.text:
        return check_one_way_acronym(ante.text, ana.text)
    return 0.0


def same_sentence(ante, ana):
    if ante.sentence_id == ana.sentence_id:
        return 1.0
    return 0.0


def neighbouring_sentence(ante, ana):
    if ana.sentence_id - ante.sentence_id == 1:
        return 1.0
    return 0.0


def cousin_sentence(ante, ana):
    if ana.sentence_id - ante.sentence_id == 2:
        return 1.0
    return 0.0


def distant_sentence(ante, ana):
    if ana.sentence_id - ante.sentence_id > 2:
        return 1.0
    return 0.0


def same_paragraph(ante, ana):
    if ante.paragraph_id == ana.paragraph_id:
        return 1.0
    return 0.0


def flat_gender_agreement(ante, ana):
    agr_vec = [0.0] * 3
    if (ante.head is None or ana.head is None or
            ante.head['gender'] == 'unk' or ana.head['gender'] == 'unk'):
        agr_vec[2] = 1.0
    elif (ante.head['gender'] == ana.head['gender'] or
            (ante.head['gender'] in constants.MASCULINE_TAGS and ana.head['gender'] in constants.MASCULINE_TAGS)):
        agr_vec[0] = 1.0
    else:
        agr_vec[1] = 1.0
    return agr_vec


def left_match(ante, ana):
    if (ante.text.lower().startswith(ana.text.lower()) or
            ana.text.lower().startswith(ante.text.lower())):
        return 1.0
    return 0.0


def right_match(ante, ana):
    if (ante.text.lower().endswith(ana.text.lower()) or
            ana.text.lower().endswith(ante.text.lower())):
        return 1.0
    return 0.0


def abbrev2(ante, ana):
    ante_abbrev = get_abbrev(ante)
    ana_abbrev = get_abbrev(ana)
    if ante.head_orth == ana_abbrev or ana.head_orth == ante_abbrev:
        return 1.0
    return 0.0


def string_kernel(ante, ana):
    s1 = ante.text
    s2 = ana.text
    return sk(s1, s2) / (math.sqrt(sk(s1, s1) * sk(s2, s2)))


def head_string_kernel(ante, ana):
    s1 = ante.head_orth
    s2 = ana.head_orth
    return sk(s1, s2) / (math.sqrt(sk(s1, s1) * sk(s2, s2)))


def wordnet_synonyms(ante, ana):
    ante_synonyms = set()
    if ante.head is None or ana.head is None:
        return 0.0

    if ante.head['base'] in conf.LEMMA2SYNONYMS:
        ante_synonyms = conf.LEMMA2SYNONYMS[ante.head['base']]

    ana_synonyms = set()
    if ana.head['base'] in conf.LEMMA2SYNONYMS:
        ana_synonyms = conf.LEMMA2SYNONYMS[ana.head['base']]

    if ana.head['base'] in ante_synonyms or ante.head['base'] in ana_synonyms:
        return 1.0
    return 0.0


def wordnet_ana_is_hypernym(ante, ana):
    if ante.head is None or ana.head is None:
        return 0.0

    ante_hypernyms = set()
    if ante.head['base'] in conf.LEMMA2HYPERNYMS:
        ante_hypernyms = conf.LEMMA2HYPERNYMS[ante.head['base']]

    ana_hypernyms = set()
    if ana.head['base'] in conf.LEMMA2HYPERNYMS:
        ana_hypernyms = conf.LEMMA2HYPERNYMS[ana.head['base']]

    if not ante_hypernyms or not ana_hypernyms:
        return 0.0

    if ana.head['base'] in ante_hypernyms:
        return 1.0
    return 0.0


def wordnet_ante_is_hypernym(ante, ana):
    if ante.head is None or ana.head is None:
        return 0.0

    ana_hypernyms = set()
    if ana.head['base'] in conf.LEMMA2HYPERNYMS:
        ana_hypernyms = conf.LEMMA2HYPERNYMS[ana.head['base']]

    ante_hypernyms = set()
    if ante.head['base'] in conf.LEMMA2HYPERNYMS:
        ante_hypernyms = conf.LEMMA2HYPERNYMS[ante.head['base']]

    if not ante_hypernyms or not ana_hypernyms:
        return 0.0

    if ante.head['base'] in ana_hypernyms:
        return 1.0
    return 0.0


def wikipedia_link(ante, ana):
    ante_base = ante.lemmatized_text.lower()
    ana_base = ana.lemmatized_text.lower()
    if ante_base == ana_base:
        return 1.0

    ante_links = set()
    if ante_base in conf.TITLE2LINKS:
        ante_links = conf.TITLE2LINKS[ante_base]

    ana_links = set()
    if ana_base in conf.TITLE2LINKS:
        ana_links = conf.TITLE2LINKS[ana_base]

    if ana_base in ante_links or ante_base in ana_links:
        return 1.0

    return 0.0


def wikipedia_mutual_link(ante, ana):
    ante_base = ante.lemmatized_text.lower()
    ana_base = ana.lemmatized_text.lower()
    if ante_base == ana_base:
        return 1.0

    ante_links = set()
    if ante_base in conf.TITLE2LINKS:
        ante_links = conf.TITLE2LINKS[ante_base]

    ana_links = set()
    if ana_base in conf.TITLE2LINKS:
        ana_links = conf.TITLE2LINKS[ana_base]

    if ana_base in ante_links and ante_base in ana_links:
        return 1.0

    return 0.0


def wikipedia_redirect(ante, ana):
    ante_base = ante.lemmatized_text.lower()
    ana_base = ana.lemmatized_text.lower()
    if ante_base == ana_base:
        return 1.0

    if ante_base in conf.TITLE2REDIRECT and conf.TITLE2REDIRECT[ante_base] == ana_base:
        return 1.0

    if ana_base in conf.TITLE2REDIRECT and conf.TITLE2REDIRECT[ana_base] == ante_base:
        return 1.0

    return 0.0


def samesent_anapron_antefirstinpar(ante, ana):
    if same_sentence(ante, ana) and is_zero_or_pronoun(ana) and ante.first_in_paragraph:
        return 1.0
    return 0.0


def samesent_antefirstinpar_personnumbermatch(ante, ana):
    if (same_sentence(ante, ana) and ante.first_in_paragraph
            and agreement(ante, ana, 'number')[0] and agreement(ante, ana, 'person')[0]):
        return 1.0
    return 0.0


def adjsent_anapron_adjmen_personnumbermatch(ante, ana):
    if (neighbouring_sentence(ante, ana) and is_zero_or_pronoun(ana)
            and ana.position_in_mentions - ante.position_in_mentions == 1
            and agreement(ante, ana, 'number')[0] and agreement(ante, ana, 'person')[0]):
        return 1.0
    return 0.0


def adjsent_anapron_adjmen(ante, ana):
    if (neighbouring_sentence(ante, ana) and is_zero_or_pronoun(ana)
            and ana.position_in_mentions - ante.position_in_mentions == 1):
        return 1.0
    return 0.0


# supporting functions
def get_wv(model, lemma, use_random_vec=True):
    vec = None
    if use_random_vec:
        vec = random_vec()
    try:
        vec = model.wv[lemma]
    except KeyError:
        pass
    except TypeError:
        pass
    return vec


def random_vec():
    return numpy.asarray([random.uniform(-0.25, 0.25) for i in range(0, conf.W2V_SIZE)], dtype=numpy.float32)


def get_context_vec(words, model):
    vec = numpy.zeros(conf.W2V_SIZE, dtype=numpy.float32)
    unknown_count = 0
    if len(words) != 0:
        for word in words:
            word_vec = get_wv(model, word['base'], conf.RANDOM_WORD_VECTORS)
            if word_vec is None:
                unknown_count += 1
            else:
                vec += word_vec
        significant_words = len(words) - unknown_count
        if significant_words != 0:
            vec = vec / float(significant_words)
        else:
            vec = random_vec()
    return vec


def get_distance_bucket(distance):
    if 0 <= distance <= 4:
        return distance
    elif 5 <= distance <= 7:
        return 5
    elif 8 <= distance <= 15:
        return 6
    elif 16 <= distance <= 31:
        return 7
    elif 32 <= distance <= 63:
        return 8
    elif distance >= 64:
        return 9
    return 10


def check_one_way_acronym(acronym, expression):
    initials = u''
    for expr1 in expression.split('-'):
        for expr2 in expr1.split():
            expr2 = expr2.strip()
            if expr2:
                initials += expr2[0].upper()
    if acronym == initials:
        return 1.0
    return 0.0


def get_abbrev(mention):
    abbrev = u''
    for word in mention.words:
        if word['orth'][0].isupper():
            abbrev += word['orth'][0]
    return abbrev


def sk(s1, s2):
    lam = 0.4

    p = len(s1)
    if len(s2) < len(s1):
        p = len(s2)

    h, w = len(s1)+1, len(s2)+1
    dps = [[0.0] * w for i in range(h)]
    dp = [[0.0] * w for i in range(h)]

    kernel_mat = [0.0] * (len(s1) + 1)

    for i in range(len(s1)+1):
        if i == 0:
            continue
        for j in range(len(s2)+1):
            if j == 0:
                continue
            if s1[i-1] == s2[j-1]:
                dps[i][j] = lam * lam
                kernel_mat[0] += dps[i][j]
            else:
                dps[i][j] = 0.0

    for m in range(p):
        if m == 0:
            continue

        kernel_mat[m] = 0.0
        for j in range(len(s2)+1):
            dp[m-1][j] = 0.0

        for i in range(len(s1)+1):
            dp[i][m-1] = 0.0

        for i in range(len(s1)+1):
            if i < m:
                continue
            for j in range(len(s2)+1):
                if j < m:
                    continue
                dp[i][j] = dps[i][j] + lam * dp[i - 1][j] + lam * dp[i][j - 1] - lam * lam * dp[i - 1][j - 1]

                if s1[i-1] == s2[j-1]:
                    dps[i][j] = lam * lam * dp[i - 1][j - 1]
                    kernel_mat[m] += dps[i][j]

    k = 0.0
    for i in range(p):
        k += kernel_mat[i]
    return k