ENIAMwalTEI.ml 39.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
(*
 *  ENIAMwalenty, an interface for Polish Valence Dictionary "Walenty".
 *  Copyright (C) 2016 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
 *  Copyright (C) 2016 Maciej Hołubowicz
 *  Copyright (C) 2016 Institute of Computer Science Polish Academy of Sciences
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *)

open ENIAMwalTypes

let parse_id s =
  if String.length s = 0 then empty_id else
  if String.length s < 6 then failwith "za krótkie id"  else
    let hash,s = if (String.get s 0) = '#' then true, String.sub s 1 (String.length s - 1) else false, s in
    if String.sub s 0 4 <> "wal_" then failwith "id nie ma wal" else
      let s = String.sub s 4 (String.length s - 4) in
      let s,suf = match Str.split (Str.regexp "-") s with
          [s;suf] -> s,suf
        | _ -> failwith ("parse_id: zła ilość '-' " ^ s) in
      let id = {hash = hash; suffix = suf; numbers = try Xlist.map (Xstring.split "\\." s) int_of_string with _ -> failwith ("parse_id: " ^ s)} in
      id

let string_of_id id =
  (if id.hash then "#" else "") ^ "wal_" ^ (String.concat "." (Xlist.map id.numbers string_of_int)) ^ "-" ^ id.suffix

(*let parse_id s =
  if String.length s = 0 then empty_id else
  if String.length s < 6 then failwith "za krótkie id"  else
    let hash,s = if (String.get s 0) = '#' then true, String.sub s 1 (String.length s - 1) else false, s in
    if String.sub s 0 4 <> "wal_" then failwith "id nie ma wal" else
      let s,suf = match Str.split (Str.regexp "-") s with
          [s;suf] -> s,suf
        | _ -> failwith "zła ilość '-'" in
      let id = {hash = hash; suffix = suf; numbers = (Str.split (Str.regexp "\\.") s)} in
      {id with numbers = [last id.numbers]}*)

type tei =
    Symbol of string
  | TEIstring of string
  | Binary of bool
  | Numeric of int
  | F of string * tei
  | Fset of string * tei list
  | Fs of string * tei list
  | Id of id
  | SameAs of id * string

let rec tei_to_string = function
    Symbol s -> Printf.sprintf "Symbol %s" s
  | TEIstring s -> Printf.sprintf "String %s" s
  | Binary b -> Printf.sprintf "Binary %s" (string_of_bool b)
  | Numeric n -> Printf.sprintf "Numeric %d" n
  | F(s,t) -> Printf.sprintf "F(%s,%s)" s (tei_to_string t)
  | Fset(s,l) -> Printf.sprintf "Fset(%s,[%s])" s (String.concat ";" (Xlist.map l tei_to_string))
  | Fs(s,l) -> Printf.sprintf "Fs(%s,[%s])" s (String.concat ";" (Xlist.map l tei_to_string))
  | Id id -> Printf.sprintf "Id(%s)" (string_of_id id)
  | SameAs(id,s) -> Printf.sprintf "F(Id,%s)" s

let rec parse_tei = function
    Xml.Element("f",["name",name],[Xml.Element("vColl",["org","set"],set)]) ->
    Fset(name,List.rev (Xlist.map set parse_tei))
  | Xml.Element("f", ["name",name],[]) -> Fset(name,[])
  | Xml.Element("f", ["name",name],[tei]) -> F(name,parse_tei tei)
  | Xml.Element("f", ["name",name],set) -> Fset(name,List.rev (Xlist.map set parse_tei))
  | Xml.Element("fs", ["type",name], l) -> Fs(name,List.rev (Xlist.rev_map l parse_tei))
  | Xml.Element("fs", ["xml:id",id;"type",name], l) -> Fs(name,Id(parse_id id) :: List.rev (Xlist.rev_map l parse_tei))
  | Xml.Element("symbol",["value",value],[]) -> Symbol value
  | Xml.Element("string",[], [Xml.PCData s]) -> TEIstring s
  | Xml.Element("string",[], []) -> TEIstring ""
  | Xml.Element("binary",["value",value],[]) -> Binary(try bool_of_string value with _ -> failwith "parse_tei")
  | Xml.Element("numeric",["value",value],[]) -> Numeric(try int_of_string value with _ -> failwith "parse_tei")
  | Xml.Element("fs", ["sameAs", same_as; "type",name], []) -> SameAs(parse_id same_as,name)
  | Xml.Element("fs", ["sameAs", same_as], []) -> SameAs(parse_id same_as,"")
  | xml -> failwith ("parse_tei: " ^ Xml.to_string_fmt xml)

let parse_gf = function
    "subj" -> SUBJ
  | "obj" -> OBJ
  | s -> failwith ("parse_gf: " ^ s)

let parse_control arg = function
    "controller" -> {arg with cr="1" :: arg.cr}
  | "controllee" -> {arg with ce="1" :: arg.cr}
  | "controller2" -> {arg with cr="2" :: arg.cr}
  | "controllee2" -> {arg with ce="2" :: arg.cr}
  | s -> failwith ("parse_control: " ^ s)

let parse_case = function
    "nom" -> Case "nom"
  | "gen" -> Case "gen"
  | "dat" -> Case "dat"
  | "acc" -> Case "acc"
  | "inst" -> Case "inst"
  | "loc" -> Case "loc"
  | "str" -> Str
  | "pred" -> Case "pred"
  | "part" -> Part
  | "postp" -> Case "postp"
  | "agr" -> CaseAgr
  | s -> failwith ("parse_case: " ^ s)

let parse_aspect = function
    "perf" -> Aspect "perf"
  | "imperf" -> Aspect "imperf"
  | "_" -> AspectUndef
  | "" -> AspectNA
  | s -> failwith ("parse_aspect: " ^ s)

let parse_negation = function
    "_" -> NegationUndef
  | "neg" -> Negation
  | "aff" -> Aff
  | "" -> NegationNA
  | s -> failwith ("parse_negation: " ^ s)

let parse_number = function
    "sg" -> Number "sg"
  | "pl" -> Number "pl"
  | "agr" -> NumberAgr
  | "_" -> NumberUndef
  | s -> failwith ("parse_number: " ^ s)

let parse_gender = function
    "m1" -> Gender "m1"
  | "m3" -> Gender "m3"
  | "n" -> Genders["n1";"n2"]
  | "f" -> Gender "f"
  | "m1.n" -> Genders["m1";"n1";"n2"]
  | "_" -> GenderUndef
  | "agr" -> GenderAgr
  | s -> failwith ("parse_gender: " ^ s)

let parse_grad = function
    "pos" -> Grad "pos"
  | "com" -> Grad "com"
  | "sup" -> Grad "sup"
  | "_" -> GradUndef
  | s -> failwith ("parse_grad: " ^ s)

let rec parse_restr = function
    "natr" -> Natr
  | "atr" -> Atr
  | "ratr" -> Ratr
  | "atr1" -> Atr1
  | "ratr1" -> Ratr1
  | s -> failwith ("parse_restr: " ^ s)


let parse_comp = function
    "int" -> Int,[]
  | "rel" -> Rel,[]
  | "co" -> CompTypeUndef,[Comp "co"] (* subst qub prep comp *)
  | "kto" -> CompTypeUndef,[Comp "kto"] (* subst *)
  | "ile" -> CompTypeUndef,[Comp "ile"] (* num adv *)
  | "jaki" -> CompTypeUndef,[Comp "jaki"] (* adj *)
  | "który" -> CompTypeUndef,[Comp "który"] (* adj *)
  | "czyj" -> CompTypeUndef,[Comp "czyj"] (* adj *)
  | "jak" -> CompTypeUndef,[Comp "jak"] (* prep conj adv *)
  | "kiedy" -> CompTypeUndef,[Comp "kiedy"] (* comp adv *)
  | "gdzie" -> CompTypeUndef,[Comp "gdzie"] (* qub adv *)
  | "odkąd" -> CompTypeUndef,[Comp "odkąd"] (* adv *)
  | "skąd" -> CompTypeUndef,[Comp "skąd"] (* adv *)
  | "dokąd" -> CompTypeUndef,[Comp "dokąd"] (* adv *)
  | "którędy" -> CompTypeUndef,[Comp "którędy"] (* adv *)
  | "dlaczego" -> CompTypeUndef,[Comp "dlaczego"] (* adv *)
  | "czemu" -> CompTypeUndef,[Comp "czemu"] (* adv *)
  | "czy" -> CompTypeUndef,[Comp "czy"] (* qub conj *)
  | "jakby" -> CompTypeUndef,[Comp "jakby"] (* qub comp *)
  | "jakoby" -> CompTypeUndef,[Comp "jakoby"] (* qub comp *)
  | "gdy" -> CompTypeUndef,[Gdy] (* adv; gdyby: qub comp *)
  | "dopóki" -> CompTypeUndef,[Comp "dopóki"] (* comp *)
  | "zanim" -> CompTypeUndef,[Comp "zanim"] (* comp *)
  | "jeśli" -> CompTypeUndef,[Comp "jeśli"] (* comp *)
  | "żeby2" -> CompTypeUndef,[Zeby]
  | "żeby" -> CompTypeUndef,[Comp "żeby"] (* qub comp *)
  | "że" -> CompTypeUndef,[Comp "że"] (* qub comp *)
  | "aż" -> CompTypeUndef,[Comp "aż"] (* qub comp *)
  | "bo" -> CompTypeUndef,[Comp "bo"] (* qub comp *)
  | s -> failwith ("parse_comp: " ^ s)

let load_type_constrains = function
  | Symbol value ->
    (match parse_comp value with
       CompTypeUndef,[c] -> c
     | _ -> failwith "load_type_constrains")
  | xml -> failwith ("load_type_constrains:\n " ^ tei_to_string xml)

let load_ctype = function
  | F("type",Fs("type_def", x)) ->
    (match x with
     | [F("conjunction",Symbol value)] -> parse_comp value
     | [F("conjunction",Symbol value);Fset("constraints",set)] ->
       (match parse_comp value with
          CompTypeUndef, _ -> failwith "load_ctype"
        | ctype,[] -> ctype, List.rev (Xlist.rev_map set load_type_constrains)
        | _ -> failwith "load_ctype")
     | l -> failwith ("load_ctype 2:\n " ^ String.concat "\n" (Xlist.map l tei_to_string)))
  | xml -> failwith ("load_ctype:\n " ^ tei_to_string xml)
(*Printf.printf "%s\n" (tei_to_string xml)*)

let load_lemmas_set = function
  | TEIstring mstring -> mstring
  | xml -> failwith ("load_lemmas_set:\n " ^ tei_to_string xml)

let check_lemma s =
  match Str.full_split (Str.regexp "(\\|)") s with
    [Str.Text s] -> Lexeme s
  | [Str.Text "E"; Str.Delim "("; Str.Text g; Str.Delim ")"] -> Elexeme(parse_gender g)
  | _ -> failwith "check_lemma"

let make_lemma = function
  | _,_,[lemma] -> check_lemma lemma
  | "XOR","concat",lemmas -> XOR(Xlist.map lemmas check_lemma)
  | "OR","coord",lemmas -> ORcoord(Xlist.map lemmas check_lemma)
  | "OR","concat",lemmas -> ORconcat(Xlist.map lemmas check_lemma)
  | _ -> failwith "make_lemma"

let process_lex_phrase lemma = function
    NP(case),number,GenderUndef,GradUndef,NegationUndef,ReflUndef -> [SUBST(number,case),lemma]
  | PrepNP(prep,case),number,GenderUndef,GradUndef,NegationUndef,ReflUndef -> [PREP case,Lexeme prep;SUBST(number,case),lemma]
  | AdjP(case),number,gender,grad,NegationUndef,ReflUndef -> [ADJ(number,case,gender,grad),lemma]
  | PrepAdjP(prep,case),number,gender,grad,NegationUndef,ReflUndef -> [PREP case,Lexeme prep;ADJ(number,case,gender,grad),lemma]
  | InfP(aspect),NumberUndef,GenderUndef,GradUndef,negation,refl -> [INF(aspect,negation,refl),lemma]
  | PpasP(case),number,gender,GradUndef,negation,ReflUndef -> [PPAS(number,case,gender,AspectUndef,negation),lemma]
  | PrepPpasP(prep,case),number,gender,GradUndef,negation,ReflUndef -> [PREP case,Lexeme prep;PPAS(number,case,gender,AspectUndef,negation),lemma]
  | PactP(case),number,gender,GradUndef,negation,refl -> [PACT(number,case,gender,AspectUndef,negation,refl),lemma]
  | PrepGerP(prep,case),number,GenderUndef,GradUndef,negation,refl -> [PREP case,Lexeme prep;GER(number,case,GenderUndef,AspectUndef,negation,refl),lemma]
  | Qub,NumberUndef,GenderUndef,GradUndef,NegationUndef,ReflUndef -> [QUB,lemma]
  | AdvP,NumberUndef,GenderUndef,grad,NegationUndef,ReflUndef -> [ADV grad,lemma]
  | phrase,number,gender,grad,negation,reflex ->
    Printf.printf "%s %s %s %s %s %s\n" (ENIAMwalStringOf.phrase phrase) (ENIAMwalStringOf.number number)
      (ENIAMwalStringOf.gender gender) (ENIAMwalStringOf.grad grad) (ENIAMwalStringOf.negation negation) (ENIAMwalStringOf.refl reflex); []

let new_schema r cr ce morfs =
  {psn_id=empty_id; gf=r; role=""; role_attr="";sel_prefs=[]; cr=cr; ce=ce; dir=Both; morfs=morfs}

let rec process_lex lex = function
  | PhraseAbbr(ComparP prep,[]),arguments,Lexeme "",Lexeme "" ->
    LexPhrase([COMPAR,Lexeme prep],(Ratrs,Xlist.map arguments (fun morf -> new_schema ARG [] [] [empty_id,morf])))
  | PhraseAbbr(Xp mode,[argument]),_,_,_ ->
    let lex = {lex with lex_argument=argument} in
    (match process_lex lex (lex.lex_argument,lex.lex_arguments,lex.lex_lemma,lex.lex_numeral_lemma) with
       LexPhrase(poss,mods) -> LexPhraseMode(mode,poss,mods)
     | LexPhraseMode(mode2,poss,mods) ->
       if mode <> mode2 then failwith "process_lex: multiple modes" else LexPhraseMode(mode,poss,mods)
     | _ -> failwith "process_lex")
  | PhraseAbbr(Advp mode,[]),[],lemma,Lexeme ""  ->
    let poss = process_lex_phrase lemma (AdvP,lex.lex_number,lex.lex_gender,lex.lex_degree,lex.lex_negation,lex.lex_reflex) in
    LexPhraseMode(mode,poss,lex.lex_modification)
  | Phrase (NumP(case)),[],lemma,num_lemma -> LexPhrase([NUM(case,GenderUndef,AcmUndef),num_lemma;SUBST(NumberUndef,CaseUndef),lemma],lex.lex_modification)
  | Phrase (PrepNumP(prep,case)),[],lemma,num_lemma  -> LexPhrase([PREP case,Lexeme prep;NUM(case,GenderUndef,AcmUndef),num_lemma;SUBST(NumberUndef,CaseUndef),lemma],lex.lex_modification)
  | PhraseComp(Cp,(ctype,[Comp comp])),[],lemma,Lexeme "" -> LexPhrase([COMP ctype,Lexeme comp;PERS(lex.lex_negation,lex.lex_reflex),lemma],lex.lex_modification)
  | PhraseComp(Cp,(ctype,[Comp comp1;Comp comp2])),[],lemma,Lexeme "" -> LexPhrase([COMP ctype,XOR[Lexeme comp1;Lexeme comp2];PERS(lex.lex_negation,lex.lex_reflex),lemma],lex.lex_modification)
  | Phrase phrase,[],lemma,Lexeme ""  ->
    let poss = process_lex_phrase lemma (phrase,lex.lex_number,lex.lex_gender,lex.lex_degree,lex.lex_negation,lex.lex_reflex) in
    LexPhrase(poss,lex.lex_modification)
  | (argument,arguments,lemma,numeral_lemma) ->
    let s = Printf.sprintf "%s [%s] %s %s\n" (ENIAMwalStringOf.morf argument)
      (String.concat ";" (Xlist.map arguments ENIAMwalStringOf.morf))
      (ENIAMwalStringOf.lex lemma) (ENIAMwalStringOf.lex numeral_lemma) in
    failwith ("process_lex: " ^ s)

let rec load_category = function
  | F("category",Fs("category_def",x)) ->
    (match x with
     | [F("name",Symbol value)] -> value, []
     | [F("name",Symbol value);Fset("constraints",set)] ->
       value, List.rev (Xlist.rev_map set (fun s -> snd (load_phrase s)))
     | l -> failwith ("load_category 2:\n " ^ String.concat "\n" (Xlist.map l tei_to_string)))
  | xml -> failwith ("load_category:\n " ^ tei_to_string xml)

and load_modification_def = function (*pomocnicza do load_lex *)
  | [F("type",Symbol value)] -> parse_restr value, []
  | [F("type",Symbol value); Fset("positions",set)] ->
    parse_restr value, List.rev (Xlist.rev_map set load_position)
  | x -> Printf.printf "%s\n" (tei_to_string (List.hd x));
    failwith "load_modification_def:\n"

and load_lex arg xml = match xml with (* wzajemnie rekurencyjne z load_phrase*)
  | F("argument",set) -> {arg with lex_argument = snd (load_phrase set)}
  | Fset("arguments",set) ->
    {arg with lex_arguments=List.rev (Xlist.fold set [] (fun l s -> (snd (load_phrase s)) :: l))}
  | F("modification",Fs("modification_def",x)) -> {arg with lex_modification = load_modification_def x}
  | F("lemma",Fs("lemma_def",[F("selection_mode",Symbol value1);
                              F("cooccurrence",Symbol value2);
                              Fset("lemmas",lemmas)])) ->
    {arg with lex_lemma = make_lemma (value1, value2, List.rev (Xlist.rev_map lemmas load_lemmas_set))}
  |  F("numeral_lemma",Fs("numeral_lemma_def",[F("selection_mode",Symbol value1);
                                               F("cooccurrence",Symbol value2);
                                               Fset("lemmas",lemmas)])) ->
    {arg with lex_numeral_lemma = make_lemma (value1, value2, List.rev (Xlist.rev_map lemmas load_lemmas_set))}
  | F("negation",Symbol value) -> {arg with lex_negation = parse_negation value}
  | F("degree",Symbol value) -> {arg with lex_degree = parse_grad value}
  | F("number",Symbol value) -> {arg with lex_number = parse_number value}
  | F("reflex",Binary true) -> {arg with lex_reflex = ReflTrue}
  | F("reflex",Binary false) -> {arg with lex_reflex = ReflFalse}
  | Fset("reflex",[]) -> {arg with lex_reflex = ReflEmpty}
  | Fset("gender",[Symbol value]) -> {arg with lex_gender = parse_gender value}
  | xml ->
    Printf.printf "%s\n" (tei_to_string xml);
    failwith "load_lex:\n "

and load_phrase xml:id * morf =
  let id, idtype, x =
    match xml with
    | Fs(_idtype,Id _id :: _x) -> (_id, _idtype, _x)
    | Fs(_idtype, _x) -> (empty_id, _idtype, _x)
    | _ -> failwith "load_phrase let id,idtype...\n" in
  match idtype, x with
  | "np",[F("case",Symbol a)] -> id, Phrase (NP(parse_case a));
  | "prepnp", [F("preposition",Symbol a);F("case",Symbol b)] -> id, Phrase (PrepNP(a, parse_case b))
  | "adjp", [F("case",Symbol a)] -> id, Phrase (AdjP(parse_case a))
  | "prepadjp", [F("preposition",Symbol a);F("case",Symbol b)] -> id, Phrase (PrepAdjP(a, parse_case b))
  | "comprepnp", [e;F("complex_preposition",TEIstring a)] -> id, Phrase (ComprepNP(a))
  | "comprepnp", [F("complex_preposition",TEIstring a)] -> id, Phrase (ComprepNP(a))
  | "cp", [a] -> id, PhraseComp(Cp,load_ctype a)
  | "ncp", [F("case",Symbol a);b] -> id, PhraseComp(Ncp(parse_case a),load_ctype b)
  | "prepncp", [F("preposition",Symbol a);F("case",Symbol b);c] -> id, PhraseComp(Prepncp(a, parse_case b),load_ctype c)
  | "infp", [F("aspect",Symbol a)] -> id, Phrase (InfP(parse_aspect a))
  | "xp", [a] -> let x,y = load_category a in id, PhraseAbbr(Xp x,y)
  | "xp", [e;a] -> let x,y = load_category a in   id, PhraseAbbr(Xp x,y)
  | "advp", [F("category",Symbol a)] -> id, PhraseAbbr(Advp(a),[])
  | "advp", [e;F("category",Symbol a)] -> id, PhraseAbbr(Advp(a),[])
  | "nonch", [] -> id, PhraseAbbr(Nonch,[])
  | "or", [] -> id, Phrase Or
  | "refl", [] -> id, Phrase Refl
  | "E", [] -> id, E Null
  | "lex", x ->
    let lex = Xlist.fold x empty_lex load_lex in
    id, process_lex lex (lex.lex_argument,lex.lex_arguments,lex.lex_lemma,lex.lex_numeral_lemma)
  | "fixed", [F("argument",a);F("string",TEIstring b)] -> id, Phrase (FixedP((*snd (load_phrase a),*)b))
  | "possp", [e] -> id, PhraseAbbr(Possp,[])
  | "possp", [] -> id, PhraseAbbr(Possp,[])
  | "recip", [] -> id, Phrase Recip
  | "distrp", [e] -> id, PhraseAbbr(Distrp,[])
  | "distrp", [] -> id, PhraseAbbr(Distrp,[])
  | "compar", [F("compar_category",Symbol value)] -> id, PhraseAbbr(ComparP value,[])
  | "gerp", [F("case",Symbol a)] -> id, Phrase (GerP(parse_case a))
  | "prepgerp", [F("preposition",Symbol a);F("case",Symbol b)] -> id, Phrase (PrepGerP(a, parse_case b))
  | "nump", [F("case",Symbol a)] -> id, Phrase (NumP(parse_case a))
  | "prepnump", [F("preposition",Symbol a);F("case",Symbol b)] -> id, Phrase (PrepNumP(a, parse_case b))
  | "ppasp", [F("case",Symbol a)] -> id, Phrase (PpasP(parse_case a))
  | "prepppasp", [F("preposition",Symbol a);F("case",Symbol b)] -> id, Phrase (PrepPpasP(a, parse_case b))
  | "qub", [] -> id, Phrase Qub
  | "pactp", [F("case",Symbol a)] -> id, Phrase (PactP(parse_case a))
  | "adverb",[F("adverb",Symbol s)] -> id, LexPhrase([ADV (Grad "pos"),Lexeme s],(Natr,[]))
  | _ -> failwith ("load_phrase match:\n " ^ tei_to_string xml)


and load_control arg = function
  | Symbol  value -> parse_control arg value
  | xml -> failwith ("load_control:\n " ^ tei_to_string xml)

and load_position_info arg = function
  | F("function",Symbol  value) -> {arg with gf = parse_gf value}
  | Fset("phrases",phrases_set) ->
    {arg with morfs = List.rev (Xlist.rev_map phrases_set load_phrase)}
  | Fset("control",control_set) -> Xlist.fold control_set arg load_control
  | Id id -> {arg with psn_id=id}
  | xml -> failwith ("load_position_info:\n " ^ tei_to_string xml)

and load_position = function
  | Fs("position", listt) ->
    Xlist.fold listt empty_position load_position_info
  | xml -> failwith ("load_position:\n " ^ tei_to_string xml)

let parse_opinion = function
    "pewny" -> Pewny
  | "cer" -> Pewny
  | "potoczny" -> Potoczny
  | "col" -> Potoczny
  | "wątpliwy" -> Watpliwy
  | "unc" -> Watpliwy
  | "archaiczny" -> Archaiczny
  | "dat" -> Archaiczny
  | "zły" -> Zly
  | "bad" -> Zly
  | "wulgarny" -> Wulgarny
  | "vul" -> Wulgarny
  | "dobry" -> Dobry
  | x -> failwith ("parse_opinion: " ^ x)

let load_schema_info ent (arg:schema) = function
  | F("opinion",Symbol opinion_value) -> {arg with opinion = parse_opinion opinion_value}
  | F("inherent_sie",Binary true) -> {arg with reflexiveMark = ReflTrue}
  | F("inherent_sie",Binary false) -> {arg with reflexiveMark = ReflFalse}
  | F("aspect",Symbol aspect_value) -> {arg with aspect = parse_aspect aspect_value}
  | Fset("aspect", []) -> arg
  | F("negativity",Symbol negativity_value) -> {arg with negativity = parse_negation negativity_value}
  | Fset("negativity",[]) -> arg
  | F("predicativity",Binary true) -> {arg with predicativity = PredTrue}
  | F("predicativity",Binary false) -> {arg with predicativity = PredFalse}
  | Fset("positions", positions) ->
    {arg with positions = List.rev (Xlist.rev_map positions load_position)}
  | F("text_rep",TEIstring text_rep) -> {arg with text_rep = text_rep}
  (* | Id id -> {arg with sch_id = id} *)
  | Id{hash=false; numbers=[ent_id;id]; suffix="sch"} -> if ent_id = ent then {arg with sch_id = id} else failwith (Printf.sprintf "load_schema_info %d %d" ent ent_id)
  | xml -> failwith ("load_schema_info\n " ^ tei_to_string xml)

let load_schema ent = function
    Fs("schema", schema) ->
    let result = {sch_id = (-1); opinion = OpinionUndef; reflexiveMark = ReflUndef; aspect = AspectUndef;
                  negativity = NegationUndef; predicativity = PredUndef; positions = []; text_rep=""} in
    let result = Xlist.fold schema result (load_schema_info ent) in
    result
  | xml -> failwith ("load_schema:\n " ^ tei_to_string xml)

let load_phrases_set = function
  | SameAs(same_as,"phrase") -> {same_as with numbers = List.tl same_as.numbers}
  | xml -> failwith ("load_phrases_set :\n " ^ tei_to_string xml)

let load_example_info ent arg = function
  | F("meaning",SameAs(same_as,"lexical_unit")) -> {arg with meaning = same_as}
  | Fset("phrases",phrases_set) ->
    {arg with phrases = List.rev (Xlist.rev_map phrases_set load_phrases_set)}
  | F("sentence",TEIstring sentence_string) -> {arg with sentence = sentence_string}
  | F("source",Symbol source_value) -> {arg with source = source_value}
  | F("opinion",Symbol opinion_value) -> {arg with opinion = parse_opinion opinion_value}
  | F("note",TEIstring note_string) -> {arg with note = note_string}
  (* | Id id -> {arg with exm_id = id} *)
  | Id{hash=false; numbers=[ent_id;id]; suffix="exm"} -> if ent_id = ent then {arg with exm_id = id} else failwith (Printf.sprintf "load_example_info %d %d" ent ent_id)
  | xml -> failwith ("load_example_info :\n " ^ tei_to_string xml)

let load_example ent = function
  | Fs("example",example_elements) ->
    let result = {exm_id = (-1); meaning = empty_id; phrases = []; sentence = "";
                  source = ""; opinion = OpinionUndef; note = "";} in
    let result = Xlist.fold example_elements result (load_example_info ent) in
    result
  | xml -> failwith ("load_example :\n " ^ tei_to_string xml)

let load_self_prefs_sets = function
  | Numeric value -> NumericP(value)
  | Symbol value -> SymbolP(value)
  | Fs("relation",[F("type",Symbol value);F("to",SameAs(same_as, "argument"))]) ->
    RelationP(value,same_as)
  | xml -> failwith ("load_self_prefs_sets :\n " ^ tei_to_string xml)

let load_argument_self_prefs = function
  | Fset(name,self_prefs_set) ->
    List.rev (Xlist.rev_map self_prefs_set load_self_prefs_sets)
  | xml -> failwith ("load_argument_self_prefs :\n " ^ tei_to_string xml)

let load_argument_info arg = function
  | F("role",Symbol value) -> {arg with role = value}
  | F("role_attribute",Symbol value) -> {arg with role_attribute = value}
  | F("sel_prefs",Fs("sel_prefs_groups", self_prefs)) ->
    {arg with sel_prefs = List.rev (Xlist.rev_map self_prefs load_argument_self_prefs)}
  | Id id -> {arg with arg_id = id}
  | xml -> failwith ("load_argument_info :\n " ^ tei_to_string xml)

let load_arguments_set = function
  | Fs("argument", info) ->
    let result = {arg_id = empty_id; role = ""; role_attribute = ""; sel_prefs = []} in
    let result = Xlist.fold info result load_argument_info in
    result
  | xml -> failwith ("load_arguments_set :\n " ^ tei_to_string xml)

let load_meanings_set = function
  | SameAs(same_as,"lexical_unit") -> same_as
  | xml -> failwith ("load_meanings_set :\n " ^ tei_to_string xml)

let load_frame ent = function
  | Fs("frame",[
      Id{hash=false; numbers=[ent_id;id]; suffix="frm"};
      F("opinion",Symbol opinion);
      Fset("meanings",meanings_set);
      Fset("arguments",arguments_set)]) ->
    if ent_id <> ent then failwith (Printf.sprintf "load_frame %d %d" ent ent_id) else
    {frm_id = id;
     opinion = opinion;
     meanings = List.rev (Xlist.rev_map meanings_set load_meanings_set);
     arguments = List.rev (Xlist.rev_map arguments_set load_arguments_set)}
  | xml -> failwith ("load_frame :\n " ^ tei_to_string xml)

let load_meaning_info ent arg = function
  | F("name",TEIstring name_string) -> {arg with name = name_string}
  | F("variant",TEIstring variant_string) -> {arg with variant = variant_string}
  | F("plwnluid",Numeric value) -> {arg with plwnluid = value}
  | F("gloss",TEIstring gloss_string) -> {arg with gloss = gloss_string}
  | Id{hash=false; numbers=[ent_id;id]; suffix="mng"} -> if ent_id = ent then {arg with mng_id = id} else failwith (Printf.sprintf "load_meaning_info %d %d" ent ent_id)
  | xml -> failwith ("load_meaning_info:\n " ^ tei_to_string xml)


let load_meaning ent = function
  | Fs("lexical_unit", meaning_info) ->
    Xlist.fold meaning_info empty_meaning (load_meaning_info ent)
  | xml -> failwith ("load_meaning:\n " ^ tei_to_string xml)

let load_phrases_connections = function
  | SameAs(same_as,"phrase") -> same_as
  | xml -> failwith ("load_phrases_connections: \n " ^ tei_to_string xml)

let load_alter_connection = function
  | Fs("connection", [
      F("argument",SameAs(same_as,"argument"));
      Fset("phrases",phrases)]) ->
    {argument = same_as; phrases = List.rev (Xlist.rev_map phrases load_phrases_connections)}
  | xml -> failwith ("load_alter_connections: \n " ^ tei_to_string xml)

let load_alternations ent = function
  | Fs("alternation",[Fset("connections",connections_set)]) ->
    List.rev (Xlist.rev_map connections_set load_alter_connection)
  | xml -> failwith ("load_alternations: \n " ^ tei_to_string xml)

let load_entry = function
  | Xml.Element("entry",["xml:id",id], l) ->
    print_endline id;
    let id = match parse_id id with
        {hash=false; numbers=[id]; suffix="ent"} -> id
      | _ -> failwith "process_meanings" in
    let entry = {empty_entry with ent_id = id} in
    Xlist.fold l entry (fun e -> function
          Xml.Element("form", [], [
            Xml.Element("orth",[],[Xml.PCData orth]);
            Xml.Element("pos",[],[Xml.PCData pos])]) -> {e with form_orth=orth; form_pos=pos}
        | xml -> (match parse_tei xml with
            | Fs("syntactic_layer", [Fset("schemata",schemata_set)]) -> {e with schemata = List.rev (Xlist.rev_map schemata_set (load_schema id))}
            | Fs("examples_layer", [Fset("examples",examples_set)]) -> {e with examples = List.rev (Xlist.rev_map examples_set (load_example id))}
            | Fs("semantic_layer", [Fset("frames",frame_set)]) -> {e with frames = List.rev (Xlist.rev_map frame_set (load_frame id))}
            | Fs("meanings_layer", [Fset("meanings",meanings_set)]) -> {e with meanings = List.rev (Xlist.rev_map meanings_set (load_meaning id))}
            | Fs("connections_layer",[Fset("alternations",alternations)]) -> {e with alternations = List.rev (Xlist.rev_map alternations (load_alternations id))}
            | Fs("general_info",[F("status",TEIstring status)]) -> {e with status=status}
            | xml -> failwith ("load_entry: \n" ^ tei_to_string xml)))
   | xml -> failwith ("load_entry: \n" ^ Xml.to_string_fmt xml)

let load_walenty filename:entry list =
  begin
    match Xml.parse_file filename with
      Xml.Element("TEI", _,
                  [Xml.Element("teiHeader",_,_) ;
                   Xml.Element("text",[],[Xml.Element("body",[],entries)])]) ->
      List.rev (Xlist.rev_map entries load_entry)
    | _ -> failwith "load_walenty"
  end

type expansion = Phrases of morf list | Positions of position list

let load_expansion = function
    Fs("expansion",[F("opinion",Symbol opinion);Fset("phrases",set)]) -> Phrases(List.rev (Xlist.map set (fun p -> snd (load_phrase p))))
  | Fs("expansion",[F("opinion",Symbol opinion);Fset("positions",set)]) -> Positions(List.rev (Xlist.map set load_position))
  | tei -> failwith ("load_expansion: \n" ^ tei_to_string tei)

let load_rentry = function
  | Xml.Element("entry",["xml:id",id], [phrase;exp]) ->
    let id = parse_id id in
    let morf = snd (load_phrase (parse_tei phrase)) in
    let expansions = match parse_tei exp with
        | Fs("phrase_type_expansions", [Fset("expansions",expansions)]) -> List.rev (Xlist.map expansions load_expansion)
        | Fs("phrase_type_expansions", [F("expansions",expansion)]) -> [load_expansion expansion]
        | tei -> failwith ("load_entry: \n" ^ tei_to_string tei) in
    id,morf,expansions
  | xml -> failwith ("load_entry: \n" ^ Xml.to_string_fmt xml)

let load_expands filename =
  begin
    match Xml.parse_file filename with
      Xml.Element("TEI", _,
                  [Xml.Element("teiHeader",_,_) ;
                   Xml.Element("text",[],[Xml.Element("body",[],entries)])]) ->
      List.rev (Xlist.rev_map entries load_rentry)
    | _ -> failwith "load_walenty"
  end


   (*let walenty = load_walenty Paths.walenty_filename *)
let walenty = load_walenty "/home/yacheu/Dokumenty/NLP resources/Walenty/walenty_20170304.xml"

let expands_supplement = [
  empty_id, PhraseAbbr(Nonch,[]), [Phrases[
    LexPhrase([SUBST(NumberUndef,Str),Lexeme "co"],(Natr,[]));
    LexPhrase([SUBST(NumberUndef,Str),Lexeme "coś"],(Natr,[]));
    LexPhrase([SUBST(NumberUndef,Str),Lexeme "nic"],(Natr,[]));
    LexPhrase([SUBST(NumberUndef,Str),Lexeme "to"],(Natr,[]));
    ]];
  empty_id, PhraseAbbr(Advp "pron",[]), [Phrases[
    LexPhrase([ADV (Grad "pos"),Lexeme "tak"],(Natr,[]));
    LexPhrase([ADV (Grad "pos"),Lexeme "jak"],(Natr,[]))
    ]]]

let expands = expands_supplement @ load_expands "/home/yacheu/Dokumenty/NLP resources/Walenty/phrase_types_expand_20170304.xml"

let subtypes = [
  "int",[
    "co"; "czemu"; "czy"; "czyj"; "dlaczego"; "dokąd"; "gdzie"; "ile"; "jak";
    "jaki"; "kiedy"; "kto"; "którędy"; "który"; "odkąd"; "skąd"; "jakoby"];
  "rel",[
    "co"; "dokąd"; "gdzie"; "jak"; "jakby"; "jaki"; "jakoby"; "kiedy"; "kto";
    "którędy"; "który"; "odkąd"; "skąd"]]

let equivs = ["jak",["niczym"]; "przeciw",["przeciwko"]]

(*
let przejdz funkcja poczym =
  let _ = List.rev (List.fold_left (fun l nazwa -> funkcja nazwa :: l) [] poczym) in
    ()

(*zwraca liste zwróconych wartosci przez funkcje*)
let przejdz_lista funkcja poczym =
  List.rev (List.fold_left (fun l nazwa -> funkcja nazwa :: l) [] poczym)

let przejdz_lista_second funkcja poczym =
  List.rev (List.fold_left (fun l nazwa -> (snd (funkcja nazwa)) :: l) [] poczym)

(*łączy listy zwróconych wartości przez funkcje*)
let przejdz_scal funkcja poczym =
  List.rev (List.fold_left (fun l nazwa -> funkcja nazwa @ l) [] poczym)

(*zapisuje wynik wywołania do zmiennej i wywołuje ze zmienną*)
let przejdz_zapisz funkcja zmienna poczym =
  List.fold_left (fun zmienna nazwa -> funkcja zmienna nazwa) zmienna poczym


let rec last l =
  match l with
  | [a] -> a
  | a::b -> last b
  | _ -> failwith "pusta lista"

let parse_full_id s =
  if String.length s = 0 then empty_id else
  if String.length s < 6 then failwith "za krótkie id"  else
  let hash,s = if (String.get s 0) = '#' then true, String.sub s 1 (String.length s - 1) else false, s in
  if String.sub s 0 4 <> "wal_" then failwith "id nie ma wal" else
  let s,suf = match Str.split (Str.regexp "-") s with
    [s;suf] -> s,suf
    | _ -> failwith "zła ilość '-'" in
  let id = {hash = hash; suffix = suf; numbers = (Str.split (Str.regexp "\\.") s)} in
   id

let parse_id s =
  if String.length s = 0 then empty_id else
  if String.length s < 6 then failwith "za krótkie id"  else
  let hash,s = if (String.get s 0) = '#' then true, String.sub s 1 (String.length s - 1) else false, s in
  if String.sub s 0 4 <> "wal_" then failwith "id nie ma wal" else
  let s,suf = match Str.split (Str.regexp "-") s with
    [s;suf] -> s,suf
    | _ -> failwith "zła ilość '-'" in
  let id = {hash = hash; suffix = suf; numbers = (Str.split (Str.regexp "\\.") s)} in
   {id with numbers = [last id.numbers]}
*)

(* ******************************************* *)

(****


(*


(*sprawdzanie czy id jednoznacznie definiuje zawartość typu*)


(*meaningsLayer*)
module StringMap = Map.Make(String)

let cnt = ref 0;;

let add_new map meaning =
  let num_id = match meaning.mng_id with
    {hash=false; numbers=[num_id]; suffix="mng"} -> num_id
    | _ -> failwith "zła składnia id"  in
  if StringMap.mem num_id map then
    (Printf.printf "okkk\n";
    let meaning2 = StringMap.find num_id map in
    if meaning = meaning2 then map else
     failwith "różne1111")
  else (cnt:=!cnt+1;StringMap.add num_id meaning map)

let check_entry_menaings mapa entry =
  przejdz_zapisz add_new mapa entry.meanings

let check_meanings walenty =
  przejdz_zapisz check_entry_menaings StringMap.empty walenty

(*
let _ = check_meanings walenty
let _ = Printf.printf "meaning map.size: %d\n" !cnt
*)

(*semanticLayer*)

let cnt = ref 0;;

(*arg_id*)
let add_new map argument =
  let arg_id = match argument.arg_id with
    {hash=false; numbers=[num_id]; suffix="arg"} -> num_id
    | _ -> failwith "zła składnia id" in
  if StringMap.mem arg_id map then
    (Printf.printf "okkk\n";
    let val2 = StringMap.find arg_id map in
    let val1 = argument in
    if val1 = val2 then map else
     failwith "różne1111")
  else (cnt:=!cnt+1; StringMap.add arg_id argument map)



let check_frame mapa frame =
  przejdz_zapisz add_new mapa frame.arguments

let check_entry_frames mapa entry =
  przejdz_zapisz check_frame mapa entry.frames

let check_meanings walenty =
  przejdz_zapisz check_entry_frames StringMap.empty walenty

(*
let _ = check_meanings walenty
let _ = Printf.printf "entry.frame.argument map.size: %d\n" !cnt
*)
(*arg_id done*)


let cnt = ref 0;;
(*frm_id*)
let add_new map frame =
  let id = match frame.frm_id with
    {hash=false; numbers=[num_id]; suffix="frm"} -> num_id
    | _ -> failwith "zła składnia id" in
  if StringMap.mem id map then
    (Printf.printf "okkk\n";
    let val2 = StringMap.find id map in
    let val1 = frame in
    if val1 = val2 then map else
     failwith "różne1111")
  else (cnt:=!cnt+1; StringMap.add id frame map)

let check_entry_frames mapa entry =
  przejdz_zapisz add_new mapa entry.frames

let check_meanings walenty =
  przejdz_zapisz check_entry_frames StringMap.empty walenty

(*
let _ = check_meanings walenty
let _ = Printf.printf "entry.frame map.size: %d\n" !cnt
*)

(*frm.id done*)

(*examplesLayer*)
(*na razie zeruje phrases!!!!*)
let print_example example =
  Printf.printf "meaning: %s\n phrases: " example.meaning;
(*  print_endline (String.concat "; " example.phrases);*)
  Printf.printf "sentence: %s\n" example.sentence;
  Printf.printf "source: %s\n" example.source;
  Printf.printf "opinion: %s\n" example.opinion;
  Printf.printf "note: %s\n\n" example.note



let cnt = ref 0;;
let takiesame = ref 0;;

let add_new map example =
  let id = match example.exm_id with
    {hash=false; numbers=[num_id]; suffix="exm"} -> num_id
    | _ ->  failwith "zła składnia id" in
(*  let example = {example with phrases = []} in (*uwaga!!!! zeruje phrases!!!*)*)
  let example = {example with meaning = ""} in (*uwaga!!!! zeruje meaning!!!*)
  if StringMap.mem id map then
    (takiesame:=!takiesame+1;
   (* Printf.printf "okkk\n";*)
    let val2 = StringMap.find id map in
    let val1 = example in
    if val1 = val2 then map else
     let _ = print_example val1 in
     let _ = print_example val2 in
     failwith "różne1111")
  else (cnt:=!cnt+1; StringMap.add id example map)

let check_entry_example mapa entry =
      przejdz_zapisz add_new mapa entry.examples

let check_meanings walenty =
  przejdz_zapisz check_entry_example StringMap.empty walenty

(*
let _ = check_meanings walenty
let _ = Printf.printf "examples map.size: %d takich samych: %d\n" !cnt !takiesame
*)


(*syntatcticLayer position*)


let cnt = ref 0;;
let takiesame = ref 0;;

let add_new map position =
  let id = match position.psn_id with
    {hash=false; numbers=[num_id]; suffix="psn"} -> num_id
  | _ -> failwith "zła składnia id" in
(*  let position = {position with phrases = przejdz_lista (fun (x,y) -> (parse_id "",y)) position.phrases} in*)  (*uwaga!!!!*)
  if StringMap.mem id map then
    (takiesame:=!takiesame+1;
   (* Printf.printf "okkk\n";*)
    let val2 = StringMap.find id map in
    let val1 = position in
    if val1 = val2 then map else
     failwith "różne1111")
  else (cnt:=!cnt+1; StringMap.add id position map)

let check_schema mapa schema =
  przejdz_zapisz add_new mapa schema.positions

let check_entry mapa entry =
  przejdz_zapisz check_schema mapa entry.schemata

let check walenty =
  przejdz_zapisz check_entry StringMap.empty walenty

(*
let _ = check walenty
let _ = Printf.printf "syntactic...position map.size: %d takich samych: %d\n" !cnt !takiesame
*)

(* schema *)

let cnt = ref 0;;
let takiesame = ref 0;;

(*let clear_id (position:position) =
  let position = {position with phrases = [](*przejdz_lista (fun (x,y) -> (empty_id,y)) position.phrases*)} in  (*uwaga!!!!*)
  let position = {position with psn_id = empty_id} in
    position*)

let print_schema (schema:schema) =
  Printf.printf "schema.opinion= %s\n" schema.opinion;
  Printf.printf "schema.reflexiveMark= %s\n" schema.reflexiveMark;
  Printf.printf "schema.aspect= %s\n" schema.aspect;
  Printf.printf "schema.negativity= %s\n" schema.negativity;
  Printf.printf "schema.predicativity= %s\n___________________\n" schema.predicativity

let add_new map schema =
  let id = match schema.sch_id with
    {hash=false; numbers=[num_id]; suffix="sch"} -> num_id
  | _ ->  failwith "zła składnia id" in
  let schema = {schema with opinion = ""} in (*uwaga, zeruje opinie!!!*)
  if StringMap.mem id map then
    (takiesame:=!takiesame+1;
   (* Printf.printf "okkk\n";*)
    let val2 = StringMap.find id map in
    let val1 = schema in
    if val1 = val2 then map else
     let _ = print_schema val1 in
     let _ = print_schema val2 in
     failwith "różne1111")
  else (cnt:=!cnt+1; StringMap.add id schema map)



let check_schema mapa schema =
    add_new mapa schema

let check_entry mapa entry =
  przejdz_zapisz check_schema mapa entry.schemata

let check walenty =
  przejdz_zapisz check_entry StringMap.empty walenty

(*
let _ = check walenty
let _ = Printf.printf "syntactic...schema map.size: %d takich samych: %d\n" !cnt !takiesame
*)

(*phrases*)

let cnt = ref 0;;
let takiesame = ref 0;;

let add_new map (id, phrase) =
  let id = match id with
    {hash=false; numbers=[num_id]; suffix="phr"} -> num_id
  | _ ->  failwith "zła składnia id" in
  if StringMap.mem id map then
    (takiesame:=!takiesame+1;
   (* Printf.printf "okkk\n";*)
    let val2 = StringMap.find id map in
    let val1 = phrase in
    if val1 = val2 then map else
     failwith "różne1111")
  else (cnt:=!cnt+1; StringMap.add id phrase map)

let check_pos mapa (position:position) =
  przejdz_zapisz add_new mapa position.phrases

let check_schema mapa schema =
  przejdz_zapisz check_pos mapa schema.positions

let check_entry mapa entry =
  przejdz_zapisz check_schema mapa entry.schemata

let check walenty =
  przejdz_zapisz check_entry StringMap.empty walenty

*)

(*
let _ = check walenty
let _ = Printf.printf "syntactic...phrases map.size: %d takich samych: %d\n" !cnt !takiesame
*)


(*
loading: OK
meaning map.size: 32962
entry.frame.argument map.size: 10475
entry.frame map.size: 3463
examples map.size: 146536 takich samych: 64
syntactic...position map.size: 7021 takich samych: 195288
syntactic...schema map.size: 21247 takich samych: 51241
*)

 ****)