OptionsSuper.java
6.09 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
package is2.util;
import is2.io.CONLLReader09;
import java.io.File;
public class OptionsSuper {
public String trainfile = null;
public String testfile = null;
public File trainforest = null;
public String nbframes = null;
public String pbframes = null;
public boolean nopred = false;
public boolean upper = false;
public boolean train = false;
public boolean eval = false;
public boolean test = false;
public boolean keep = false;
public boolean flt = false;
public boolean loadTaggerModels =false;
public String modelName = "prs.mdl";
public String modelTaggerName = null;
public String useMapping = null;
public String device = "C:";
public String tmp = null;
public boolean createForest = true;
public boolean decodeProjective = false;
public double decodeTH = 0.3d;
public String format = "CONLL";
public int formatTask =9;
public int numIters = 10;
public int best = 1000;
public String outfile = "dp.conll";
public String charset = "UTF-8";
public String phraseTrain = null;
public String phraseTest = null;
public String goldfile = null;
public String gout = "sec23.gld";
public String features = null;
public String lexicon = null;
public int hsize = 0x07ffffff;
public int maxLen = 2000;
public int maxForms = Integer.MAX_VALUE;
public int beam = 4;
public float prune = -100000000;
public String third ="";
public String second ="";
public String first ="";
public int cross=10;
//public boolean secondOrder = true;
public boolean useRelationalFeatures = false;
public int count = 10000000;
public int cores = Integer.MAX_VALUE;
public int start = 0;
public int minOccureForms = 0;
public int tt=30; // tagger averaging
public boolean allFeatures =false;
public boolean normalize =false;
public boolean no2nd =false;
public boolean noLemmas=false;
public boolean few2nd =false,noLinear=false,noMorph=false;
public String clusterFile;
// output confidence values
public boolean conf =false;
public String phraseFormat="penn"; // tiger | penn
public boolean average = true;
public boolean label =false;
public boolean stack=false;
public boolean oneRoot = false;
public String significant1 =null,significant2 =null;
// horizontal stacking
public int minLength =0, maxLength =Integer.MAX_VALUE;
public boolean overwritegold =false;
public static final int MULTIPLICATIVE=1, SHIFT=2;
public int featureCreation = MULTIPLICATIVE;
public OptionsSuper (String[] args, String dummy) {
for(int i = 0; i < args.length; i++) {
i = addOption(args,i);
}
}
public OptionsSuper() {}
public int addOption(String args[], int i) {
if (args[i].equals("-train")) {
train = true;
trainfile = args[i+1];
} else if (args[i].equals("-eval")) {
eval = true;
goldfile =args[i+1]; i++;
} else if (args[i].equals("-gout")) {
gout =args[i+1]; i++;
} else if (args[i].equals("-test")) {
test = true;
testfile = args[i+1]; i++;
} else if (args[i].equals("-sig1")) {
significant1 = args[i+1]; i++;
} else if (args[i].equals("-sig2")) {
significant2 = args[i+1]; i++;
} else if (args[i].equals("-i")) {
numIters = Integer.parseInt(args[i+1]); i++;
} else if (args[i].equals("-out")) {
outfile = args[i+1]; i++;
} else if (args[i].equals("-cluster")) {
clusterFile = args[i+1]; i++;
}
else if (args[i].equals("-count")) {
count = Integer.parseInt(args[i+1]); i++;
} else if (args[i].equals("-model")) {
modelName = args[i+1]; i++;
} else if (args[i].equals("-tmodel")) {
this.modelTaggerName = args[i+1]; i++;
} else if (args[i].equals("-nonormalize")) {
normalize=false;
} else if (args[i].equals("-float")) {
flt =true;
} else if (args[i].equals("-hsize")) {
hsize= Integer.parseInt(args[i+1]); i++;
} else if (args[i].equals("-charset")) {
charset= args[++i];
} else if (args[i].equals("-pstrain")) {
this.phraseTrain=args[i+1]; i++;
} else if (args[i].equals("-pstest")) {
this.phraseTest=args[i+1]; i++;
} else if (args[i].equals("-len")) {
maxLen= Integer.parseInt(args[i+1]); i++;
} else if (args[i].equals("-cores")) {
cores= Integer.parseInt(args[i+1]); i++;
} else if (args[i].equals("-start")) {
start= Integer.parseInt(args[i+1]); i++;
} else if (args[i].equals("-max")) {
maxLength= Integer.parseInt(args[i+1]); i++;
} else if (args[i].equals("-min")) {
minLength= Integer.parseInt(args[i+1]); i++;
} else if (args[i].equals("-noLemmas")) {
noLemmas= true;
} else if (args[i].equals("-noavg")) {
this.average= false;
} else if (args[i].equals("-label")) {
label= true;
} else if (args[i].equals("-stack")) {
stack= true;
} else if (args[i].equals("-overwritegold")) {
overwritegold = true;
} else if (args[i].equals("-format")) {
formatTask = Integer.parseInt(args[++i]);
} else if (args[i].equals("-tt")) {
tt = Integer.parseInt(args[++i]);
} else if (args[i].equals("-min-occure-forms")) {
minOccureForms = Integer.parseInt(args[++i]);
} else if (args[i].equals("-loadTaggerModels")) {
this.loadTaggerModels=true;;
} else if (args[i].equals("-feature_creation")) {
this.featureCreation = args[++i].equals("shift")?SHIFT:MULTIPLICATIVE;
}
return i;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("FLAGS [");
sb.append("train-file: " + trainfile);
sb.append(" | ");
sb.append("test-file: " + testfile);
sb.append(" | ");
sb.append("gold-file: " + goldfile);
sb.append(" | ");
sb.append("output-file: " + outfile);
sb.append(" | ");
sb.append("model-name: " + modelName);
sb.append(" | ");
sb.append("train: " + train);
sb.append(" | ");
sb.append("test: " + test);
sb.append(" | ");
sb.append("eval: " + eval);
sb.append(" | ");
sb.append("training-iterations: " + numIters);
sb.append(" | ");
sb.append("decode-type: " + decodeProjective);
sb.append(" | ");
sb.append("create-forest: " + createForest);
sb.append(" | ");
sb.append("format: " + format);
sb.append("]\n");
return sb.toString();
}
}