semMrl.ml 37.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
(*
 *  ENIAM: Categorial Syntactic-Semantic Parser for Polish
 *  Copyright (C) 2016 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
 *  Copyright (C) 2016 Institute of Computer Science Polish Academy of Sciences
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *)
 
open Xstd  
open SemTypes
open LCGtypes


let idnum = ref 0 
 
let get_id () =  
  incr idnum; 
  !idnum
 
let make_handle () = "h" ^ string_of_int (get_id ())
 
(* 
 
let rec extract_nth n rev = function
    [] -> failwith "extract_nth"
  | s :: l -> 
      if n = 1 then s, (List.rev rev) @ l 
      else extract_nth (n-1) (s :: rev) l
  
let rec merge_quant_arg = function
    Variable v -> TArg v
  | Term("variant",l) -> TWith(Xlist.map l merge_quant_arg)
  | s -> failwith ("merge_quant_arg: " ^ StringOf.mrl_term s)
  
let merge_quant = function
(*    TConst("",[]),TConst("",[]) -> TConst("",[])
  | TConst("",[]),a -> a
  | a, TConst("",[]) -> a
  | a, TConst("local",[]) -> a
  | TConst("local",[]),a -> a
  | a, b -> TMod(a,b)*)
    Pred("type",[_;Term(s,l)]),TConst("",[]) -> TConst(s,Xlist.map l merge_quant_arg)
  | Pred("type",[_;Term(s,l)]),TConst("local",[]) -> TConst(s,Xlist.map l merge_quant_arg)
  | Pred("type",[_;Term("mod",[Term(s1,l1);Term(s2,l2)])]),x -> TMod(TMod(TConst(s1,Xlist.map l1 merge_quant_arg),TConst(s2,Xlist.map l2 merge_quant_arg)),x)
  | Pred("type",[_;Term(s,l)]),x -> TMod(TConst(s,Xlist.map l merge_quant_arg),x)
  | _ -> failwith "merge_quant"
  
  *)
(*************************************************************************)

let get_variable (id,_) = function
    Val s, _ -> id,s
  | Dot, Val s -> id, s
  | Dot, Dot -> id, ""
  | _ -> failwith "get_variable"

let rec get_variable_list rev = function
    Concept c -> let x = get_variable c.c_variable (c.c_sense, c.c_name) in get_variable_list (x :: rev) c.c_relations
  | Context c -> let x = get_variable c.cx_variable (c.cx_sense, Dot) in get_variable_list (get_variable_list (x :: rev) c.cx_relations) c.cx_contents
  | Relation(r,a,t) -> get_variable_list rev t
  | RevRelation(r,a,t) -> get_variable_list rev t
  | SingleRelation r  -> rev
  | Tuple l -> Xlist.fold l rev get_variable_list
  | Variant(e,l) -> Xlist.fold l rev (fun rev (_,t) ->  get_variable_list rev t)
  | Dot -> rev
  | Val s -> rev
  | t -> failwith ("get_variable_list: " ^ LCGstringOf.linear_term 0 t)

let make_variable_name t =
  if t = "" then "x" else
  let c = String.get t 0 in
  if (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') then String.sub t 0 1 else
  if c >= '0' && c <= '9' then "q" else "y"
    
let replace_variable map id =
  try StringMap.find map id with Not_found -> failwith "replace_variable"
    
let rec replace_variables map = function
    Concept c -> Concept{c with c_variable=replace_variable map (fst c.c_variable); c_relations=replace_variables map c.c_relations}
  | Context c -> Context{c with cx_variable=replace_variable map (fst c.cx_variable); cx_contents=replace_variables map c.cx_contents; cx_relations=replace_variables map c.cx_relations}
  | Relation(r,a,t) -> Relation(r,a,replace_variables map t)
  | RevRelation(r,a,t) -> RevRelation(r,a,replace_variables map t)
  | SingleRelation r  -> SingleRelation r
  | Tuple l -> Tuple(Xlist.map l (replace_variables map))
  | Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i, replace_variables map t))
  | Dot -> Dot
  | Val s -> Val s
  | t -> failwith ("replace_variables: " ^ LCGstringOf.linear_term 0 t)
        
let variable_alpha_convertion t = 
  let l = get_variable_list [] t in
  let map = Xlist.fold l StringMap.empty (fun map (v,t) -> 
    let t = make_variable_name t in
    StringMap.add_inc map v t (function "x" -> t | s -> s)) in
  let bucket = StringMap.fold map StringMap.empty (fun bucket v t ->
    StringMap.add_inc bucket t [v] (fun l -> v :: l)) in
  let map = StringMap.fold bucket StringMap.empty (fun map t l ->
    let map = StringMap.add map (List.hd l) (t,"") in
    fst (Xlist.fold (List.tl l) (map,2) (fun (map,n) v ->
      StringMap.add map v (t,string_of_int n), n+1))) in   
  replace_variables map t

(*************************************************************************)
  
let simplify_conj = function
    Conj [] -> True
  | Conj [t] -> t
  | f -> f

let simplify_disj = function
    Disj [] -> Neg True
  | Disj [t] -> t
  | f -> f

let rec make_mrl_local_predicates_term_arg = function
    TArg s -> Variable("\\#" ^ s,"")
  | TWith l -> Term("variant",Xlist.map l make_mrl_local_predicates_term_arg)
  
let rec make_mrl_local_predicates_term = function
    TConst(t,l) -> Term(t,Xlist.map l make_mrl_local_predicates_term_arg)
  | TMod(s,t) -> Term("mod",[make_mrl_local_predicates_term s;make_mrl_local_predicates_term t])
  | _ -> failwith "make_mrl_local_predicates_term"

let make_local_predicates v sense name =
  (match sense with
    Dot -> []
  | Val s -> [Pred("type",[Variable v;Term(s,[])])]
  | _ -> failwith "make_local_predicates") @
  (match name with
    Dot -> []
  | Val s -> [Pred("hasName",[Variable v;String s])]
  | _ -> failwith "make_local_predicates") 
  
let rec sort_quant_rec = function
    Dot -> []
  | Val s -> [s]
  | Tuple l -> List.flatten (Xlist.map l sort_quant_rec)
  | t -> failwith "sort_quant_rec"
  
let sort_quant t =   
  List.sort compare (sort_quant_rec t)
  
let binary_quant v t sub sup local pos quant =
  if local then quant (simplify_conj (Conj(t @ sub))) (simplify_conj (Conj sup)) else
  Seam(Position(pos,quant (simplify_conj (Conj(t @ sub))) (Seam(simplify_conj (Conj sup)))))
  
let unary_quant v t sub local pos quant =
  if local then quant (simplify_conj (Conj(t @ sub))) else
  Seam(Position(pos,quant (simplify_conj (Conj(t @ sub)))))
  
let rec make_mrl_binary_quantifier v t sub sup local pos = function
    [],Dot -> binary_quant v t sub sup local pos (fun x y -> Exist2(v,x,y))
  | ["interrogative"],Dot -> binary_quant v t sub sup local pos (fun x y -> Quant2(TConst("interrogative",[]),v,x,y))
  | ["deictic"],Dot -> binary_quant v t sub sup local pos (fun x y -> Quant2(TConst("deictic",[]),v,x,y))
  | ["coreferential"],Dot -> binary_quant v t sub sup local pos (fun x y -> Quant2(TConst("coreferential",[]),v,x,y))
  | ["indexical"],Dot -> binary_quant v t sub sup local pos (fun x y -> Quant2(TConst("indexical",[]),v,x,y))
  | ["order"],Dot -> binary_quant v t sub sup local pos (fun x y -> Quant2(TConst("order",[]),v,x,y))
  | ["comparative"],Dot -> binary_quant v t sub sup local pos (fun x y -> Quant2(TConst("comparative",[]),v,x,y))
  | ["nie"],Dot -> binary_quant v t sub sup local pos (fun x y -> Neg(Exist2(v,x,y)))
  | ["mass";"sg"],q ->  make_mrl_binary_quantifier v t sub sup local pos ([],q)
(*   | ["mass"],Dot -> binary_quant v t sub sup local pos (fun x y -> Quant2(TConst("",[]),v,x,y)) *)
  | ["sg"],Dot -> binary_quant v (t @ [Equal(Term("count",[Variable v]),Term("1",[]))]) sub sup local pos (fun x y -> Exist2(v,x,y))
  | ["pl"],Dot -> binary_quant v (t @ [Greater(Term("count",[Variable v]),Term("1",[]))]) sub sup local pos (fun x y -> Exist2(v,x,y))
  | ["sg"],Concept{c_sense=Val s; c_name=Dot; c_quant=Dot; c_relations=Dot} -> binary_quant v t sub sup local pos (fun x y -> Quant2(TConst(s,[]),v,x,y))
  | [],Concept{c_sense=Val s; c_name=Dot; c_quant=Dot; c_relations=Dot} -> binary_quant v t sub sup local pos (fun x y -> Quant2(TConst(s,[]),v,x,y))
(*  | TMod(TConst("exact",[]), TConst(n,[])) ->
      let restr = simplify_conj (Conj(t @ [Equal(Term("count",[Variable v]),Term(n,[]))] @ sub)) in
      Seam (Exist2(v,restr, Seam (simplify_conj (Conj sup))))
  | TMod(TConst("approx",[]), s) ->
      let restr = simplify_conj (Conj(t @ [Pred("count",[Variable v;make_mrl_local_predicates_term s])] @ sub)) in
      Seam (Exist2(v,restr, Seam (simplify_conj (Conj sup))))
  | TMod(TConst("exact",[]), s) ->
      let restr = simplify_conj (Conj(t @ [Pred("count",[Variable v;make_mrl_local_predicates_term s])] @ sub)) in
      Seam (Exist2(v,restr, Seam (simplify_conj (Conj sup))))*)
  | l,q2 -> (*failwith*)(*print_endline ("make_mrl_binary_quantifier: " ^ 
                    String.concat " " l ^ " " ^ LCGstringOf.linear_term 0 q2); *)
      binary_quant v t sub sup local pos (fun x y -> Exist2(v,x,y))
         
let rec make_mrl_unary_quantifier v t sub local pos = function
    [],Dot -> unary_quant v t sub local pos (fun x -> Exist1(v,x))
  | ["interrogative"],Dot -> unary_quant v t sub local pos (fun x -> Quant1(TConst("interrogative",[]),v,x))
  | ["deictic"],Dot -> unary_quant v t sub local pos (fun x -> Quant1(TConst("deictic",[]),v,x))
  | ["coreferential"],Dot -> unary_quant v t sub local pos (fun x -> Quant1(TConst("coreferential",[]),v,x))
  | ["indexical"],Dot -> unary_quant v t sub local pos (fun x -> Quant1(TConst("indexical",[]),v,x))
  | ["order"],Dot -> unary_quant v t sub local pos (fun x -> Quant1(TConst("order",[]),v,x))
  | ["comparative"],Dot -> unary_quant v t sub local pos (fun x -> Quant1(TConst("comparative",[]),v,x))
  | ["nie"],Dot -> unary_quant v t sub local pos (fun x -> Neg(Exist1(v,x)))
  | ["mass";"sg"],q ->  make_mrl_unary_quantifier v t sub local pos ([],q)
  | ["sg"],Dot -> unary_quant v (t @ [Equal(Term("count",[Variable v]),Term("1",[]))]) sub local pos (fun x -> Exist1(v,x))
  | ["pl"],Dot -> unary_quant v (t @ [Greater(Term("count",[Variable v]),Term("1",[]))]) sub local pos (fun x -> Exist1(v,x))
  | ["sg"],Concept{c_sense=Val s; c_name=Dot; c_quant=Dot; c_relations=Dot} -> unary_quant v t sub local pos (fun x -> Quant1(TConst(s,[]),v,x))
  | [],Concept{c_sense=Val s; c_name=Dot; c_quant=Dot; c_relations=Dot} -> unary_quant v t sub local pos (fun x -> Quant1(TConst(s,[]),v,x))
  | l,q2 -> (*failwith*)(*print_endline ("make_mrl_unary_quantifier: " ^ 
                    String.concat " " l ^ " " ^ LCGstringOf.linear_term 0 q2); *)
      unary_quant v t sub local pos (fun x -> Exist1(v,x))

(*let make_mrl_modalities f l = 
  let focus,syntax = Xlist.fold l ([],[]) (fun (focus,syntax) -> function
      v, TMod(t,TConst("syntax",[])) -> focus, (v,t) :: syntax
    | v, TMod(t,TConst("focus",[])) -> (v,t) :: focus, syntax
    | _ -> failwith "make_mrl_modalities") in
  let f = 
    if syntax = [] then f else
    let v = fst (List.hd syntax) in
    Seam (Exist2(v,simplify_conj (Conj(Xlist.map syntax (fun (_,t) -> 
      Pred("type",[Variable v;make_mrl_local_predicates_term t])))), Dscr(Variable v, Cut f))) in
  Xlist.fold focus f (fun f (v,t) -> 
    Seam (Exist2(v, Pred("type",[Variable v;make_mrl_local_predicates_term t]), Dscr(Variable v, f))))*)
      
let get_variable = function
    Concept c -> c.c_variable
  | Context c -> c.cx_variable
(*   | ConceptList c -> c.cl_variable *)
  | (*LT*) _ -> failwith "get_variable"
      
let make_rel_name = function
    Val r, Val "" -> r
  | Val r, Dot -> r
  | Val r, Val a -> r ^ (*"-" ^*) a
  | _ -> failwith "make_rel_name"

let rec extract_quantifier_rec (quant,relations) = function
    Relation(Val "Quantifier",Val "",t)  -> t :: quant,relations
  | Relation _ as t  -> quant,t :: relations
  | RevRelation _ as t -> quant,t :: relations
  | SingleRelation _ as t -> quant,t :: relations
  | Tuple l -> Xlist.fold l (quant,relations) extract_quantifier_rec
  | Dot -> quant,relations
  | t -> failwith ("extract_quantifier_rec: " ^ LCGstringOf.linear_term 0 t)
  
let extract_quantifier l =
  let quant,relations = extract_quantifier_rec ([],[]) l in
  (match quant with
    [] -> Dot
  | [t] -> t
  | _ -> failwith "extract_quantifier"),
  Tuple relations
  
let concat_var (v,sub) = v ^ "_" ^ sub
  
let rec make_mrl = function
    Context c -> make_mrl_concept [] (Context c) 
  | t -> failwith ("make_mrl: " ^ LCGstringOf.linear_term 0 t)

and make_mrl_relations v = function
    Relation(r,a,t)  ->  [make_mrl_concept [Requires(StringSet.singleton (concat_var v),Pred(make_rel_name (r,a),[Variable v;Variable (get_variable t)]))] t]
  | RevRelation(r,a,t)  -> [make_mrl_concept [Requires(StringSet.singleton (concat_var v),Pred(make_rel_name (r,a),[Variable (get_variable t);Variable v]))] t]
  | SingleRelation r -> [Requires(StringSet.singleton (concat_var v),Pred(make_rel_name (r,Dot),[Variable v]))]
  | Tuple l -> List.flatten (Xlist.map l (make_mrl_relations v))
  | Dot -> []
  | t -> failwith ("make_mrl_relations: " ^ LCGstringOf.linear_term 0 t)
  
and make_mrl_concept rels = function
    Concept c -> 
      let quant,relations = extract_quantifier c.c_relations in
      let sub_formulae = make_mrl_relations c.c_variable relations in
      let local_predicates = make_local_predicates c.c_variable c.c_sense c.c_name in
      if rels = [] then make_mrl_unary_quantifier c.c_variable local_predicates sub_formulae c.c_local_quant c.c_pos (sort_quant c.c_quant,quant)
        else make_mrl_binary_quantifier c.c_variable local_predicates sub_formulae rels c.c_local_quant c.c_pos (sort_quant c.c_quant,quant)
  | Context c -> 
      let sub_formulae = make_mrl_relations c.cx_variable c.cx_relations in
      let contents = simplify_conj (Conj (make_mrl_contents c.cx_contents)) in
      let dscr = Dscr(Variable c.cx_variable, contents) in
      let sub_formulae = dscr :: sub_formulae in
      let local_predicates = make_local_predicates c.cx_variable c.cx_sense Dot in
      if rels = [] then make_mrl_unary_quantifier c.cx_variable local_predicates sub_formulae true 0 ([],Dot)
      else make_mrl_binary_quantifier c.cx_variable local_predicates sub_formulae rels true 0 ([],Dot)
  | t -> failwith ("make_mrl_concept: " ^ LCGstringOf.linear_term 0 t)

and make_mrl_contents = function
    Concept c -> [make_mrl_concept [] (Concept c)]
  | Context c -> [make_mrl_concept [] (Context c)]
  | Tuple l -> List.flatten (Xlist.map l make_mrl_contents)
  | t -> failwith ("make_mrl_contents: " ^ LCGstringOf.linear_term 0 t)

(*************************************************************************)
  
(* FIXME: w mrs 
- brak uchwytu dla Root 
- problem z brakiem alfa konwersji przy kontekstach
*)
    
let rec move_requirements_var v f =
  match move_requirements f with
    Requires(req,f) -> 
      let req = StringSet.remove req (concat_var v) in
      f,req
  | f -> f,StringSet.empty
  
and move_requirements = function 
    Conj l -> 
      let l,req = Xlist.fold l ([],StringSet.empty) (fun (l,req) f ->
        match move_requirements f with
          Requires(v,f) -> f :: l, StringSet.union v req
        | f -> f :: l,req) in
      if StringSet.is_empty req then Conj(List.rev l) else Requires(req,Conj(List.rev l))
  | Disj l -> 
      let l,req = Xlist.fold l ([],StringSet.empty) (fun (l,req) f ->
        match move_requirements f with
          Requires(v,f) -> f :: l, StringSet.union v req
        | f -> f :: l,req) in
      if StringSet.is_empty req then Disj(List.rev l) else Requires(req,Disj(List.rev l))
  | Neg f -> 
      (match move_requirements f with
        Requires(v,f) -> Requires(v,Neg f)
      | f -> Neg f)
  | Exist(v,t,f) -> failwith "move_requirements: ni"
  | Exist1(v,f) -> 
      let f,req = move_requirements_var v f in
      if StringSet.is_empty req then Exist1(v,f) else Requires(req,Exist1(v,f))
  | Exist2(v,t,f) -> 
      let t,req = move_requirements_var v t in
      let f,req2 = move_requirements_var v f in
      let req = StringSet.union req req2 in
      if StringSet.is_empty req then Exist2(v,t,f) else Requires(req,Exist2(v,t,f))
  | ForAll(v,t,f) -> 
      let t,req = move_requirements_var v t in
      let f,req2 = move_requirements_var v f in
      let req = StringSet.union req req2 in
      if StringSet.is_empty req then ForAll(v,t,f) else Requires(req,ForAll(v,t,f))
  | Quant1(s,v,f) -> 
      let f,req = move_requirements_var v f in
      if StringSet.is_empty req then Quant1(s,v,f) else Requires(req,Quant1(s,v,f))
  | Quant2(s,v,t,f) -> 
      let t,req = move_requirements_var v t in
      let f,req2 = move_requirements_var v f in
      let req = StringSet.union req req2 in
      if StringSet.is_empty req then Quant2(s,v,t,f) else Requires(req,Quant2(s,v,t,f))
  | Dscr(t,f) -> 
      (match move_requirements f with
        Requires(v,f) -> Requires(v,Dscr(t,f))
      | f -> Dscr(t,f))
  | Pred(_,_) as f -> f
  | Equal(_,_) as f -> f
  | Greater(_,_) as f -> f
  | True as f -> f
  | Handle _ -> failwith "move_requirements"
  | Seam f -> Seam(move_requirements f) 
  | Requires(v,f) -> 
      (match move_requirements f with
        Requires(w,f) -> Requires(StringSet.union v w,f)
      | f -> Requires(v,f))
  | Cut f -> 
      (match move_requirements f with
        Requires(v,f) -> Requires(v,Cut f)
      | f -> Cut f)
  | Context _ as f -> f
  | Position(i,f) -> 
      (match move_requirements f with
        Requires(v,f) -> Requires(v,Position(i,f))
      | f -> Position(i,f))
  
(*************************************************************************)
  
let rec make_mrs_of_mrl_formula gaps new_gaps mrs = function 
    Conj l -> 
      let l,mrs = Xlist.fold l ([],mrs) (fun (l,mrs) t -> 
        let t,mrs = make_mrs_of_mrl_formula gaps new_gaps mrs t in t :: l, mrs) in
      Conj(List.rev l),mrs
  | Disj l -> 
      let l,mrs = Xlist.fold l ([],mrs) (fun (l,mrs) t -> 
        let t,mrs = make_mrs_of_mrl_formula gaps new_gaps mrs t in t :: l, mrs) in
      Disj(List.rev l),mrs
  | Neg f -> let f,mrs = make_mrs_of_mrl_formula gaps new_gaps mrs f in Neg f, mrs
  | Exist(v,t,f) -> failwith "make_mrs_of_mrl_formula 4"
  | Exist1(v,f) -> 
      let f,mrs = make_mrs_of_mrl_formula gaps (v :: new_gaps) mrs f in Exist1(v,f), mrs
  | Exist2(v,t,f) -> 
      let t,mrs = make_mrs_of_mrl_formula gaps (v :: new_gaps) mrs t in
      let f,mrs = make_mrs_of_mrl_formula gaps (v :: new_gaps) mrs f in
      Exist2(v,t,f),mrs
  | ForAll(v,t,f) -> 
      let t,mrs = make_mrs_of_mrl_formula gaps (v :: new_gaps) mrs t in
      let f,mrs = make_mrs_of_mrl_formula gaps (v :: new_gaps) mrs f in
      ForAll(v,t,f),mrs
  | Quant1(s,v,f) -> 
      let f,mrs = make_mrs_of_mrl_formula gaps (v :: new_gaps) mrs f in Quant1(s,v,f), mrs
  | Quant2(s,v,t,f) -> 
      let t,mrs = make_mrs_of_mrl_formula gaps (v :: new_gaps) mrs t in
      let f,mrs = make_mrs_of_mrl_formula gaps (v :: new_gaps) mrs f in
      Quant2(s,v,t,f),mrs
  | Dscr(t,f) -> 
      let f,mrs = make_mrs_of_mrl_formula gaps new_gaps mrs f in Dscr(t,f), mrs
  | Pred(_,_) as f -> f,mrs
  | Equal(_,_) as f -> f,mrs
  | Greater(_,_) as f -> f,mrs
  | True as f -> f,mrs
  | Handle _ -> failwith "make_mrs_of_mrl_formula 1"
  | Requires(v,f) -> failwith "make_mrs_of_mrl_formula 2"
(*       let f,mrs = make_mrs_of_mrl_formula gaps new_gaps mrs f in Requires(v,f), mrs *)
  | Seam(Requires(v,f)) -> 
      let label = make_handle () in
      let handle = make_handle () in
      let gaps = Xlist.fold new_gaps gaps (fun gaps v -> StringMap.add gaps (concat_var v) handle) in
      let mrs = StringSet.fold v mrs (fun mrs v -> 
        let gap = try StringMap.find gaps v with Not_found -> failwith "make_mrs_of_mrl_formula 3" in
        MRSqeq(gap,label) :: mrs) in
      let f,mrs = make_mrs_of_mrl_formula gaps [] mrs f in
      let f,mrs = match f with 
          Position(pos,f) -> f, MRSpos(label,pos) :: mrs
        | _ -> f,mrs in
      Handle handle, MRSeps(label,f) :: mrs
  | Seam f -> 
      let label = make_handle () in
      let handle = make_handle () in
      let gaps = Xlist.fold new_gaps gaps (fun gaps v -> StringMap.add gaps (concat_var v) handle) in
      let f,mrs = make_mrs_of_mrl_formula gaps [] mrs f in
      let f,mrs = match f with 
          Position(pos,f) -> f, MRSpos(label,pos) :: mrs
        | _ -> f,mrs in
      Handle handle, MRSeps(label,f) :: mrs
  | Cut f -> make_mrs_of_mrl_formula gaps new_gaps mrs f
  | Context _ as f -> f,mrs
  | Position(pos,f) -> 
      let f,mrs = make_mrs_of_mrl_formula gaps new_gaps mrs f in Position(pos,f), mrs
  
(* TODO!!! 
- dodaฤ‡ odwoล‚anie do htop i implementacje Cut
- dodaฤ‡ tล‚umaczenie kwantyfikatorรณw 
- usuniฤ™cie zewnฤ™trznych konteksow sytuacyjnych
- dodanie Cut do kontekstรณw spรณjnikรณw podrzฤ™dnych
- wyrรณลผnianie dystrybutywnoล›ci
- wyrรณลผnianie interrogative i nazw wล‚adnych przestawianych na poczฤ…tek
- ujednolicenie 'ja' w imp i #i 

na potem:
- parsowanie niejednoznaczych fstruktur
*)

let make_mrs_of_mrl f = 
  let f,mrs = make_mrs_of_mrl_formula StringMap.empty [] [] f in
  let label = make_handle () in
  MRStop label :: MRSeps(label,f) :: mrs
    
(*************************************************************************)
  
let sort_mrs l = 
  let a,b,c,d = Xlist.fold l ([],[],[],[]) (fun (a,b,c,d) -> function 
    MRSeps(h,f) -> a,MRSeps(h,f) :: b,c,d
  | MRSqeq(h,h2) -> a,b,MRSqeq(h,h2) :: c,d
  | MRStop h -> MRStop h :: a,b,c,d
  | MRSpos(h,pos) -> a,b,c,MRSpos(h,pos) :: d) in
  List.rev a,List.rev b,List.rev c
  
(*************************************************************************)
  
let rec get_handle_list_mrl_formula = function
    Conj l -> List.flatten (Xlist.map l get_handle_list_mrl_formula)
  | Disj l -> List.flatten (Xlist.map l get_handle_list_mrl_formula)
(*| Impl of mrl_formula * mrl_formula*)
  | Neg t -> get_handle_list_mrl_formula t
  | Exist _ -> failwith "get_handle_list_mrl_formula: ni"
  | Exist1(_,s) -> get_handle_list_mrl_formula s
  | Exist2(_,s,t) -> get_handle_list_mrl_formula s @ get_handle_list_mrl_formula t
  | ForAll(_,s,t) -> get_handle_list_mrl_formula s @ get_handle_list_mrl_formula t
  | Quant1(_,_,t) -> get_handle_list_mrl_formula t
  | Quant2(_,_,s,t) -> get_handle_list_mrl_formula s @ get_handle_list_mrl_formula t
  | Dscr(_,t) -> get_handle_list_mrl_formula t
  | Pred(_,_) -> []
(*   | Incl of term * term *)
  | Equal(_,_) -> []
  | Greater(_,_) -> []
  | True -> []
(*  | Impt of mrl_term  (* modalnoล›ฤ‡ rozkazujฤ…ca *)
  | Qest of mrl_term  (* modalnoล›ฤ‡ pytajฤ…ca *)
  | Stat of mrl_term  (* modalnoล›ฤ‡ oznajmujฤ…ca *)*)
(*   | LTf t -> failwith "get_handle_list_mrl_formula" *)
  | Handle h -> [h]
  | Requires(_,s) -> get_handle_list_mrl_formula s
  | Seam s -> get_handle_list_mrl_formula s
  | Cut s -> get_handle_list_mrl_formula s
  | Context _ -> []
  | Position(_,t) -> get_handle_list_mrl_formula t
  
and get_handle_list_mrs_formula = function   
    MRSeps(h,f) -> h :: (get_handle_list_mrl_formula f)
  | MRSqeq(h,h2) -> [h;h2]
  | MRStop h -> [h]
  | MRSpos(h,_) -> [h]
  
let replace_handle map h =
  try StringMap.find map h with Not_found -> failwith ("replace_handle: " ^ h)
  
let rec replace_handles_mrl_formula map = function
    Conj l -> Conj (Xlist.map l (replace_handles_mrl_formula map))
  | Disj l -> Disj (Xlist.map l (replace_handles_mrl_formula map))
(*  | Impl (f,g) -> Impl (replace_handles_mrl_formula map f,replace_handles_mrl_formula map g)*)
  | Neg f -> Neg (replace_handles_mrl_formula map f)
  | Exist _ -> failwith "replace_handles_mrl_formula: ni"
  | Exist1(v,f) -> Exist1(v,replace_handles_mrl_formula map f)
  | Exist2(v,t,f) -> Exist2(v,replace_handles_mrl_formula map t,replace_handles_mrl_formula map f)
  | ForAll(v,t,f) -> ForAll(v,replace_handles_mrl_formula map t,replace_handles_mrl_formula map f)
  | Quant1(q,v,f) -> Quant1(q,v,replace_handles_mrl_formula map f)
  | Quant2(q,v,t,f) -> Quant2(q,v,replace_handles_mrl_formula map t,replace_handles_mrl_formula map f)
  | Dscr(t,f) -> Dscr(t,replace_handles_mrl_formula map f)
  | Pred(c,l) -> Pred(c,l)
  | Equal(s,t) -> Equal(s,t)
  | Greater(s,t) -> Greater(s,t)
  | True -> True
  | Handle h -> Handle(replace_handle map h)
  | Requires(v,t) -> Requires(v,replace_handles_mrl_formula map t)
  | Seam t -> Seam(replace_handles_mrl_formula map t)
  | Cut t -> Cut(replace_handles_mrl_formula map t)
  | Context c -> Context c
  | Position(pos,f) -> Position(pos,replace_handles_mrl_formula map f)
  
and replace_handles_mrs_formula map = function   
    MRSeps(h,f) -> MRSeps(replace_handle map h, replace_handles_mrl_formula map f)
  | MRSqeq(h,h2) -> MRSqeq(replace_handle map h, replace_handle map h2)
  | MRStop h -> MRStop(replace_handle map h)
  | MRSpos(h,pos) -> MRSpos(replace_handle map h,pos)
  
let mrs_handle_alpha_convertion t =
  let l = List.flatten (Xlist.map t get_handle_list_mrs_formula) in
  let map,_ = Xlist.fold l (StringMap.empty,0) (fun (map,n) x -> 
    if StringMap.mem map x then map,n else
    StringMap.add map x ("h" ^ string_of_int n), n+1) in
  Xlist.map t (replace_handles_mrs_formula map)
    
(*************************************************************************)
    
(* budujemy drzewo formuล‚y od korzenia.
   uzgadnianie qeq: pamiฤ™tamy ล›cieลผkฤ™ uchwytรณw przez ktรณre przechodziliล›my i mamy sล‚ownik qeq, przy wyborze maczowania sprawdzamy zgodnoล›ฤ‡
   uzgadnianie zmiennych: 
     mamy listฤ™ zmiennych zdefiniowanych w zakresie wฤ™zล‚a drzewa, 
     i sล‚ownik wskazujฤ…cy jakie zmienne wystฤ™pujฤ… w formule
     przy wyborze maczowania sprawdzamy zgodnoล›ฤ‡
   sล‚ownik wskazujฤ…cy powiฤ…zania pomiฤ™dzy uchwytami. 
   drzewo formuล‚y reprezentujemy jako zbiรณr uzgodnieล„ 
   zbiory uzgodnieล„ dla alternatywnych formuล‚ pakujemy w drzewo decyzyjne *)

let rec create_foll_of_mrs_maps_mrl_term vl (vars,handles) h = function
  | Variable v -> 
(*       let p = try String.sub v 0 2 with _ -> "" in *)
      if Xlist.mem vl v (*|| p = "\\#"*) then vars,handles else StringMap.add_inc vars h [v] (fun l -> v :: l), handles
  | List l -> Xlist.fold l (vars,handles) (fun (vars,handles) t -> create_foll_of_mrs_maps_mrl_term vl (vars,handles) h t)
  | Indexical v -> vars,handles
  | String s -> vars,handles
  | Term(c,l) -> Xlist.fold l (vars,handles) (fun (vars,handles) t -> create_foll_of_mrs_maps_mrl_term vl (vars,handles) h t)

let rec create_foll_of_mrs_maps_mrl_formula vl (vars,handles) h = function
    Conj l -> Xlist.fold l (vars,handles) (fun (vars,handles) t -> create_foll_of_mrs_maps_mrl_formula vl (vars,handles) h t)
  | Disj l -> Xlist.fold l (vars,handles) (fun (vars,handles) t -> create_foll_of_mrs_maps_mrl_formula vl (vars,handles) h t)
  | Neg f -> create_foll_of_mrs_maps_mrl_formula vl (vars,handles) h f
  | Exist _ -> failwith "create_foll_of_mrs_maps_mrl_formula: ni"
  | Exist1(v,t) -> create_foll_of_mrs_maps_mrl_formula (v :: vl) (vars,handles) h t
(*   | Exist2(v,Handle h2,f) -> create_foll_of_mrs_maps_mrl_formula (v :: vl) (vars,StringMap.add_inc handles h [h2,v :: vl,true] (fun l -> (h2,v :: vl,true) :: l)) h f  *)
  | Exist2(v,t,f) -> create_foll_of_mrs_maps_mrl_formula (v :: vl) (create_foll_of_mrs_maps_mrl_formula (v :: vl) (vars,handles) h t) h f  
(*   | Exist2(v,t,f) -> failwith "create_foll_of_mrs_maps_mrl_formula: ni"  *)
  | ForAll(v,t,f) -> create_foll_of_mrs_maps_mrl_formula (v :: vl) (create_foll_of_mrs_maps_mrl_formula (v :: vl) (vars,handles) h t) h f
  | Quant1(_,v,f) -> create_foll_of_mrs_maps_mrl_formula (v :: vl) (vars,handles) h f
  | Quant2(_,v,t,f) -> create_foll_of_mrs_maps_mrl_formula (v :: vl) (create_foll_of_mrs_maps_mrl_formula (v :: vl) (vars,handles) h t) h f
  | Dscr(t,f) -> create_foll_of_mrs_maps_mrl_term vl (create_foll_of_mrs_maps_mrl_formula vl (vars,handles) h f) h t
  | Pred(c,l) -> Xlist.fold l (vars,handles) (fun (vars,handles) t -> create_foll_of_mrs_maps_mrl_term vl (vars,handles) h t)
  | Equal(s,t) -> create_foll_of_mrs_maps_mrl_term vl (create_foll_of_mrs_maps_mrl_term vl (vars,handles) h s) h t
  | Greater(s,t) -> create_foll_of_mrs_maps_mrl_term vl (create_foll_of_mrs_maps_mrl_term vl (vars,handles) h s) h t
  | True -> vars,handles
  | Handle h2 -> vars,StringMap.add_inc handles h [h2,vl(*,false*)] (fun l -> (h2,vl(*,false*)) :: l)
  | Requires(_,f) -> create_foll_of_mrs_maps_mrl_formula vl (vars,handles) h f
  | Seam f -> create_foll_of_mrs_maps_mrl_formula vl (vars,handles) h f
  | Cut f -> create_foll_of_mrs_maps_mrl_formula vl (vars,handles) h f
  | Context _ -> vars,handles
  | Position _ -> failwith "create_foll_of_mrs_maps_mrl_formula: ni"
  
   
let create_foll_of_mrs_maps l = 
  let top,qeqs,vars,handles,hu,eps,positions = Xlist.fold l ([],StringMap.empty,StringMap.empty,StringMap.empty,StringSet.empty,StringMap.empty,StringMap.empty) 
    (fun (top,qeqs,vars,handles,hu,eps,positions) -> function 
      MRSeps(h,f) -> 
        let vars,handles = create_foll_of_mrs_maps_mrl_formula [] (vars,handles) h f in 
        let hu = StringSet.add hu h in
        top, qeqs, vars, handles, hu,  StringMap.add_inc eps h [f] (fun l -> f :: l), positions
    | MRSqeq(h,h2) -> top, StringMap.add_inc qeqs h2 [h] (fun l -> h :: l), vars, handles, hu,  eps, positions
    | MRStop h -> h :: top, qeqs, vars, handles, hu,  eps, positions
    | MRSpos(h,pos) -> top,qeqs,vars,handles,hu,eps,StringMap.add positions h pos) in
  match top with
    [t] -> t,qeqs,vars,handles,hu,eps,positions
  | _ -> failwith "create_foll_of_mrs_maps"
     
type decision_tree = 
    T of string * (string list * decision_tree) list
  | Tfinish
  | Terror

let rec string_of_decision_tree = function
    T(h,l) -> 
      "T(" ^ h ^ ",[" ^ String.concat "; " (Xlist.map l (fun (l,t) -> 
        "[" ^ String.concat ";" l ^ "], " ^ string_of_decision_tree t)) ^ "])"
  | Tfinish -> "Tfinish"
  | Terror -> "Terror"
  
  
let get_possible_matchings def_handles hu def_vars qeqs vars positions =
  let found = StringSet.fold hu [] (fun found h -> 
    let qeql = try StringMap.find qeqs h with Not_found -> [] in
    let varl = try StringMap.find vars h with Not_found -> [] in
(*     Printf.printf "  h=%s varl={%s}\n" h (String.concat ";" varl);  *)
    if Xlist.fold qeql true (fun b h2 -> if StringSet.mem def_handles h2 then b else false) && 
       Xlist.fold varl true (fun b v -> if StringSet.mem def_vars (concat_var v) then b else false) then
    h :: found else found) in
  let l = Xlist.rev_map found (fun h -> (try StringMap.find positions h with Not_found -> max_int),h) in
  let l = List.sort (fun (x,_) (y,_) -> compare x y) l in
  Xlist.map l snd

let generate_subsets l =
  (*let ll =*) Xlist.map (Xlist.multiply_list (Xlist.map l (fun x -> [[];[x]]))) List.flatten (*in
  Xlist.fold ll [] (fun ll l -> if Xlist.size l <= 2 then l :: ll else ll)*)
(*   Xlist.map l (fun x -> [x]) *)
  
let rec spaces i =   
  if i = 0 then "" else "  " ^ spaces (i-1)
  
let rec create_decision_tree_greedy n qeqs vars handles hu positions = function
    [] -> if StringSet.size hu = 0 then Tfinish else Terror
  | (gap,def_vars,def_handles) :: tops -> 
(*      Printf.printf "%sgap=%s def_vars={%s} def_handles={%s} hu={%s}\n" (spaces n) gap 
        (String.concat ";" (StringSet.to_list def_vars)) 
        (String.concat ";" (StringSet.to_list def_handles))
        (String.concat ";" (StringSet.to_list hu));*)
      let def_handles = StringSet.add def_handles gap in
      let l = get_possible_matchings def_handles hu def_vars qeqs vars positions in
(*       Printf.printf "%sl=[%s]\n" (spaces n) (String.concat ";" l); *)
     get_possible_matchings_greedy_list n qeqs vars handles hu positions gap def_vars def_handles tops l
      
and get_possible_matchings_greedy_list n qeqs vars handles hu positions gap def_vars def_handles tops = function
    [] -> Terror
  | h :: l -> 
      let new_tops = Xlist.fold (try StringMap.find handles h with Not_found -> []) tops (fun tops (h2,vl) ->
        (h2, Xlist.fold vl def_vars (fun def_vars v -> StringSet.add def_vars (concat_var v)), def_handles) :: tops) in 
      let t = create_decision_tree_greedy (n+1) qeqs vars handles (StringSet.remove hu h) positions new_tops in
      if t = Terror then get_possible_matchings_greedy_list n qeqs vars handles hu positions gap def_vars def_handles tops l 
      else (
(*         Printf.printf "%s%s=%s\n" (spaces n) gap h; *)
        T(gap,[[h], t]))

let rec create_decision_tree_bound m n qeqs vars handles hu positions = function
    [] -> if StringSet.size hu = 0 then Tfinish,m-1,n else Terror,m,n
  | (h,def_vars,def_handles) :: tops -> 
(*      Printf.printf "h=%s def_vars={%s} def_handles={%s} hu={%s}\n" h 
        (String.concat ";" (StringSet.to_list def_vars)) 
        (String.concat ";" (StringSet.to_list def_handles))
        (String.concat ";" (StringSet.to_list hu));*)
      if m < 0 then ((*print_endline "Terror1";*) Terror,m,n) else
      if n < 0 then ((*print_endline "Terror2";*) Terror,m,n) else
      let def_handles = StringSet.add def_handles h in
      let l = get_possible_matchings def_handles hu def_vars qeqs vars positions in
      if l = [] then ((*print_endline "Terror3";*) Terror,m,n) else
      let ll = Xlist.map l (fun x -> [x]) (*else generate_subsets l*) in
(*       Printf.printf "ll=[%s]\n" (String.concat "];[" (Xlist.map ll (fun l -> String.concat ";" (Xlist.map l fst)))); *)
      let trees,m,n = Xlist.fold ll ([],m,n) (fun (trees,m,n) l ->
        if l = [] then trees,m,n else
        let tops = Xlist.fold l tops (fun tops h ->
          Xlist.fold (try StringMap.find handles h with Not_found -> []) tops (fun tops (h2,vl) ->
              (h2, Xlist.fold vl def_vars (fun def_vars v -> StringSet.add def_vars (concat_var v)), def_handles) :: tops)) in 
        if n < 0 then trees,m,n else
        let t,m,n = create_decision_tree_bound m (n-1) qeqs vars handles 
          (Xlist.fold l hu (fun hu x -> StringSet.remove hu x)) positions tops in
        if t = Terror then trees,m,n else (l, t) :: trees,m,n) in
      let tree = if trees = [] then Terror else T(h,trees) in
(*       print_endline (string_of_decision_tree tree); *)
      tree,m,n

let rec substitute_handles map = function
    Conj l -> Conj (Xlist.map l (substitute_handles map))
  | Disj l -> Disj (Xlist.map l (substitute_handles map))
  | Neg f -> Neg (substitute_handles map f)
  | Exist _ -> failwith "substitute_handles: ni"
  | Exist1(v,t) -> Exist1(v,substitute_handles map t)
  | Exist2(v,t,f) -> Exist2(v,substitute_handles map t,substitute_handles map f)
  | ForAll(v,t,f) -> ForAll(v,substitute_handles map t,substitute_handles map f)
  | Quant1(q,v,f) -> Quant1(q,v,substitute_handles map f)
  | Quant2(q,v,t,f) -> Quant2(q,v,substitute_handles map t,substitute_handles map f)
  | Dscr(t,f) -> Dscr(t,substitute_handles map f)
  | Pred(c,l) -> Pred(c,l)
  | Equal(s,t) -> Equal(s,t)
  | Greater(s,t) -> Greater(s,t)
  | True -> True
  | Handle h -> (try StringMap.find map h with Not_found -> failwith "substitute_handles")
  | Requires(v,f) -> Requires(v,substitute_handles map f)
  | Seam f -> Seam (substitute_handles map f)
  | Cut f -> Cut (substitute_handles map f)
  | Context c -> Context c
  | Position(pos,f) -> Position(pos,substitute_handles map f)
        
let rec create_formulae eps = function
    T(h,l) -> 
      List.flatten (Xlist.map l (fun (handles,tree) ->
        let alter_list = create_formulae eps tree in
        Xlist.map alter_list (fun map -> 
          let f = Conj(List.flatten (Xlist.map handles (fun h2 -> 
            Xlist.map (try StringMap.find eps h2 with Not_found -> failwith ("create_formulae: " ^ h2)) (substitute_handles map)))) in
          StringMap.add map h f)))
  | Tfinish -> [StringMap.empty]
  | Terror -> []       

let rec create_formulae_single eps = function
    T(h,l) -> 
      [List.hd (List.flatten (Xlist.map l (fun (handles,tree) ->
        let alter_list = create_formulae_single eps tree in
        Xlist.map alter_list (fun map -> 
          let f = Conj(List.flatten (Xlist.map handles (fun h2 -> 
            Xlist.map (StringMap.find eps h2) (substitute_handles map)))) in
          StringMap.add map h f))))]
  | Tfinish -> [StringMap.empty]
  | Terror -> []       

let foll_of_mrs_greedy mrs = 
(*   Xlist.iter mrs (fun x -> Printf.printf "%s\n" (SemStringOf.mrs_formula x)); *)
  let top,qeqs,vars,handles,hu,eps,positions = create_foll_of_mrs_maps mrs in
  let tree = 
    if StringSet.mem hu top then
      let tops = Xlist.fold (try StringMap.find handles top with Not_found -> []) [] (fun tops (h2,vl(*,single*)) ->
        (h2, Xlist.fold vl StringSet.empty (fun set v -> StringSet.add set (concat_var v)), StringSet.singleton top) :: tops) in 
      let t = create_decision_tree_greedy 0 qeqs vars handles (StringSet.remove hu top) positions tops in
      T(top,[[top],t])
    else create_decision_tree_greedy 0 qeqs vars handles hu positions [top,StringSet.empty,StringSet.empty] in
  let alter_list = create_formulae eps tree in
  Xlist.map alter_list (fun map -> StringMap.find map top)
 
let foll_of_mrs_bound m n l = 
  let top,qeqs,vars,handles,hu,eps,positions = create_foll_of_mrs_maps l in
  let tree,_,n2 = 
    if StringSet.mem hu top then
      let tops = Xlist.fold (try StringMap.find handles top with Not_found -> []) [] (fun tops (h2,vl(*,single*)) ->
        (h2, Xlist.fold vl StringSet.empty (fun set v -> StringSet.add set (concat_var v)), StringSet.singleton top) :: tops) in 
      let t,m,n = create_decision_tree_bound m n qeqs vars handles (StringSet.remove hu top) positions tops in
      T(top,[[top],t]),m,n
    else create_decision_tree_bound m n qeqs vars handles hu positions [top,StringSet.empty,StringSet.empty] in
(*   print_endline (string_of_decision_tree tree); *)
  let alter_list = create_formulae eps tree in
(*  let alter_list = if alter_list <> [] then alter_list else (
    Printf.printf "solution not found %d\n%!"(n - n2);
    let handles = StringMap.map handles (fun l -> Xlist.map l (fun (h,vl,_) -> h,vl,false)) in
    let tree,_,n2 = create_decision_tree_bound m n qeqs vars handles hu [top,StringSet.empty,StringSet.empty,false,""] in
    create_formulae eps tree) in*)
  Xlist.map alter_list (fun map -> StringMap.find map top)(*, n - n2*)