ENIAMsemValence.ml 31.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
(*
 *  ENIAMsemantics implements semantic processing for ENIAM
 *  Copyright (C) 2016-2017 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
 *  Copyright (C) 2016-2017 Institute of Computer Science Polish Academy of Sciences
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *)

open ENIAM_LCGtypes
open ENIAM_LCGlexiconTypes
open ENIAMlexSemanticsTypes
open Xstd

type pos = {role: linear_term; role_attr: linear_term; selprefs: linear_term; catprefs: string list; gf: ENIAMwalTypes.gf;
  cr: string list; ce: string list;
  is_necessary: bool; is_pro: bool; is_prong: bool; is_multi: bool; dir: string; morfs: StringSet.t}

let get_pro_lemma attrs =
  let pers,num,gend = Xlist.fold attrs ("","",[]) (fun (pers,num,gend) -> function
      "PERS",Val s -> s,num,gend
    | "NUM",Val s -> pers,s,gend
    | "GEND",Val s -> pers,num,[s]
    | "GEND",Variant(_,l) -> pers,num,Xlist.map l (function (_,Val s) -> s | _ -> failwith "get_pro_lemma")
    | _ -> failwith "get_pro_lemma") in
  match pers,num with
    "",_ -> "pro"
  | "pri","" -> "pro1"
  | "pri","sg" -> "ja"
  | "pri","pl" -> "my"
  | "sec","" -> "pro2"
  | "sec","sg" -> "ty"
  | "sec","pl" -> "wy"
  | "ter","" -> "pro3"
  | "ter","sg" ->
       (match Xlist.fold gend (false,false,false) (fun (m,n,f) -> function
           "m1" -> true,n,f
         | "m2" -> true,n,f
         | "m3" -> true,n,f
         | "n" -> m,true,f
         (* | "n1" -> m,true,f
         | "n2" -> m,true,f *)
         | "f" -> m,n,true
         | _ -> m,n,f) with
         true,false,false -> "on"
       | false,true,true -> "ono"
       | false,false,true -> "ona"
       | _ -> "pro3sg")
  | "ter","pl" ->
       (match Xlist.fold gend (false,false) (fun (mo,nmo) -> function
           "m1" -> true,nmo
         | "p1" -> true,nmo
         | _ -> mo,true) with
         true,false -> "oni"
       | false,true -> "one"
       | _ -> "pro3pl")
  | _ -> failwith "get_pro_lemma"

let make_sem_args sem_args =
  if sem_args = [] then Dot else ENIAM_LCGrules.make_variant (Xlist.map sem_args (fun s -> Val s))

(*let rec match_value v2 = function
    Val v -> if v = v2 then Val v else raise Not_found
  | Variant(e,l) -> (* Przykład kiedy warianty niepasujące do selektora są rozproszone po drzewie np "Wiele wody płynie." *)
      let chosen = Xlist.fold l [] (fun chosen (i,t) -> try let _ = match_value v2 t in i :: chosen with Not_found -> chosen) in
      if chosen = [] then raise Not_found else
      if Xlist.size chosen = Xlist.size l then Variant(e,l) else
      (*Choice(e,chosen,Variant(e,l))*)failwith "match_value: ni"
  | t -> failwith ("match_value: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let rec match_neg_value vals = function
    Val v -> if Xlist.mem vals v then raise Not_found else Val v
  | Variant(e,l) ->
      let chosen = Xlist.fold l [] (fun chosen (i,t) -> try let _ = match_neg_value vals t in i :: chosen with Not_found -> chosen) in
      if chosen = [] then raise Not_found else
      if Xlist.size chosen = Xlist.size l then Variant(e,l) else
      (*Choice(e,chosen,Variant(e,l))*)failwith "match_neg_value: ni"
  | t -> failwith ("match_neg_value: " ^ ENIAM_LCGstringOf.linear_term 0 t)*)

let check_chosen chosen_map e chosen =
  let chosen = StringSet.of_list chosen in
  StringMap.add_inc chosen_map e chosen (fun set ->
    let set = StringSet.intersection chosen set in
    if StringSet.is_empty set then raise Not_found else
    set)

let rec match_value v2 chosen_map = function
    Val v -> if v = v2 then chosen_map else raise Not_found
  | Variant(e,l) -> (* Przykład kiedy warianty niepasujące do selektora są rozproszone po drzewie np "Wiele wody płynie." *)
      let chosen,chosen_map = Xlist.fold l ([],chosen_map) (fun (chosen,chosen_map) (i,t) ->
        try let chosen_map = match_value v2 chosen_map t in i :: chosen, chosen_map
        with Not_found -> chosen, chosen_map) in
      if chosen = [] then raise Not_found else
      if Xlist.size chosen = Xlist.size l then chosen_map else
      check_chosen chosen_map e chosen
  | t -> failwith ("match_value: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let rec match_neg_value vals chosen_map = function
    Val v -> if Xlist.mem vals v then raise Not_found else chosen_map
  | Variant(e,l) ->
      let chosen,chosen_map = Xlist.fold l ([],chosen_map) (fun (chosen,chosen_map) (i,t) ->
        try let chosen_map = match_neg_value vals chosen_map t in i :: chosen, chosen_map
        with Not_found -> chosen, chosen_map) in
      if chosen = [] then raise Not_found else
      if Xlist.size chosen = Xlist.size l then chosen_map else
      check_chosen chosen_map e chosen
  | t -> failwith ("match_neg_value: " ^ ENIAM_LCGstringOf.linear_term 0 t)

(*let rec apply_selector v2 = function
    (sel,[]) -> failwith ("apply_selector: " ^ ENIAMcategoriesPL.string_of_selector sel)
  | Negation,("NEGATION",v) :: l -> ("NEGATION",match_value v2 v) :: l
  | Aspect,("ASPECT",v) :: l -> ("ASPECT",match_value v2 v) :: l
  | Mood,("MOOD",v) :: l -> ("MOOD",match_value v2 v) :: l
  | Nsyn,("NSYN",v) :: l -> ("NSYN",match_value v2 v) :: l
  | Nsem,("NSEM",v) :: l -> ("NSEM",match_value v2 v) :: l
  | Case,("CASE",v) :: l -> ("CASE",match_value v2 v) :: l
  | Mode,("MODE",v) :: l -> ("MODE",match_value v2 v) :: l
  | sel,(attr,v) :: l -> (*print_endline ("apply_selector: " ^ ENIAMcategoriesPL.string_of_selector sel ^ " " ^ attr);*) (attr,v) :: (apply_selector v2 (sel,l))

let rec apply_neg_selector vals = function
    (sel,[]) -> failwith ("apply_neg_selector: " ^ ENIAMcategoriesPL.string_of_selector sel)
  | Nsem,("NSEM",v) :: l -> ("NSEM",match_neg_value vals v) :: l
  | Case,("CASE",v) :: l -> ("CASE",match_neg_value vals v) :: l
  | sel,(attr,v) :: l -> (*print_endline ("apply_neg_selector: " ^ ENIAMcategoriesPL.string_of_selector sel ^ " " ^ attr);*) (attr,v) :: (apply_neg_selector vals (sel,l))

let rec apply_selectors attrs = function
    [] -> attrs
  | (sel,Eq,[v]) :: l -> apply_selectors (apply_selector v (sel,attrs)) l
  | (sel,Neq,vals) :: l -> apply_selectors (apply_neg_selector vals (sel,attrs)) l
  | _ -> failwith "apply_selectors"*)

let rec apply_selector v2 chosen_map = function
    (sel,[]) -> failwith ("apply_selector: " ^ ENIAMcategoriesPL.string_of_selector sel)
  | Negation,("NEGATION",v) :: l -> match_value v2 chosen_map v
  | Aspect,("ASPECT",v) :: l -> match_value v2 chosen_map v
  | Mood,("MOOD",v) :: l -> match_value v2 chosen_map v
  | Nsyn,("NSYN",v) :: l -> match_value v2 chosen_map v
  | Nsem,("NSEM",v) :: l -> match_value v2 chosen_map v
  | Case,("CASE",v) :: l -> match_value v2 chosen_map v
  | Mode,("MODE",v) :: l -> match_value v2 chosen_map v
  | Acm,("ACM",v) :: l -> match_value v2 chosen_map v
  | Cat,("CAT",v) :: l -> match_value v2 chosen_map v
  | sel,(attr,v) :: l -> (*print_endline ("apply_selector: " ^ ENIAMcategoriesPL.string_of_selector sel ^ " " ^ attr);*) apply_selector v2 chosen_map (sel,l)

let rec apply_neg_selector vals chosen_map = function
    (sel,[]) -> failwith ("apply_neg_selector: " ^ ENIAMcategoriesPL.string_of_selector sel)
  | Nsem,("NSEM",v) :: l -> match_neg_value vals chosen_map v
  | Case,("CASE",v) :: l -> match_neg_value vals chosen_map v
  | sel,(attr,v) :: l -> (*print_endline ("apply_neg_selector: " ^ ENIAMcategoriesPL.string_of_selector sel ^ " " ^ attr);*) apply_neg_selector vals chosen_map (sel,l)

let rec apply_selectors attrs chosen_map = function
    [] -> chosen_map
  | (sel,Eq,[v]) :: l -> apply_selectors attrs (apply_selector v chosen_map (sel,attrs)) l
  | (sel,Neq,vals) :: l -> apply_selectors attrs (apply_neg_selector vals chosen_map (sel,attrs)) l
  | _ -> failwith "apply_selectors"

let rec select_variant chosen_map = function
    Variant(e,l) ->
      (try
        let chosen = StringMap.find chosen_map e in
        let l = Xlist.fold l [] (fun l (i,t) ->
          if StringSet.mem chosen i then (i,select_variant chosen_map t) :: l else l) in
        match l with
          [] -> failwith "select_variant"
        | [_,t] -> t
        | l -> Variant(e,l)
      with Not_found -> Variant(e,List.rev (Xlist.rev_map l (fun (i,t) -> i,select_variant chosen_map t))))
  | Tuple l -> Tuple(List.rev (Xlist.rev_map l (select_variant chosen_map)))
  | Dot -> Dot
  | Val s -> Val s
  | t -> failwith ("select_variant: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let apply_selectors2 attrs sels symbol =
  let chosen_map = apply_selectors attrs StringMap.empty sels in
  List.rev (Xlist.rev_map attrs (fun (s,t) ->
    s, select_variant chosen_map t)),
  select_variant chosen_map symbol

module OrderedStringDir =
  struct
    type t = string * string
    let compare = compare
  end

module StringDirMap = Xmap.Make(OrderedStringDir)

let rec get_arg_symbols_variant arg_symbols = function
    Ref i ->
      let l,dir = arg_symbols.(i) in
      Xlist.map l (fun s -> (s,dir),Ref i)
  | Variant(e,l) ->
      let map = Xlist.fold l StringDirMap.empty (fun map (i,t) ->
        Xlist.fold (get_arg_symbols_variant arg_symbols t) map (fun map (arg_symbol,t) ->
          StringDirMap.add_inc map arg_symbol [i,t] (fun l -> (i,t) :: l))) in
      StringDirMap.fold map [] (fun found arg_symbol l -> (arg_symbol,Variant(e,l)) :: found)
  | t -> failwith ("get_arg_symbols_variant: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let rec get_arg_symbols_tuple arg_symbols rev = function
    Dot -> rev
  | Tuple l -> Xlist.fold l rev (get_arg_symbols_tuple arg_symbols)
  | t -> (get_arg_symbols_variant arg_symbols t) :: rev

let string_of_argdir = function
    "forward" -> "/"
  | "backward" -> "\\"
  | "both" -> "|"
  | _ -> failwith "string_of_argdir"

let string_of_arg arg =
  String.concat ", " (Xlist.map arg (fun ((arg_symbol,dir),t) -> (string_of_argdir dir) ^ arg_symbol ^ ":" ^ ENIAM_LCGstringOf.linear_term 0 t))

let string_of_position p =
  (string_of_argdir p.dir) ^
  (if p.is_multi then "?" else "") ^
  String.concat "+" (StringSet.to_list p.morfs)

let manage_arg p t =
  let t = SetAttr("gf",Val (ENIAMwalStringOf.gf p.gf),t) in
  let t =
    if p.gf = ENIAMwalTypes.SUBJ || p.gf = ENIAMwalTypes.OBJ || p.gf = ENIAMwalTypes.ARG then
      SetAttr("role",p.role,SetAttr("role-attr",p.role_attr,SetAttr("selprefs",p.selprefs,t)))
    else if p.gf = ENIAMwalTypes.CORE then SetAttr("selprefs",p.selprefs,t)
    else if p.gf = ENIAMwalTypes.ADJUNCT || p.gf = ENIAMwalTypes.NOSEM || p.gf = ENIAMwalTypes.CORE then t
    else failwith "manage_arg: ni 2" in
  let t = Xlist.fold p.cr t (fun t cr -> SetAttr("controller",Val cr,t)) in
  let t = Xlist.fold p.ce t (fun t ce -> SetAttr("controllee",Val ce,t)) in
  let t = if p.gf = ENIAMwalTypes.NOSEM then Dot else t in
  t

let rec match_arg_positions lemma arg rev = function
    p :: positions ->
      (* Printf.printf "match_arg_positions 1: arg=%s rev=[%s] positions=%s :: [%s]\n%!" (string_of_arg arg) (String.concat "; " (Xlist.map rev string_of_position)) (string_of_position p) (String.concat "; " (Xlist.map positions string_of_position)); *)
      let l = Xlist.fold arg [] (fun l ((arg_symbol,dir),t) ->
        if StringSet.mem p.morfs arg_symbol && p.dir = dir then t :: l else l) in
      (match l with
        [] -> (*print_endline "match_arg_positions: not matched";*) match_arg_positions lemma arg (p :: rev) positions
      | [t] ->
          let t = manage_arg p t in
          if p.is_multi then (t, rev @ (p :: positions)) :: (match_arg_positions lemma arg (p :: rev) positions)
          else (t, rev @ positions) :: (match_arg_positions lemma arg (p :: rev) positions)
      | [t1;t2] -> (* FIXME: przydałoby się to uogólnić na listę dowolnej długości *)
          let t1 = manage_arg p t1 in
          let t2 = manage_arg p t2 in
          let t = Variant("",["1",t1;"2",t2]) in
          if p.is_multi then (t, rev @ (p :: positions)) :: (match_arg_positions lemma arg (p :: rev) positions)
          else (t, rev @ positions) :: (match_arg_positions lemma arg (p :: rev) positions)
      | _ -> failwith ("match_arg_positions: lemma=" ^ lemma ^ " arg=" ^ string_of_arg arg ^ " position=" ^ string_of_position p))
  | [] -> (*Printf.printf "match_arg_positions 2: arg=%s rev=[%s] positions=[]\n%!" (string_of_arg arg) (String.concat "; " (Xlist.map rev string_of_position));*) []

(* Jeśli ta funkcja zwróci pustą listę, oznacza to, że argumentów nie dało się dopasować do pozycji *)
let rec match_args_positions_rec lemma prong_attrs positions = function
    arg :: args ->
      (* Printf.printf "match_args_positions_rec: args=%s :: [%s] positions=[%s]\n%!" (string_of_arg arg) (String.concat "; " (Xlist.map args string_of_arg)) (String.concat "; " (Xlist.map positions string_of_position)); *)
      Xlist.fold (match_arg_positions lemma arg [] positions) [] (fun found (arg_pos,positions) ->
        Xlist.fold (match_args_positions_rec lemma prong_attrs positions args) found (fun found l -> (arg_pos :: l) :: found))
  | [] ->
      (* Printf.printf "match_args_positions_rec: args=[] positions=[%s]\n%!" (String.concat "; " (Xlist.map positions string_of_position)); *)
      let b = Xlist.fold positions false (fun b p -> p.is_necessary || b) in
      (* if b then print_endline "match_args_positions: not matched"; *)
      if b then [] else
        [Xlist.fold positions [] (fun found p ->
          if not p.is_pro then found else
          let attrs = if p.is_prong then prong_attrs else [] in
          let cats = p.catprefs(*ENIAM_LCGrules.make_variant (ENIAMwalRenderer.extract_sel_prefs p.sel_prefs)*) in
          let lemma = get_pro_lemma attrs in
          let sem_args = try StringMap.find ENIAMlexSemanticsData.pron_sem_args lemma with Not_found -> failwith "match_args_positions_rec" in
          let attrs = ["sense",Val lemma;"hipero",Tuple[Val "ALL"; Val "0"];"role",p.role;
            "role-attr",p.role_attr; "selprefs",p.selprefs; "gf",Val (ENIAMwalStringOf.gf p.gf);
            "agf",Val ""; "sem-args",make_sem_args sem_args; "rev-hipero",Val "+"] @ attrs in
          let attrs = Xlist.fold p.cr attrs (fun attrs cr -> ("controller",Val cr) :: attrs) in
          let attrs = Xlist.fold p.ce attrs (fun attrs ce -> ("controllee",Val ce) :: attrs) in
          Xlist.fold cats found (fun found cat ->
            let attrs = ["CAT",Val cat;"COERCED",Val cat] @ attrs in
            Node{ENIAM_LCGrenderer.empty_node with lemma=lemma; pos="pro"; attrs=attrs} :: found))]

(* FIXME: opcjonalność podrzędników argumentów zleksykalizowanych *)

(* Jeśli ta funkcja zwróci pustą listę, oznacza to, że argumentów nie dało się dopasować do pozycji *)
let match_args_positions lemma prong_attrs args positions =
  (* Printf.printf "match_args_positions: args=[%s] positions=[%s]\n%!" (String.concat "; " (Xlist.map args string_of_arg)) (String.concat "; " (Xlist.map positions string_of_position)); *)
  Xlist.rev_map (match_args_positions_rec lemma prong_attrs positions args) (function
      [] -> Dot
    | [t] -> t
    | l -> Tuple l)

let translate_selprefs = function
    ENIAMwalTypes.SynsetId _ -> failwith "translate_selprefs"
  | ENIAMwalTypes.Predef _ -> failwith "translate_selprefs"
  | ENIAMwalTypes.SynsetName s -> s
  | ENIAMwalTypes.RelationRole _ -> "ALL"

let string_of_internal_morf = function
    Atom s -> s
  | AVar s -> s
  | Top -> "T"
  | t -> failwith ("string_of_internal_morf: " ^ ENIAM_LCGstringOf.internal_grammar_symbol_prime t)


let string_of_morf = function
    ENIAMwalTypes.LCG Tensor l -> String.concat "*" (Xlist.map l string_of_internal_morf)
  | ENIAMwalTypes.LCG t -> failwith ("string_of_morf: " ^ ENIAM_LCGstringOf.grammar_symbol_prime t)
  | _ -> failwith "string_of_morf"

let rec string_of_arg_symbol = function
    Dot -> ""
  | Val s -> s
  | Tuple l -> String.concat "*" (Xlist.map l string_of_arg_symbol)
  | t -> failwith ("string_of_arg_symbol: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let translate_dir = function
    ENIAMwalTypes.Both_ -> "both"
  | ENIAMwalTypes.Forward_ -> "forward"
  | ENIAMwalTypes.Backward_ -> "backward"

let translate_position id p =
  {role = Val p.ENIAMwalTypes.role;
   role_attr = Val p.ENIAMwalTypes.role_attr;
   selprefs = (match Xlist.map p.ENIAMwalTypes.sel_prefs translate_selprefs with
      [] -> Dot
    | [s] -> Val s
    | l -> Tuple(Xlist.rev_map l (fun s -> Val s)));
   catprefs = p.ENIAMwalTypes.cat_prefs;
   gf=p.ENIAMwalTypes.gf;
   cr=Xlist.map p.ENIAMwalTypes.cr (fun cr -> id ^ "-" ^ cr);
   ce=Xlist.map p.ENIAMwalTypes.ce (fun ce -> id ^ "-" ^ ce);
   is_necessary = p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.Req(*Xlist.fold p.ENIAMwalTypes.morfs true (fun b -> function ENIAMwalTypes.LCG One -> false | _ -> b)*);
   is_pro = p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.Pro || p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.ProNG;
   is_prong = p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.ProNG;
   is_multi = p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.Multi;
   dir= translate_dir p.ENIAMwalTypes.dir;
   morfs =
     if p.ENIAMwalTypes.morfs=[ENIAMwalTypes.LCG One] then StringSet.empty else
     Xlist.fold p.ENIAMwalTypes.morfs StringSet.empty (fun morfs morf ->
       if morf = ENIAMwalTypes.LCG One then ((*Printf.printf "translate_position: One%!\n";*) morfs) else
       StringSet.add morfs (string_of_morf morf))}

let get_phrase_symbol = function
    Tuple[Val "lex";Val "się";Val "qub"] -> "lex-się-qub"
  | Tuple(Val s :: _) -> s
  | Val s -> s
  (* | Dot -> "dot" *)
  | t -> failwith ("get_phrase_symbol: " ^ ENIAM_LCGstringOf.linear_term 0 t)

exception NoFrame of string * string * IntSet.t

let get_prong_attrs attrs =
  Xlist.fold attrs [] (fun attrs -> function
      "NUM",t -> ("NUM",t) :: attrs
    | "GEND",t -> ("GEND",t) :: attrs
    | "PERS",t -> ("PERS",t) :: attrs
    | _ -> attrs)

let rec assign_frames_rec tokens lex_sems tree arg_symbols visited = function
    Ref i ->
      if IntSet.mem visited i then ((*Printf.printf "assign_frames_rec: skipping reference %d\n%!" i;*)Ref i,visited) else (
      (* Printf.printf "assign_frames_rec: entering reference %d\n%!" i; *)
      let t,visited = assign_frames_rec tokens lex_sems tree arg_symbols visited tree.(i) in
      (* Printf.printf "assign_frames_rec: leaving reference %d\n%!" i; *)
      tree.(i) <- t;
      Ref i,IntSet.add visited i)
  | Node t ->
      let args,visited = assign_frames_rec tokens lex_sems tree arg_symbols visited t.args in
      let t = {t with args=args} in
      (* print_endline ("assign_frames_rec 1: " ^ t.lemma); *)
      if t.lemma = "<root>" then Node t,visited else
      let args = get_arg_symbols_tuple arg_symbols [] args in
      let s = ExtArray.get lex_sems t.id in
      let phsymbol = get_phrase_symbol t.symbol in
      (* print_endline ("assign_frames_rec:  phsymbol='" ^ phsymbol ^ "' for node " ^ t.lemma); *)
      let frames = Xlist.fold s.ENIAMlexSemanticsTypes.frames [] (fun frames frame ->
        (* print_endline ("selectors: " ^ ENIAMcategoriesPL.string_of_selectors frame.selectors); *)
        (* Printf.printf "assign_frames_rec 2: lemma=%s positions=[%s]\n%!" t.lemma (ENIAMwalStringOf.schema frame.positions); *)
        try
          let attrs,symbol = apply_selectors2 t.attrs frame.selectors t.symbol in
          let frame = ENIAMsemLexicon.extend_frame phsymbol frame in
          (* print_endline "passed"; *)
          (attrs,symbol,frame,Xlist.rev_map frame.positions (translate_position (string_of_int t.id))) :: frames
        with Not_found ->
          (* print_endline "rejected"; *)
          frames) in
      if frames = [] then failwith ("assign_frames_rec: no frame phsymbol='" ^ phsymbol ^ "' node='" ^ t.lemma ^ "'") else
      let prong_attrs = get_prong_attrs t.attrs in
      let e = ENIAM_LCGreductions.get_variant_label () in
      let l,_ = Xlist.fold frames ([],1) (fun (l,n) (attrs,symbol,frame,positions) ->
        (* Printf.printf "assign_frames_rec 3: lemma=%s args=[%s] positions=[%s]\n%!" t.lemma (String.concat "; " (Xlist.map args string_of_arg)) (String.concat "; " (Xlist.map positions string_of_position)); *)
        if frame.senses = [] then failwith ("assign_frames_rec: no senses '" ^ t.lemma ^ "'") else
        Xlist.fold (match_args_positions t.lemma prong_attrs args positions) (l,n) (fun (l,n) args ->
          Xlist.fold frame.senses (l,n) (fun (l,n) (sense,hipero,weight) ->
            (string_of_int n, Node{t with attrs=
              ("sense",Val sense) ::
              ("hipero",ENIAM_LCGrules.make_variant (Xlist.map hipero (fun (h,n) -> Tuple[Val h;Val(string_of_int n)]))) ::
              ("arole",Val frame.arole) ::
              ("arole-attr",Val frame.arole_attr) ::
              ("arev",Val (if frame.arev then "+" else "-")) ::
              ("agf",Val frame.agf) ::
              ("sem-args",make_sem_args frame.sem_args) ::
              ("rev-hipero",Val (if frame.rev_hipero then "+" else "-")) ::
              ("fopinion",Val (ENIAMwalStringOf.opinion frame.fopinion)) ::
              ("sopinion",Val (ENIAMwalStringOf.opinion frame.sopinion)) :: attrs; args=args; symbol=symbol}) ::
              l,n+1))) in
      if l = [] then (
        (* print_endline ("assign_frames_rec 4: no frame assingment found for " ^ t.lemma ^ " " ^ ENIAM_LCGstringOf.linear_term 0 t.symbol); *)
        raise (NoFrame(t.lemma,ENIAM_LCGstringOf.linear_term 0 t.symbol,visited))) else
      Variant(e,l),visited
  | Variant(e,l) ->
      let a = ref "" in
      let b = ref "" in
      let l,visited = Xlist.fold l ([],visited) (fun (l,visited) (i,t) ->
        try
          let t,visited = assign_frames_rec tokens lex_sems tree arg_symbols visited t in
          (i,t) :: l, visited
        with NoFrame(x,y,visited) -> a:=x; b:=y; l, visited) in
      if l = [] then raise (NoFrame(!a,!b,visited)) else
      Variant(e,List.rev l),visited
  | Tuple l ->
      let l,visited = Xlist.fold l ([],visited) (fun (l,visited) t ->
        let t,visited = assign_frames_rec tokens lex_sems tree arg_symbols visited t in
        t :: l, visited) in
      Tuple(List.rev l),visited
  | Dot -> Dot,visited
  | t -> failwith ("assign_frames_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let rec get_arg_symbols = function
    Node{arg_symbol=Tuple([Val "cp"; Val "T"; Val "T"]);
         symbol=Tuple([Val "cp"; ctype; comp]); arg_dir=dir} ->
      [string_of_arg_symbol (Tuple([Val "cp"; Val "T"; Val "T"]));
       string_of_arg_symbol (Tuple([Val "cp"; ctype; comp]))],dir
  | Node{arg_symbol=Tuple([Val "ncp"; Val "T"; Val arg_case; Val "T"; Val "T"; Val "T"; Val "T"]);
         symbol=Tuple([Val "ncp"; number; case; gender; person; ctype; comp]); arg_dir=dir} ->
      [string_of_arg_symbol (Tuple([Val "ncp"; Val "T"; Val arg_case; Val "T"; Val "T"; Val "T"; Val "T"]));
       string_of_arg_symbol (Tuple([Val "ncp"; Val "T"; Val arg_case; Val "T"; Val "T"; ctype; comp]))],dir
  | Node{arg_symbol=Tuple([Val "prepncp"; Val arg_prep; Val arg_case; Val "T"; Val "T"]);
         symbol=Tuple([Val "prepncp"; prep; case; ctype; comp]); arg_dir=dir} ->
      [string_of_arg_symbol (Tuple([Val "prepncp"; Val arg_prep; Val arg_case; Val "T"; Val "T"]));
       string_of_arg_symbol (Tuple([Val "prepncp"; prep; case; ctype; comp]))],dir
  | Node t -> [string_of_arg_symbol t.arg_symbol], t.arg_dir
  | t -> failwith ("get_arg_symbols: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let assign_frames tokens lex_sems tree =
  (* print_endline "assign_frames"; *)
  let tree = Array.copy tree in
  let arg_symbols = Array.make (Array.length tree) ([],"") in
  Int.iter 0 (Array.length tree - 1) (fun i ->
    arg_symbols.(i) <- get_arg_symbols tree.(i));
  let _ = assign_frames_rec tokens lex_sems tree arg_symbols IntSet.empty (Ref 0) in
  tree (* FIXME: dodac reshape_tree ??? *)

let rec extract_attr pat rev = function
    [] -> raise Not_found
  | (s,v) :: l ->
      if s = pat then (List.rev rev) @ l, v
      else extract_attr pat ((s,v) :: rev) l

let rec get_attr pat = function
    [] -> raise Not_found
  | (s,v) :: l ->
      if s = pat then v
      else get_attr pat l

let rec cut_nodes result_tree = function
  | Node t ->
      let i = ExtArray.add result_tree (Node t) in
      Ref i
  | Variant(e,l) ->
      let l = Xlist.rev_map l (fun (i,t) -> i, cut_nodes result_tree t) in
      Variant(e,List.rev l)
  | Tuple l ->
      let l = Xlist.rev_map l (cut_nodes result_tree) in
      Tuple(List.rev l)
  | Dot -> Dot
  | t -> failwith ("cut_nodes: " ^ ENIAM_LCGstringOf.linear_term 0 t)

exception AGF

let rec manage_agf = function
  | Node t ->
      (* print_endline ("manage_agf 1 " ^ ENIAM_LCGstringOf.linear_term 0 (Node t)); *)
      let attrs,agf = try extract_attr "agf" [] t.attrs with Not_found -> failwith ("manage_agf: " ^ t.lemma ^ " " ^ string_of_int t.id) in
      (* print_endline "manage_agf 2"; *)
      let gf = try get_attr "gf" t.attrs with Not_found -> Dot in (* FIXME: to by się chyba przydało poprawić, żeby gf było zawsze ustalone *)
      (* print_endline "manage_agf 3"; *)
      if agf = Val "" || agf=gf then Node{t with attrs=attrs} else raise AGF
  | Variant(e,l) ->
      (* print_endline ("manage_agf 4: " ^ ENIAM_LCGstringOf.linear_term 0 (Variant(e,l))); *)
      let l = Xlist.fold l [] (fun l (i,t) -> try (i, manage_agf t) :: l with AGF -> l) in
      (* print_endline ("manage_agf 5: " ^ ENIAM_LCGstringOf.linear_term 0 (Variant(e,l))); *)
      if l = [] then raise AGF else Variant(e,List.rev l)
  | Tuple l ->
      (* print_endline "manage_agf 6"; *)
      let l = Xlist.rev_map l manage_agf in
      (* print_endline "manage_agf 7"; *)
      Tuple(List.rev l)
  | Dot -> Dot
  | t -> failwith ("cut_nodes: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let rec reduce_set_attr attr v = function
    Node t -> Node{t with attrs=(attr,v) :: t.attrs}
  | Variant(e,l) ->
      Variant(e,List.rev (Xlist.rev_map l (fun (i,t) ->
        i, reduce_set_attr attr v t)))
  | t -> failwith ("reduce_set_attr: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let rec reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree = function
    Ref i ->
      if mid_tree.(i) <> Dot then mid_tree.(i) else
      let t = reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree orig_tree.(i) in
      mid_tree.(i) <- t;
      t
  | Node t ->
      let args = reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree t.args in
      (* print_endline ("reduce_tree_rec 1: " ^ ENIAM_LCGstringOf.linear_term 0 args); *)
      let args = try manage_agf args with AGF -> failwith "reduce_tree_rec: AGF" in (* FIXME: to nie musi być błąd, należałoby przechwytywać wyjątek na poziorie wariantu powyżej *)
      let args = cut_nodes result_tree args in
      (* print_endline ("reduce_tree_rec 2: " ^ ENIAM_LCGstringOf.linear_term 0 args); *)
      (*let id =
        if t.id = 0 then
          let id = ExtArray.add tokens {ENIAMtokenizerTypes.empty_token_env with ENIAMtokenizerTypes.token=ENIAMtokenizerTypes.Lemma("pro","pro",[[]])} in
          let _ = ExtArray.add lex_sems empty_lex_sem in
          id
        else t.id in*)
      Node{t with args=args; (*id=id*)}
  | Variant(e,l) ->
      let l = Xlist.rev_map l (fun (i,t) -> i, reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree t) in
      Variant(e,List.rev l)
  | Tuple l ->
      let l = Xlist.rev_map l (reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree) in
      Tuple(List.rev l)
  | Dot -> Dot
  | SetAttr(attr,v,t) ->
      let t = reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree t in
      reduce_set_attr attr v t
  | t -> failwith ("reduce_tree_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let reduce_tree tokens lex_sems orig_tree =
  (* print_endline "reduce_tree"; *)
  let mid_tree = Array.make (Array.length orig_tree) Dot in
  let result_tree = ExtArray.make (Array.length orig_tree) Dot in
  let _ = ExtArray.add result_tree Dot in
  let t = reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree orig_tree.(0) in
  ExtArray.set result_tree 0 t;
  result_tree

let is_subj = function
  | Node t ->
          let gf = try get_attr "gf" t.attrs with Not_found -> failwith "is_subj" in
          gf = Val "subj"
  | t -> failwith ("is_subj: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let is_core = function
  | Node t ->
          let gf = try get_attr "gf" t.attrs with Not_found -> failwith "is_core" in
          gf = Val "core"
  | t -> failwith ("is_core: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let set_subj_coref ce = function
  | Node t ->
          let gf = try get_attr "gf" t.attrs with Not_found -> failwith "set_subj_coref" in
          if gf = Val "subj" then Node{t with attrs=("coref",ce) :: t.attrs} else Node t
  | t -> failwith ("set_subj_coref: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let set_core_selprefs selprefs = function (* FIXME: trzeba usunąć dotychczasowe selprefs. *)
  | Node t ->
          let gf = try get_attr "gf" t.attrs with Not_found -> failwith "set_core_selprefs" in
          if gf = Val "core" then Node{t with attrs=("selprefs",selprefs) :: t.attrs} else Node t
  | t -> failwith ("set_core_selprefs: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let rec set_subj_coref_args tree ce = function
    Ref i ->
      if is_subj (ExtArray.get tree i) then
        let id = ExtArray.add tree (set_subj_coref ce (ExtArray.get tree i)) in
        Ref id
      else Ref i
  | Variant(e,l) ->
      let l = Xlist.rev_map l (fun (i,t) -> i, set_subj_coref_args tree ce t) in
      Variant(e,List.rev l)
  | Tuple l ->
      let l = Xlist.rev_map l (set_subj_coref_args tree ce) in
      Tuple(List.rev l)
  | Dot -> Dot
  | t -> failwith ("set_subj_coref_args: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let rec set_selprefs_core tree selprefs = function
    Ref i ->
      if is_core (ExtArray.get tree i) then
        let id = ExtArray.add tree (set_core_selprefs selprefs (ExtArray.get tree i)) in
        Ref id
      else Ref i
  | Variant(e,l) ->
      let l = Xlist.rev_map l (fun (i,t) -> i, set_selprefs_core tree selprefs t) in
      Variant(e,List.rev l)
  | Tuple l ->
      let l = Xlist.rev_map l (set_selprefs_core tree selprefs) in
      Tuple(List.rev l)
  | Dot -> Dot
  | t -> failwith ("set_selprefs_core: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let rec transfer_attributes_rec tree visited = function
    Ref i ->
      if visited.(i) then Ref i else (
      visited.(i) <- true;
      ExtArray.set tree i (transfer_attributes_rec tree visited (ExtArray.get tree i));
      Ref i)
  | Node t ->
      let t = {t with args = transfer_attributes_rec tree visited t.args} in
      (* print_endline ("transfer_attributes_rec 1: " ^ ENIAM_LCGstringOf.linear_term 0 args); *)
      let t =
        if t.pos = "inf" || t.pos = "pcon" || t.pos = "pant" then
          try
            let attrs,ce = extract_attr "controllee" [] t.attrs in
            let args = set_subj_coref_args tree ce t.args in
            {t with attrs=attrs; args=args}
          with Not_found -> t else
        if t.pos = "prep" && get_attr "gf" t.attrs = Val "arg" then
          let attrs,selprefs = extract_attr "selprefs" [] t.attrs in
          let args = set_selprefs_core tree selprefs t.args in
          {t with attrs=("selprefs", Val "ALL") :: attrs; args=args}
        else t in
      Node t
  | Variant(e,l) ->
      let l = Xlist.rev_map l (fun (i,t) -> i, transfer_attributes_rec tree visited t) in
      Variant(e,List.rev l)
  | Tuple l ->
      let l = Xlist.rev_map l (transfer_attributes_rec tree visited) in
      Tuple(List.rev l)
  | Dot -> Dot
  | t -> failwith ("transfer_attributes_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let transfer_attributes tree =
  let visited = Array.make (ExtArray.size tree) false in
  visited.(0) <- true;
  let t = transfer_attributes_rec tree visited (ExtArray.get tree 0) in
  ExtArray.set tree 0 t;
  ()