ENIAM_LCGreductions.ml 27.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
(*
 *  ENIAM_LCGparser, a parser for Logical Categorial Grammar formalism
 *  Copyright (C) 2016-2017 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
 *  Copyright (C) 2016-2017 Institute of Computer Science Polish Academy of Sciences
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *)

open ENIAM_LCGtypes
open Xstd

let variant_label_ref = ref []

let reset_variant_label () =
  variant_label_ref := []

let rec add_variant_label = function
    [] -> ["A"]
  | "Z" :: l -> "A" :: add_variant_label l
  | s :: l -> String.make 1 (Char.chr (Char.code (String.get s 0) + 1)) :: l

let get_variant_label () =
  variant_label_ref := add_variant_label (!variant_label_ref);
  String.concat "" (List.rev (!variant_label_ref))

(* let prepare_references t references next_reference =
   let a = Array.make next_reference Dot in
   Xlist.iter references (fun (i,t) -> a.(i) <- t);
   a.(0) <- t;
   a *)

let prepare_dependency_tree t refs next_ref =
  let a = Array.make next_ref Dot in
  TermMap.iter refs (fun t i -> a.(i) <- t);
  a.(0) <- t;
  a

let rec extract_nth n rev = function
    [] -> failwith "extract_nth"
  | s :: l ->
    if n = 1 then s, (List.rev rev) @ l
    else extract_nth (n-1) (s :: rev) l

let rec is_reduced_rec = function
    Tuple l -> Xlist.fold l true (fun b t -> b && is_reduced_rec t)
  | Variant(_,l) -> Xlist.fold l true (fun b (_,t) -> b && is_reduced_rec t)
  | Dot -> true
  | Val s -> true
  | Node t -> Xlist.fold t.attrs true (fun b (_,t) -> b && is_reduced_rec t) && is_reduced_rec t.symbol && (*is_reduced_rec t.arg_symbol &&*) is_reduced_rec t.args
  (* | Morf m -> true *)
  | Cut t -> is_reduced_rec t
  | Ref i -> true
  | _ -> false

let is_reduced = (*function
                   Triple(_,_,_) as t -> is_reduced_rec t
                   | _ -> false*) is_reduced_rec

let is_reduced_dependency_tree dependency_tree =
  Int.fold 0 (Array.length dependency_tree - 1) true (fun b i ->
      b && is_reduced dependency_tree.(i))

let rec assign_labels_rec = function
    Tuple l -> Tuple(Xlist.map l assign_labels_rec)
  | Variant(_,l) -> Variant(get_variant_label (), fst (Xlist.fold l ([],1) (fun (l,i) (_,t) ->
      (string_of_int i, assign_labels_rec t) :: l,i+1)))
  | Dot -> Dot
  | Val s -> Val s
  | Node t -> Node{t with args=assign_labels_rec t.args}
  (* | Morf m -> Morf m *)
  | Cut t -> Cut(assign_labels_rec t)
  | Ref i -> Ref i
  | _ -> failwith "assign_labels_rec"

let assign_labels dependency_tree =
  Int.iter 0 (Array.length dependency_tree - 1) (fun i ->
      dependency_tree.(i) <- assign_labels_rec dependency_tree.(i))

let rec remove_cuts_rec = function
    Tuple l -> Tuple(Xlist.map l remove_cuts_rec)
  | Variant(e,l) -> Variant(e, Xlist.map l (fun (i,t) -> i, remove_cuts_rec t))
  | Dot -> Dot
  | Val s -> Val s
  | Node t -> Node{t with args=remove_cuts_rec t.args}
  (* | Morf m -> Morf m *)
  | Cut t -> remove_cuts_rec t
  | Ref i -> Ref i
  | _ -> failwith "remove_cuts_rec"

let remove_cuts dependency_tree =
  Int.iter 0 (Array.length dependency_tree - 1) (fun i ->
      dependency_tree.(i) <- remove_cuts_rec dependency_tree.(i))

let linear_term_beta_reduction4 references =
  let reduced = Array.make (ExtArray.size references) Dot in
  let size = ref 0 in
  let refs = ref TermMap.empty in
  let next_ref = ref 1 in

  let rec flatten_variant set = function
      Variant(_,l) -> Xlist.fold l set (fun set (_,t) -> flatten_variant set t)
    | Cut t -> TermSet.add set (Cut t)
    | Dot -> TermSet.add set Dot
    | Tuple l -> TermSet.add set (simplify_args (Tuple l))
    | t -> failwith ("flatten_variant: " ^ ENIAM_LCGstringOf.linear_term 0 t)

  and simplify_args = function
      Tuple l -> Tuple(Xlist.map l simplify_args)
    | Dot -> Dot
    | Variant(e,l) -> (match TermSet.to_list (flatten_variant TermSet.empty (Variant(e,l))) with
          [] -> failwith "simplify_args 1"
        | [t] -> t
        | l -> Variant("",Xlist.map l (fun t -> ("0",t))))
    | Cut t -> Cut t
    | t -> failwith ("simplify_args 2: " ^ ENIAM_LCGstringOf.linear_term 0 t) in

  let rec create_cut_refs = function
      Node t ->
      let t = {t with args=simplify_args t.args} in
(*       Printf.printf "create_cut_refs 1: %s\n" (ENIAM_LCGstringOf.linear_term 0 (Node t)); *)
      (try
         let i = TermMap.find !refs (Node t) in
(*          Printf.printf "create_cut_refs 2: %d\n" i; *)
         Cut(Ref i)
       with Not_found ->
         refs := TermMap.add !refs (Node t) !next_ref;
         let t = Cut(Ref !next_ref) in
         incr next_ref;
(*          Printf.printf "create_cut_refs 3: %d\n" (!next_ref); *)
         t)
    | Tuple l -> Tuple(List.rev (Xlist.rev_map l create_cut_refs))
    | Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i,create_cut_refs t))
    | Dot -> Dot
    | _ -> failwith "create_cut_refs" in

  let rec linear_term_beta_reduction subst = function
      Var v -> (try StringMap.find subst v with Not_found -> Var v) (* zakladam, ze termy, ktore sa podstawiane na zmienne nie maja zmiennych wolnych *)
    | Tuple l ->
      let l = Xlist.map l (linear_term_beta_reduction subst) in
      (match Xlist.fold l [] (fun l t -> if t = Dot then l else t :: l) with
         [] -> Dot
       | [t] -> t
       | l -> Tuple(List.rev l))
    | Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i,linear_term_beta_reduction subst t))
    | VariantVar(v,t) -> VariantVar(v, linear_term_beta_reduction subst t)
    | Proj(n,t) ->
      (match linear_term_beta_reduction subst t with
         Variant(e,l) -> if Xlist.size l < n then Proj(n,(Variant(e,l))) else snd (List.nth l (n-1))
       | t2 -> Proj(n,t2))
    | ProjVar(v,t) ->
      (match linear_term_beta_reduction subst t with
         VariantVar(v2,t2) -> if v = v2 then t2 else ProjVar(v,VariantVar(v2,t2))
       | Variant(e,l) -> Variant(e,Xlist.map l (fun (i,s) -> i,linear_term_beta_reduction subst (ProjVar(v,s))))
       | t2 -> ProjVar(v,t2))
    | SubstVar v -> SubstVar v
    | Subst(s,v,t) ->
      (match linear_term_beta_reduction subst s with
       | Tuple l -> Tuple(Xlist.map l (fun s -> linear_term_beta_reduction subst (Subst(s,v,t))))
       | Variant(e,l) -> Variant(e,Xlist.map l (fun (i,s) -> i,linear_term_beta_reduction subst (Subst(s,v,t))))
       | Lambda(v2,s) -> Lambda(v2, linear_term_beta_reduction subst (Subst(s,v,t)))
       | Dot -> Dot
       | SetAttr(e,s1,s2) -> SetAttr(e,linear_term_beta_reduction subst (Subst(s1,v,t)),linear_term_beta_reduction subst (Subst(s2,v,t)))
       | Val s -> Val s
       | Var w -> if w = v then t else Subst(Var w,v,t)
       | SubstVar w -> if w = v then t else SubstVar w
       | Inj(n,s) -> Inj(n,linear_term_beta_reduction subst (Subst(s,v,t)))
       | Node s -> Node{s with attrs=Xlist.map s.attrs (fun (e,s) -> e, linear_term_beta_reduction subst (Subst(s,v,t)));
                               (* gs=linear_term_beta_reduction subst (Subst(s.gs,v,t)); *)
                               symbol=linear_term_beta_reduction subst (Subst(s.symbol,v,t));
                               (* arg_symbol=linear_term_beta_reduction subst (Subst(s.arg_symbol,v,t)); *)
                               args=linear_term_beta_reduction subst (Subst(s.args,v,t))}
       (* | Morf m -> Morf m
       | Gf s -> Gf s *)
       | Cut(Ref i) -> Cut(Ref i)
       | Cut s -> linear_term_beta_reduction subst (Cut(Subst(s,v,t)))
       | s2 -> Subst(s2,v,t))
    | Inj(n,t) -> Inj(n,linear_term_beta_reduction subst t)
    | Case(t,l) ->
      (match linear_term_beta_reduction subst t with
         Inj(n,t) ->
         if Xlist.size l < n then Case(Inj(n,t),l) else
           let v, r = List.nth l (n-1) in
           let subst = StringMap.add subst v t in
           linear_term_beta_reduction subst r
       | Variant(e,l2) -> linear_term_beta_reduction subst (Variant(e,Xlist.map l2 (fun (i,t2) -> i,Case(t2,l))))
       | t2 -> Case(t2,Xlist.map l (fun (v,t) -> v, linear_term_beta_reduction subst t))) (* FIXME alfa-konwersja i przykrywanie *)
    | Lambda(v,t) -> Lambda(v, linear_term_beta_reduction subst t)
    | LambdaSet(l,t) -> LambdaSet(l, linear_term_beta_reduction subst t)
    | LambdaRot(n,t) ->
      (match linear_term_beta_reduction subst t with
         Lambda(v,t) -> if n = 1 then Lambda(v,t) else LambdaRot(n,Lambda(v,t))
       | LambdaSet([v],t) -> if n = 1 then Lambda(v,t) else LambdaRot(n,LambdaSet([v],t))
       | LambdaSet(l,t) ->
         if Xlist.size l < n then LambdaRot(n,LambdaSet(l,t)) else
           let s,l = extract_nth n [] l in
           Lambda(s,LambdaSet(l,t))
       | Variant(e,l) -> Variant(e,Xlist.map l (fun (i,s) -> i,linear_term_beta_reduction subst (LambdaRot(n,s))))
       | t2 -> LambdaRot(n,t2))
    | App(s,t) ->
      let t = linear_term_beta_reduction subst t in
      (match linear_term_beta_reduction subst s, t with
         Lambda(v,s),_ ->
         let subst = StringMap.add subst v t in
         linear_term_beta_reduction subst s
       | LambdaSet([v],s),_ ->  (* FIXME ten przypadek nie powinien miec miejsca, jego wystepowanie wskazuje na brak rotacji przy maczowaniu *)
         let subst = StringMap.add subst v t in
         linear_term_beta_reduction subst s
       | Variant(e,l),_ -> linear_term_beta_reduction subst (Variant(e,Xlist.map l (fun (i,s) -> i,App(s,t))))
       | t2,_ -> App(t2,t))
    | Dot -> Dot
    | Fix(f,t) ->
      (match linear_term_beta_reduction subst f with
         Empty s -> linear_term_beta_reduction subst s
       | Apply s -> linear_term_beta_reduction subst (App(t,s))
       | Insert(s1,s2) -> Tuple[Fix(s1,t);Fix(s2,t)]
       | f -> Fix(f,linear_term_beta_reduction subst t))
    | Empty t -> Empty(linear_term_beta_reduction subst t)
    | Apply t -> Apply(linear_term_beta_reduction subst t)
    | Insert(s,t) -> Insert(linear_term_beta_reduction subst s,linear_term_beta_reduction subst t)
    | Val s -> Val s
    | SetAttr(e,s,t) ->
      (match linear_term_beta_reduction subst t with
         Dot -> Dot
       | Tuple l -> linear_term_beta_reduction subst (Tuple(Xlist.map l (fun t -> SetAttr(e,s,t))))
       | Node t -> (match e,s with
             (* "GF",Gf gf ->  Node{t with agf=gf}
           | "MORF",Morf morf -> Node{t with amorf=morf}
           | "AROLE",Val arole ->  Node{t with arole=arole} *)
           | "ARG_SYMBOL",symbol ->  Node{t with arg_symbol=symbol}
           | "ARG_DIR",Val dir ->  Node{t with arg_dir=dir}
           | _ -> Node{t with attrs=(e,linear_term_beta_reduction subst s) :: t.attrs})
       | Variant(e2,l) -> Variant(e2,Xlist.map l (fun (i,t) -> i,linear_term_beta_reduction subst (SetAttr(e,s,t))))
       | Inj(i,t) -> Inj(i,linear_term_beta_reduction subst (SetAttr(e,s,t)))
       | t -> SetAttr(e,s,t))
    (* | Choice(e,i,t) -> Choice(e,i,linear_term_beta_reduction subst t) *)
    | Node t ->
      if !size > !no_nodes then raise SemTooBig;
      incr size;
      Node{t with attrs=Xlist.map t.attrs (fun (e,t) -> e, linear_term_beta_reduction subst t);
                  (* gs=linear_term_beta_reduction subst t.gs; *)
                  symbol=linear_term_beta_reduction subst t.symbol;
                  (* arg_symbol=linear_term_beta_reduction subst t.arg_symbol; *)
                  args=linear_term_beta_reduction subst t.args}
  | Coord(l,t,s) -> Coord(List.rev (Xlist.rev_map l (linear_term_beta_reduction subst)), linear_term_beta_reduction subst t, linear_term_beta_reduction subst s)
  | AddCoord(s,t) ->
      let s = linear_term_beta_reduction subst s in
      (match linear_term_beta_reduction subst t with
        Coord(l,t,a) -> Coord(s :: l,t,a)
      | Variant(e,l) -> Variant(e,List.rev (Xlist.rev_map l (fun (i,t) ->
          i,linear_term_beta_reduction subst (AddCoord(s,t)))))
      | t -> AddCoord(s,t))
  | MapCoord(s,t) ->
      let t = linear_term_beta_reduction subst t in
      (match linear_term_beta_reduction subst s with
        Coord(l,c,a) -> Coord(List.rev (Xlist.rev_map l (fun s ->
          linear_term_beta_reduction subst (App(t,s)))),c,a)
      | Variant(e,l) -> Variant(e,List.rev (Xlist.rev_map l (fun (i,s) ->
          i,linear_term_beta_reduction subst (MapCoord(s,t)))))
      | s -> MapCoord(s,t))
  | ConcatCoord(s,t) ->
      (match linear_term_beta_reduction subst t with
        Coord(l,c,a) ->
          let l,_ = Xlist.fold l ([],1) (fun (l,n) t -> App(a,SetAttr("COORD_ARG",Val (string_of_int n),t)) :: l, n+1) in
          linear_term_beta_reduction subst (App(App(s,c),Tuple(List.rev l)))
      | Variant(e,l) -> Variant(e,List.rev (Xlist.rev_map l (fun (i,t) ->
          i,linear_term_beta_reduction subst (ConcatCoord(s,t)))))
      | t -> ConcatCoord(s,t))
    (* | Morf m -> Morf m
    | Gf s -> Gf s
    | Choice _ -> failwith "linear_term_beta_reduction"
    | Concept _ -> failwith "linear_term_beta_reduction"
    | Context _ -> failwith "linear_term_beta_reduction"
    | Relation _ -> failwith "linear_term_beta_reduction"
    | RevRelation _ -> failwith "linear_term_beta_reduction"
    | SingleRelation _ -> failwith "linear_term_beta_reduction"
    | AddRelation _ -> failwith "linear_term_beta_reduction"
    | RemoveRelation _ -> failwith "linear_term_beta_reduction"
    | SetContextName _ -> failwith "linear_term_beta_reduction" *)
    | Ref i -> (* nie ma problemu przy wywoływaniu z różnymi podstawieniami, bo termy w poszczególnych referencjach nie mają zmiennych wolnych
                  reduced zawiera termy bez zmiennych *)
      if reduced.(i) = Dot then (
(*         Printf.printf "reduce in Ref %d: %s\n" i (ENIAM_LCGstringOf.linear_term 0 (ExtArray.get references i)); *)
        let t = linear_term_beta_reduction subst (ExtArray.get references i) in
(*         Printf.printf "reduce out Ref %d: %s\n" i (ENIAM_LCGstringOf.linear_term 0 t); *)
        ExtArray.set references i t;
        if is_reduced t then reduced.(i) <- t else ExtArray.set references i t;
        t)
      else (
(*         Printf.printf "reduce done Ref %d: %s\n" i (ENIAM_LCGstringOf.linear_term 0 reduced.(i)); *)
        reduced.(i))
    | Cut(Ref i) -> Cut(Ref i)
    | Cut t ->
      let t = linear_term_beta_reduction subst t in
      (* if t = Dot then Dot else *)
      if is_reduced t then create_cut_refs t else Cut t
  in

(*   Printf.printf "linear_term_beta_reduction4: next_ref=%d\n" !next_ref; *)
  let t = linear_term_beta_reduction StringMap.empty (ExtArray.get references 0) in
(*   Printf.printf "linear_term_beta_reduction4: next_ref=%d\n" !next_ref; *)
  t, !refs, !next_ref

(* dodać usuwanie jednorazowych etykiet i
   zastąpić Cut(Ref i) przez coś innego *)
let reduce t references =
  ExtArray.set references 0 t;
  (* let references = prepare_references t references next_reference in *)
(*   ENIAM_LCGlatexOf.print_references "results/" "references1" "a0" references; *)
  let t,refs,next_ref = linear_term_beta_reduction4 references in
(*   Printf.printf "reduce next_ref=%d t=%s\n" next_ref (ENIAM_LCGstringOf.linear_term 0 t); *)
(*   TermMap.iter refs (fun t i -> Printf.printf "reduce ref=%d t=%s\n" i (ENIAM_LCGstringOf.linear_term 0 t)); *)
  let dependency_tree = prepare_dependency_tree t refs next_ref in
(*   ENIAM_LCGlatexOf.print_references "results/" "references2" "a0" references; *)
  dependency_tree


let rec reshape_dependency_tree_rec dependency_tree a visited = function
    Node t -> Node{t with args = reshape_dependency_tree_rec dependency_tree a visited t.args}
  | Tuple l ->
      let l = Xlist.fold l [] (fun l t ->
        let t = reshape_dependency_tree_rec dependency_tree a visited t in
        match t with
          Dot -> l
        | Tuple l2 -> l2 @ l
        | t -> t :: l) in
      (match l with
        [] -> Dot
      | [t] -> t
      | l -> Tuple l)
  | Variant(e,l) ->
      Variant(e,List.rev (Xlist.rev_map l (fun (i,t) ->
        i, reshape_dependency_tree_rec dependency_tree a visited t)))
  | Dot -> Dot
  | Ref i ->
      if IntMap.mem !visited i then Ref (IntMap.find !visited i) else (
      (* Printf.printf "reshape_dependency_tree_rec 1\n%!"; *)
      let t = reshape_dependency_tree_rec dependency_tree a visited (ExtArray.get dependency_tree i) in
      (* Printf.printf "reshape_dependency_tree_rec 2\n%!"; *)
      let i2 = ExtArray.add a t in
      visited := IntMap.add !visited i i2;
      Ref i2)
  | t -> failwith ("reshape_dependency_tree_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let reshape_dependency_tree dependency_tree =
  let a = ExtArray.make (ExtArray.size dependency_tree) Dot in
  let _ = ExtArray.add a Dot in
  let t = reshape_dependency_tree_rec dependency_tree a (ref IntMap.empty) (ExtArray.get dependency_tree 0) in
  ExtArray.set a 0 t;
  ExtArray.to_array a



let rec find_labels_attrs labels  = function
    Variant(e,l) ->
      let labels = StringMap.add_inc labels e (Xlist.map l fst) (fun l -> l) in
      Xlist.fold l labels (fun labels (i,t) -> find_labels_attrs labels t)
  | Dot -> labels
  | Val s -> labels
  | t -> failwith ("find_labels_attrs: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let rec find_labels_rec dependency_tree visited = function
    Node t ->
      let labels = find_labels_rec dependency_tree visited t.args in
      let attr_labels = Xlist.fold t.attrs StringMap.empty (fun labels (_,t) -> find_labels_attrs labels t) in
      StringMap.fold attr_labels labels (fun labels e l ->
        StringMap.add_inc labels e (1,l) (fun (m,_) -> m + 1, l))
  | Tuple l ->
      Xlist.fold l StringMap.empty (fun comb_labels t ->
        let labels = find_labels_rec dependency_tree visited t in
        StringMap.fold labels comb_labels (fun comb_labels e (n,l) ->
          StringMap.add_inc comb_labels e (n,l) (fun (m,_) -> m + n,l)))
  | Variant(e,l) ->
      Xlist.fold l StringMap.empty (fun comb_labels (_,t) ->
        let labels = find_labels_rec dependency_tree visited t in
        StringMap.fold labels comb_labels (fun comb_labels e (n,l) ->
          StringMap.add_inc comb_labels e (n,l) (fun (m,_) -> max m n,l)))
  | Dot -> StringMap.empty
  | Ref i ->
      if IntMap.mem !visited i then IntMap.find !visited i else
      let labels = find_labels_rec dependency_tree visited dependency_tree.(i) in
      visited := IntMap.add !visited i labels;
      labels
  | t -> failwith ("find_labels_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let find_multiple_labels dependency_tree =
  find_labels_rec dependency_tree (ref IntMap.empty) dependency_tree.(0)

let rec find_label_dependants dependency_tree i e members dependants visited = function
    Node t ->
      let members,dependants,visited = find_label_dependants dependency_tree i e members dependants visited t.args in
      let members,dependants,visited = find_label_dependants dependency_tree i e members dependants visited t.symbol in
      let members,dependants,visited = find_label_dependants dependency_tree i e members dependants visited t.arg_symbol in
      Xlist.fold t.attrs (members,dependants, visited) (fun (members,dependants,visited) (_,t) ->
        find_label_dependants dependency_tree i e members dependants visited t)
  | Tuple l ->
      Xlist.fold l (members,dependants,visited) (fun (members,dependants,visited) t ->
        find_label_dependants dependency_tree i e members dependants visited t)
  | Variant(e2,l) ->
      let members,dependants = if e2 = e then IntSet.add members i, IntSet.add dependants i else members,dependants in
      Xlist.fold l (members,dependants,visited) (fun (members,dependants,visited) (_,t) ->
        find_label_dependants dependency_tree i e members dependants visited t)
  | Dot -> members,dependants,visited
  | Val s -> members,dependants,visited
  | Ref i2 ->
      let members,dependants,visited =
        if IntSet.mem visited i2 then members,dependants,visited else
        find_label_dependants dependency_tree i2 e members dependants visited (ExtArray.get dependency_tree i2) in
      let dependants = if IntSet.mem dependants i2 then IntSet.add dependants i else dependants in
      members, dependants, IntSet.add visited i2
  | t -> failwith ("find_label_dependants: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let rec is_dependant dependants = function
    Tuple l -> Xlist.fold l false (fun b t -> b || is_dependant dependants t)
  | Variant(e,l) -> Xlist.fold l false (fun b (_,t) -> b || is_dependant dependants t)
  | Dot -> false
  | Ref i -> IntSet.mem dependants i
  | t -> failwith ("is_dependant: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let rec select_variant_rec e i = function
    Variant(e2,l) ->
      if e = e2 then
        let t = try Xlist.assoc l i with Not_found -> failwith ("select_variant_rec: '" ^ e ^ "'") in
        select_variant_rec e i t
      else
        Variant(e2,List.rev (Xlist.rev_map l (fun (i2,t) ->
          i2,select_variant_rec e i t)))
  | Tuple l -> Tuple(List.rev (Xlist.rev_map l (select_variant_rec e i)))
  | Dot -> Dot
  | Val s -> Val s
  | t -> failwith ("select_variant_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let select_variant e i = function
    Node t ->
      Node{t with
        attrs = List.rev (Xlist.rev_map t.attrs (fun (s,t) -> s,select_variant_rec e i t));
        symbol = select_variant_rec e i t.symbol}
  | t -> failwith ("select_variant: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let rec set_variant_rec dependency_tree e i members dependants visited = function
    Node t -> Node{t with args = set_variant_rec dependency_tree e i members dependants visited t.args}
  | Tuple l ->
      Tuple(List.rev (Xlist.rev_map l
        (set_variant_rec dependency_tree e i members dependants visited)))
  | Variant(e2,l) ->
      Variant(e2,List.rev (Xlist.rev_map l (fun (i2,t) ->
        i2,set_variant_rec dependency_tree e i members dependants visited t)))
  | Dot -> Dot
  | Ref i2 ->
      if IntMap.mem !visited i2 then Ref(IntMap.find !visited i2) else
      if not (IntSet.mem dependants i2) then Ref i2 else
      let t = ExtArray.get dependency_tree i2 in
      let t = if IntSet.mem members i2 then select_variant e i t else t in
      let t = set_variant_rec dependency_tree e i members dependants visited t in
      let i3 = ExtArray.add dependency_tree t in
      visited := IntMap.add !visited i2 i3;
      Ref i3
  | t -> failwith ("set_variant_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let set_variant dependency_tree e il members dependants t =
  let l = Xlist.map il (fun i ->
    i, set_variant_rec dependency_tree e i members dependants (ref IntMap.empty) t) in
  Variant(e,l)

let rec normalize_variants_rec dependency_tree e il members dependants = function
    Node t -> Node{t with args = normalize_variants_rec dependency_tree e il members dependants t.args}
  | Tuple l ->
      let n = Xlist.fold l 0 (fun n t -> if is_dependant dependants t then n+1 else n) in
      (match n with
        0 -> failwith "normalize_variants_rec"
      | 1 -> Tuple(List.rev (Xlist.fold l [] (fun l t ->
          let t =
            if is_dependant dependants t then
              normalize_variants_rec dependency_tree e il members dependants t
            else t in
          t :: l)))
      | _ -> set_variant dependency_tree e il members dependants (Tuple l))
  | Variant(e2,l) ->
      let n = Xlist.fold l 0 (fun n (_,t) -> if is_dependant dependants t then n+1 else n) in
      (match n with
        0 -> failwith "normalize_variants_rec"
      | 1 -> Variant(e2,List.rev (Xlist.fold l [] (fun l (i2,t) ->
          let t =
            if is_dependant dependants t then
              normalize_variants_rec dependency_tree e il members dependants t
            else t in
          (i2,t) :: l)))
      | _ -> set_variant dependency_tree e il members dependants (Variant(e2,l)))
  | Dot -> Dot
  | Ref i ->
      if IntSet.mem members i then set_variant dependency_tree e il members dependants (Ref i) else
      let t = normalize_variants_rec dependency_tree e il members dependants (ExtArray.get dependency_tree i) in
      ExtArray.set dependency_tree i t;
      Ref i
  | t -> failwith ("normalize_variants_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let normalize_variants dependency_tree =
  (* print_endline "normalize_variants 1"; *)
  let labels = find_multiple_labels dependency_tree in
  (* print_endline "normalize_variants 2"; *)
  let a = ExtArray.make (Array.length dependency_tree) Dot in
  Int.iter 0 (Array.length dependency_tree - 1) (fun i ->
    ExtArray.add a dependency_tree.(i));
  (* print_endline "normalize_variants 3"; *)
  StringMap.iter labels (fun e (count,il) ->
    if count > 1 then
      let members,dependants,_ = find_label_dependants a 0 e IntSet.empty IntSet.empty IntSet.empty (ExtArray.get a 0) in
      if IntSet.mem members 0 then failwith "normalize_variants" else
      let t = normalize_variants_rec a e il members dependants (ExtArray.get a 0) in
      ExtArray.set a 0 t);
  (* print_endline "normalize_variants 4"; *)
  reshape_dependency_tree a (*ExtArray.to_array a*)

let rec validate_dependency_tree_args = function
    Tuple l -> Xlist.iter l validate_dependency_tree_args
  | Variant(e,l) -> Xlist.iter l (fun (i,t) -> validate_dependency_tree_args t)
  | Dot -> ()
  | Ref i -> ()
  | t -> failwith ("validate_dependency_tree_args: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let rec validate_dependency_tree_atrs = function
    Variant(e,l) -> Xlist.iter l (fun (i,t) -> validate_dependency_tree_atrs t)
  | Dot -> ()
  | Val s -> ()
  | t -> failwith ("validate_dependency_tree_atrs: " ^ ENIAM_LCGstringOf.linear_term 0 t)

let validate_dependency_tree2 = function
    Node t ->
       validate_dependency_tree_args t.args;
       Xlist.iter t.attrs (fun (_,s) -> validate_dependency_tree_atrs s)
  (* | Dot -> ()  (* FIXME: to trzebaby usunąć i wprowadzić rekurencję po drzewie *) *)
  | t -> failwith ("validate_dependency_tree2: " ^ ENIAM_LCGstringOf.linear_term 0 t)

(* let rec validate_dependency_tree_labels set  = function
    Variant(e,l) ->
      Xlist.fold l (StringSet.add set e) (fun set (i,t) -> validate_dependency_tree_labels set t)
  | Dot -> set
  | Val s -> set
  | t -> failwith ("validate_dependency_tree_labels: " ^ ENIAM_LCGstringOf.linear_term 0 t) *)

let validate_dependency_tree dependency_tree =
  Int.iter 0 (Array.length dependency_tree - 1) (fun i ->
    validate_dependency_tree2 dependency_tree.(i));
  let labels = find_multiple_labels dependency_tree in
  let labels = StringMap.fold labels [] (fun labels e (n,_) ->
    if n > 1 then e :: labels else labels) in
  if labels <> [] then
    (*failwith ("validate_dependency_tree: multiple labels " ^ String.concat " " labels)*)() else (* FIXME: trzeba zreimplementować obsługę wielokrotnych etykiet *)
  (* let _ = Int.fold 0 (Array.length dependency_tree - 1) StringSet.empty (fun labels i ->
    match dependency_tree.(i) with
      Node t ->
        let set = Xlist.fold t.attrs StringSet.empty (fun set (_,t) -> validate_dependency_tree_labels set t) in
        let intersection = StringSet.intersection labels set in
        if StringSet.is_empty intersection then StringSet.union labels set
        else failwith ("validate_dependency_tree: multiple labels " ^ String.concat " " (StringSet.to_list intersection))
    | _ -> failwith "validate_dependency_tree") in *)
  ()