ENIAMwalTEI.ml
52.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
(*
* ENIAMwalenty, an interface for Polish Valence Dictionary "Walenty".
* Copyright (C) 2016 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
* Copyright (C) 2016 Institute of Computer Science Polish Academy of Sciences
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*)
open ENIAMwalTypes
let parse_id s =
if String.length s = 0 then empty_id else
if String.length s < 6 then failwith "za krótkie id" else
let hash,s = if (String.get s 0) = '#' then true, String.sub s 1 (String.length s - 1) else false, s in
if String.sub s 0 4 <> "wal_" then failwith "id nie ma wal" else
let s,suf = match Str.split (Str.regexp "-") s with
[s;suf] -> s,suf
| _ -> failwith "zła ilość '-'" in
let id = {hash = hash; suffix = suf; numbers = Xstring.split "\\." s} in
id
(*let parse_id s =
if String.length s = 0 then empty_id else
if String.length s < 6 then failwith "za krótkie id" else
let hash,s = if (String.get s 0) = '#' then true, String.sub s 1 (String.length s - 1) else false, s in
if String.sub s 0 4 <> "wal_" then failwith "id nie ma wal" else
let s,suf = match Str.split (Str.regexp "-") s with
[s;suf] -> s,suf
| _ -> failwith "zła ilość '-'" in
let id = {hash = hash; suffix = suf; numbers = (Str.split (Str.regexp "\\.") s)} in
{id with numbers = [last id.numbers]}*)
type tei =
Symbol of string
| TEIstring of string
| Binary of bool
| Numeric of int
| F of string * tei
| Fset of string * tei list
| Fs of string * tei list
| Id of id
| SameAs of id * string
let rec tei_to_string = function
Symbol s -> Printf.sprintf "Symbol %s" s
| TEIstring s -> Printf.sprintf "String %s" s
| Binary b -> Printf.sprintf "Binary %s" (string_of_bool b)
| Numeric n -> Printf.sprintf "Numeric %d" n
| F(s,t) -> Printf.sprintf "F(%s,%s)" s (tei_to_string t)
| Fset(s,l) -> Printf.sprintf "Fset(%s,[%s])" s (String.concat ";" (Xlist.map l tei_to_string))
| Fs(s,l) -> Printf.sprintf "Fs(%s,[%s])" s (String.concat ";" (Xlist.map l tei_to_string))
| Id id -> Printf.sprintf "Id"
| SameAs(id,s) -> Printf.sprintf "F(Id,%s)" s
let rec parse_tei = function
Xml.Element("f",["name",name],[Xml.Element("vColl",["org","set"],set)]) ->
Fset(name,List.rev (Xlist.map set parse_tei))
| Xml.Element("f", ["name",name],[]) -> Fset(name,[])
| Xml.Element("f", ["name",name],[tei]) -> F(name,parse_tei tei)
| Xml.Element("f", ["name",name],set) -> Fset(name,List.rev (Xlist.map set parse_tei))
| Xml.Element("fs", ["type",name], l) -> Fs(name,List.rev (Xlist.rev_map l parse_tei))
| Xml.Element("fs", ["xml:id",id;"type",name], l) -> Fs(name,Id(parse_id id) :: List.rev (Xlist.rev_map l parse_tei))
| Xml.Element("symbol",["value",value],[]) -> Symbol value
| Xml.Element("string",[], [Xml.PCData s]) -> TEIstring s
| Xml.Element("string",[], []) -> TEIstring ""
| Xml.Element("binary",["value",value],[]) -> Binary(try bool_of_string value with _ -> failwith "parse_tei")
| Xml.Element("numeric",["value",value],[]) -> Numeric(try int_of_string value with _ -> failwith "parse_tei")
| Xml.Element("fs", ["sameAs", same_as; "type",name], []) -> SameAs(parse_id same_as,name)
| Xml.Element("fs", ["sameAs", same_as], []) -> SameAs(parse_id same_as,"")
| xml -> failwith ("parse_tei: " ^ Xml.to_string_fmt xml)
let parse_gf = function
"subj" -> SUBJ
| "obj" -> OBJ
| s -> failwith ("parse_gf: " ^ s)
let parse_control arg = function
"controller" -> {arg with cr="1" :: arg.cr}
| "controllee" -> {arg with ce="1" :: arg.cr}
| "controller2" -> {arg with cr="2" :: arg.cr}
| "controllee2" -> {arg with ce="2" :: arg.cr}
| s -> failwith ("parse_control: " ^ s)
let parse_case = function
"nom" -> Case "nom"
| "gen" -> Case "gen"
| "dat" -> Case "dat"
| "acc" -> Case "acc"
| "inst" -> Case "inst"
| "loc" -> Case "loc"
| "str" -> Str
| "pred" -> Case "pred"
| "part" -> Part
| "postp" -> Case "postp"
| "agr" -> CaseAgr
| s -> failwith ("parse_case: " ^ s)
let parse_aspect = function
"perf" -> Aspect "perf"
| "imperf" -> Aspect "imperf"
| "_" -> AspectUndef
| "" -> AspectNA
| s -> failwith ("parse_aspect: " ^ s)
let parse_negation = function
"_" -> NegationUndef
| "neg" -> Negation
| "aff" -> Aff
| "" -> NegationNA
| s -> failwith ("parse_negation: " ^ s)
let parse_number = function
"sg" -> Number "sg"
| "pl" -> Number "pl"
| "agr" -> NumberAgr
| "_" -> NumberUndef
| s -> failwith ("parse_number: " ^ s)
let parse_gender = function
"m1" -> Gender "m1"
| "m3" -> Gender "m3"
| "n" -> Genders["n1";"n2"]
| "f" -> Gender "f"
| "m1.n" -> Genders["m1";"n1";"n2"]
| "_" -> GenderUndef
| "agr" -> GenderAgr
| s -> failwith ("parse_gender: " ^ s)
let parse_grad = function
"pos" -> Grad "pos"
| "com" -> Grad "com"
| "sup" -> Grad "sup"
| "_" -> GradUndef
| s -> failwith ("parse_grad: " ^ s)
let rec parse_restr = function
"natr" -> Natr
| "atr" -> Atr
| "ratr" -> Ratr
| "atr1" -> Atr1
| "ratr1" -> Ratr1
| s -> failwith ("parse_restr: " ^ s)
let parse_comp = function
"int" -> Int,[]
| "rel" -> Rel,[]
| "co" -> CompTypeUndef,[Comp "co"] (* subst qub prep comp *)
| "kto" -> CompTypeUndef,[Comp "kto"] (* subst *)
| "ile" -> CompTypeUndef,[Comp "ile"] (* num adv *)
| "jaki" -> CompTypeUndef,[Comp "jaki"] (* adj *)
| "który" -> CompTypeUndef,[Comp "który"] (* adj *)
| "czyj" -> CompTypeUndef,[Comp "czyj"] (* adj *)
| "jak" -> CompTypeUndef,[Comp "jak"] (* prep conj adv *)
| "kiedy" -> CompTypeUndef,[Comp "kiedy"] (* comp adv *)
| "gdzie" -> CompTypeUndef,[Comp "gdzie"] (* qub adv *)
| "odkąd" -> CompTypeUndef,[Comp "odkąd"] (* adv *)
| "skąd" -> CompTypeUndef,[Comp "skąd"] (* adv *)
| "dokąd" -> CompTypeUndef,[Comp "dokąd"] (* adv *)
| "którędy" -> CompTypeUndef,[Comp "którędy"] (* adv *)
| "dlaczego" -> CompTypeUndef,[Comp "dlaczego"] (* adv *)
| "czemu" -> CompTypeUndef,[Comp "czemu"] (* adv *)
| "czy" -> CompTypeUndef,[Comp "czy"] (* qub conj *)
| "jakby" -> CompTypeUndef,[Comp "jakby"] (* qub comp *)
| "jakoby" -> CompTypeUndef,[Comp "jakoby"] (* qub comp *)
| "gdy" -> CompTypeUndef,[Gdy] (* adv; gdyby: qub comp *)
| "dopóki" -> CompTypeUndef,[Comp "dopóki"] (* comp *)
| "zanim" -> CompTypeUndef,[Comp "zanim"] (* comp *)
| "jeśli" -> CompTypeUndef,[Comp "jeśli"] (* comp *)
| "żeby2" -> CompTypeUndef,[Zeby]
| "żeby" -> CompTypeUndef,[Comp "żeby"] (* qub comp *)
| "że" -> CompTypeUndef,[Comp "że"] (* qub comp *)
| "aż" -> CompTypeUndef,[Comp "aż"] (* qub comp *)
| "bo" -> CompTypeUndef,[Comp "bo"] (* qub comp *)
| s -> failwith ("parse_comp: " ^ s)
let load_type_constrains = function
| Symbol value ->
(match parse_comp value with
CompTypeUndef,[c] -> c
| _ -> failwith "load_type_constrains")
| xml -> failwith ("load_type_constrains:\n " ^ tei_to_string xml)
let load_ctype = function
| F("type",Fs("type_def", x)) ->
(match x with
| [F("conjunction",Symbol value)] -> parse_comp value
| [F("conjunction",Symbol value);Fset("constraints",set)] ->
(match parse_comp value with
CompTypeUndef, _ -> failwith "load_ctype"
| ctype,[] -> ctype, List.rev (Xlist.rev_map set load_type_constrains)
| _ -> failwith "load_ctype")
| l -> failwith ("load_ctype 2:\n " ^ String.concat "\n" (Xlist.map l tei_to_string)))
| xml -> failwith ("load_ctype:\n " ^ tei_to_string xml)
(*Printf.printf "%s\n" (tei_to_string xml)*)
let load_lemmas_set = function
| TEIstring mstring -> mstring
| xml -> failwith ("load_lemmas_set:\n " ^ tei_to_string xml)
let check_lemma s =
match Str.full_split (Str.regexp "(\\|)") s with
[Str.Text s] -> Lexeme s
| [Str.Text "E"; Str.Delim "("; Str.Text g; Str.Delim ")"] -> Elexeme(parse_gender g)
| _ -> failwith "check_lemma"
let make_lemma = function
| _,_,[lemma] -> check_lemma lemma
| "XOR","concat",lemmas -> XOR(Xlist.map lemmas check_lemma)
| "OR","coord",lemmas -> ORcoord(Xlist.map lemmas check_lemma)
| "OR","concat",lemmas -> ORconcat(Xlist.map lemmas check_lemma)
| _ -> failwith "make_lemma"
let process_lex_phrase lemma = function
NP(case),number,GenderUndef,GradUndef,NegationUndef,ReflUndef -> [SUBST(number,case),lemma]
| PrepNP(prep,case),number,GenderUndef,GradUndef,NegationUndef,ReflUndef -> [PREP case,Lexeme prep;SUBST(number,case),lemma]
| AdjP(case),number,gender,grad,NegationUndef,ReflUndef -> [ADJ(number,case,gender,grad),lemma]
| PrepAdjP(prep,case),number,gender,grad,NegationUndef,ReflUndef -> [PREP case,Lexeme prep;ADJ(number,case,gender,grad),lemma]
| InfP(aspect),NumberUndef,GenderUndef,GradUndef,negation,refl -> [INF(aspect,negation,refl),lemma]
| PpasP(case),number,gender,GradUndef,negation,ReflUndef -> [PPAS(number,case,gender,AspectUndef,negation),lemma]
| PrepPpasP(prep,case),number,gender,GradUndef,negation,ReflUndef -> [PREP case,Lexeme prep;PPAS(number,case,gender,AspectUndef,negation),lemma]
| PactP(case),number,gender,GradUndef,negation,refl -> [PACT(number,case,gender,AspectUndef,negation,refl),lemma]
| PrepGerP(prep,case),number,GenderUndef,GradUndef,negation,refl -> [PREP case,Lexeme prep;GER(number,case,GenderUndef,AspectUndef,negation,refl),lemma]
| Qub,NumberUndef,GenderUndef,GradUndef,NegationUndef,ReflUndef -> [QUB,lemma]
| AdvP,NumberUndef,GenderUndef,grad,NegationUndef,ReflUndef -> [ADV grad,lemma]
| phrase,number,gender,grad,negation,reflex ->
Printf.printf "%s %s %s %s %s %s\n" (ENIAMwalStringOf.phrase phrase) (ENIAMwalStringOf.number number)
(ENIAMwalStringOf.gender gender) (ENIAMwalStringOf.grad grad) (ENIAMwalStringOf.negation negation) (ENIAMwalStringOf.refl reflex); []
let new_schema r cr ce morfs =
{psn_id=empty_id; gf=r; role=""; role_attr="";sel_prefs=[]; cr=cr; ce=ce; dir=Both; morfs=morfs}
let rec process_lex lex = function
| PhraseAbbr(ComparP prep,[]),arguments,Lexeme "",Lexeme "" ->
LexPhrase([COMPAR,Lexeme prep],(Ratrs,Xlist.map arguments (fun morf -> new_schema ARG [] [] [empty_id,morf])))
| PhraseAbbr(Xp mode,[argument]),_,_,_ ->
let lex = {lex with lex_argument=argument} in
(match process_lex lex (lex.lex_argument,lex.lex_arguments,lex.lex_lemma,lex.lex_numeral_lemma) with
LexPhrase(poss,mods) -> LexPhraseMode(mode,poss,mods)
| LexPhraseMode(mode2,poss,mods) ->
if mode <> mode2 then failwith "process_lex: multiple modes" else LexPhraseMode(mode,poss,mods)
| _ -> failwith "process_lex")
| PhraseAbbr(Advp mode,[]),[],lemma,Lexeme "" ->
let poss = process_lex_phrase lemma (AdvP,lex.lex_number,lex.lex_gender,lex.lex_degree,lex.lex_negation,lex.lex_reflex) in
LexPhraseMode(mode,poss,lex.lex_modification)
| Phrase (NumP(case)),[],lemma,num_lemma -> LexPhrase([NUM(case,GenderUndef,AcmUndef),num_lemma;SUBST(NumberUndef,CaseUndef),lemma],lex.lex_modification)
| Phrase (PrepNumP(prep,case)),[],lemma,num_lemma -> LexPhrase([PREP case,Lexeme prep;NUM(case,GenderUndef,AcmUndef),num_lemma;SUBST(NumberUndef,CaseUndef),lemma],lex.lex_modification)
| PhraseComp(Cp,(ctype,[Comp comp])),[],lemma,Lexeme "" -> LexPhrase([COMP ctype,Lexeme comp;PERS(lex.lex_negation,lex.lex_reflex),lemma],lex.lex_modification)
| PhraseComp(Cp,(ctype,[Comp comp1;Comp comp2])),[],lemma,Lexeme "" -> LexPhrase([COMP ctype,XOR[Lexeme comp1;Lexeme comp2];PERS(lex.lex_negation,lex.lex_reflex),lemma],lex.lex_modification)
| Phrase phrase,[],lemma,Lexeme "" ->
let poss = process_lex_phrase lemma (phrase,lex.lex_number,lex.lex_gender,lex.lex_degree,lex.lex_negation,lex.lex_reflex) in
LexPhrase(poss,lex.lex_modification)
| (argument,arguments,lemma,numeral_lemma) ->
let s = Printf.sprintf "%s [%s] %s %s\n" (ENIAMwalStringOf.morf argument)
(String.concat ";" (Xlist.map arguments ENIAMwalStringOf.morf))
(ENIAMwalStringOf.lex lemma) (ENIAMwalStringOf.lex numeral_lemma) in
failwith ("process_lex: " ^ s)
let rec load_category = function
| F("category",Fs("category_def",x)) ->
(match x with
| [F("name",Symbol value)] -> value, []
| [F("name",Symbol value);Fset("constraints",set)] ->
value, List.rev (Xlist.rev_map set (fun s -> snd (load_phrase s)))
| l -> failwith ("load_category 2:\n " ^ String.concat "\n" (Xlist.map l tei_to_string)))
| xml -> failwith ("load_category:\n " ^ tei_to_string xml)
and load_modification_def = function (*pomocnicza do load_lex *)
| [F("type",Symbol value)] -> parse_restr value, []
| [F("type",Symbol value); Fset("positions",set)] ->
parse_restr value, List.rev (Xlist.rev_map set load_position)
| x -> Printf.printf "%s\n" (tei_to_string (List.hd x));
failwith "load_modification_def:\n"
and load_lex arg xml = match xml with (* wzajemnie rekurencyjne z load_phrase*)
| F("argument",set) -> {arg with lex_argument = snd (load_phrase set)}
| Fset("arguments",set) ->
{arg with lex_arguments=List.rev (Xlist.fold set [] (fun l s -> (snd (load_phrase s)) :: l))}
| F("modification",Fs("modification_def",x)) -> {arg with lex_modification = load_modification_def x}
| F("lemma",Fs("lemma_def",[F("selection_mode",Symbol value1);
F("cooccurrence",Symbol value2);
Fset("lemmas",lemmas)])) ->
{arg with lex_lemma = make_lemma (value1, value2, List.rev (Xlist.rev_map lemmas load_lemmas_set))}
| F("numeral_lemma",Fs("numeral_lemma_def",[F("selection_mode",Symbol value1);
F("cooccurrence",Symbol value2);
Fset("lemmas",lemmas)])) ->
{arg with lex_numeral_lemma = make_lemma (value1, value2, List.rev (Xlist.rev_map lemmas load_lemmas_set))}
| F("negation",Symbol value) -> {arg with lex_negation = parse_negation value}
| F("degree",Symbol value) -> {arg with lex_degree = parse_grad value}
| F("number",Symbol value) -> {arg with lex_number = parse_number value}
| F("reflex",Binary true) -> {arg with lex_reflex = ReflTrue}
| F("reflex",Binary false) -> {arg with lex_reflex = ReflFalse}
| Fset("reflex",[]) -> {arg with lex_reflex = ReflEmpty}
| Fset("gender",[Symbol value]) -> {arg with lex_gender = parse_gender value}
| xml ->
Printf.printf "%s\n" (tei_to_string xml);
failwith "load_lex:\n "
and load_phrase xml:id * morf =
let id, idtype, x =
match xml with
| Fs(_idtype,Id _id :: _x) -> (_id, _idtype, _x)
| Fs(_idtype, _x) -> (empty_id, _idtype, _x)
| _ -> failwith "load_phrase let id,idtype...\n" in
match idtype, x with
| "np",[F("case",Symbol a)] -> id, Phrase (NP(parse_case a));
| "prepnp", [F("preposition",Symbol a);F("case",Symbol b)] -> id, Phrase (PrepNP(a, parse_case b))
| "adjp", [F("case",Symbol a)] -> id, Phrase (AdjP(parse_case a))
| "prepadjp", [F("preposition",Symbol a);F("case",Symbol b)] -> id, Phrase (PrepAdjP(a, parse_case b))
| "comprepnp", [e;F("complex_preposition",TEIstring a)] -> id, Phrase (ComprepNP(a))
| "comprepnp", [F("complex_preposition",TEIstring a)] -> id, Phrase (ComprepNP(a))
| "cp", [a] -> id, PhraseComp(Cp,load_ctype a)
| "ncp", [F("case",Symbol a);b] -> id, PhraseComp(Ncp(parse_case a),load_ctype b)
| "prepncp", [F("preposition",Symbol a);F("case",Symbol b);c] -> id, PhraseComp(Prepncp(a, parse_case b),load_ctype c)
| "infp", [F("aspect",Symbol a)] -> id, Phrase (InfP(parse_aspect a))
| "xp", [a] -> let x,y = load_category a in id, PhraseAbbr(Xp x,y)
| "xp", [e;a] -> let x,y = load_category a in id, PhraseAbbr(Xp x,y)
| "advp", [F("category",Symbol a)] -> id, PhraseAbbr(Advp(a),[])
| "advp", [e;F("category",Symbol a)] -> id, PhraseAbbr(Advp(a),[])
| "nonch", [] -> id, PhraseAbbr(Nonch,[])
| "or", [] -> id, Phrase Or
| "refl", [] -> id, Phrase Refl
| "E", [] -> id, E Null
| "lex", x ->
let lex = Xlist.fold x empty_lex load_lex in
id, process_lex lex (lex.lex_argument,lex.lex_arguments,lex.lex_lemma,lex.lex_numeral_lemma)
| "fixed", [F("argument",a);F("string",TEIstring b)] -> id, Phrase (FixedP((*snd (load_phrase a),*)b))
| "possp", [e] -> id, PhraseAbbr(Possp,[])
| "possp", [] -> id, PhraseAbbr(Possp,[])
| "recip", [] -> id, Phrase Recip
| "distrp", [e] -> id, PhraseAbbr(Distrp,[])
| "distrp", [] -> id, PhraseAbbr(Distrp,[])
| "compar", [F("compar_category",Symbol value)] -> id, PhraseAbbr(ComparP value,[])
| "gerp", [F("case",Symbol a)] -> id, Phrase (GerP(parse_case a))
| "prepgerp", [F("preposition",Symbol a);F("case",Symbol b)] -> id, Phrase (PrepGerP(a, parse_case b))
| "nump", [F("case",Symbol a)] -> id, Phrase (NumP(parse_case a))
| "prepnump", [F("preposition",Symbol a);F("case",Symbol b)] -> id, Phrase (PrepNumP(a, parse_case b))
| "ppasp", [F("case",Symbol a)] -> id, Phrase (PpasP(parse_case a))
| "prepppasp", [F("preposition",Symbol a);F("case",Symbol b)] -> id, Phrase (PrepPpasP(a, parse_case b))
| "qub", [] -> id, Phrase Qub
| "pactp", [F("case",Symbol a)] -> id, Phrase (PactP(parse_case a))
| "adverb",[F("adverb",Symbol s)] -> id, LexPhrase([ADV (Grad "pos"),Lexeme s],(Natr,[]))
| _ -> failwith ("load_phrase match:\n " ^ tei_to_string xml)
and load_control arg = function
| Symbol value -> parse_control arg value
| xml -> failwith ("load_control:\n " ^ tei_to_string xml)
and load_position_info arg = function
| F("function",Symbol value) -> {arg with gf = parse_gf value}
| Fset("phrases",phrases_set) ->
{arg with morfs = List.rev (Xlist.rev_map phrases_set load_phrase)}
| Fset("control",control_set) -> Xlist.fold control_set arg load_control
| Id id -> {arg with psn_id=id}
| xml -> failwith ("load_position_info:\n " ^ tei_to_string xml)
and load_position = function
| Fs("position", listt) ->
Xlist.fold listt empty_position load_position_info
| xml -> failwith ("load_position:\n " ^ tei_to_string xml)
let parse_opinion = function
"pewny" -> Pewny
| "cer" -> Pewny
| "potoczny" -> Potoczny
| "col" -> Potoczny
| "wątpliwy" -> Watpliwy
| "unc" -> Watpliwy
| "archaiczny" -> Archaiczny
| "dat" -> Archaiczny
| "zły" -> Zly
| "bad" -> Zly
| "wulgarny" -> Wulgarny
| "vul" -> Wulgarny
| "dobry" -> Dobry
| x -> failwith ("parse_opinion: " ^ x)
let load_schema_info (arg:schema) = function
| F("opinion",Symbol opinion_value) -> {arg with opinion = parse_opinion opinion_value}
| F("inherent_sie",Binary true) -> {arg with reflexiveMark = ReflTrue}
| F("inherent_sie",Binary false) -> {arg with reflexiveMark = ReflFalse}
| F("aspect",Symbol aspect_value) -> {arg with aspect = parse_aspect aspect_value}
| Fset("aspect", []) -> arg
| F("negativity",Symbol negativity_value) -> {arg with negativity = parse_negation negativity_value}
| Fset("negativity",[]) -> arg
| F("predicativity",Binary true) -> {arg with predicativity = PredTrue}
| F("predicativity",Binary false) -> {arg with predicativity = PredFalse}
| Fset("positions", positions) ->
{arg with positions = List.rev (Xlist.rev_map positions load_position)}
| F("text_rep",TEIstring text_rep) -> {arg with text_rep = text_rep}
| Id id -> {arg with sch_id = id}
| xml -> failwith ("load_schema_info\n " ^ tei_to_string xml)
let load_schema = function
Fs("schema", schema) ->
let result = {sch_id = empty_id; opinion = OpinionUndef; reflexiveMark = ReflUndef; aspect = AspectUndef;
negativity = NegationUndef; predicativity = PredUndef; positions = []; text_rep=""} in
let result = Xlist.fold schema result load_schema_info in
result
| xml -> failwith ("load_schema:\n " ^ tei_to_string xml)
let load_syntax = function
Fset("schemata",schemata_set) ->
List.rev (Xlist.rev_map schemata_set load_schema)
| xml -> failwith ("load_syntax:\n " ^ tei_to_string xml)
let load_phrases_set = function
| SameAs(same_as,"phrase") -> {same_as with numbers = List.tl same_as.numbers}
| xml -> failwith ("load_phrases_set :\n " ^ tei_to_string xml)
let load_example_info arg = function
| F("meaning",SameAs(same_as,"lexical_unit")) -> {arg with meaning = same_as}
| Fset("phrases",phrases_set) ->
{arg with phrases = List.rev (Xlist.rev_map phrases_set load_phrases_set)}
| F("sentence",TEIstring sentence_string) -> {arg with sentence = sentence_string}
| F("source",Symbol source_value) -> {arg with source = source_value}
| F("opinion",Symbol opinion_value) -> {arg with opinion = parse_opinion opinion_value}
| F("note",TEIstring note_string) -> {arg with note = note_string}
| Id id -> {arg with exm_id = id}
| xml -> failwith ("load_example_info :\n " ^ tei_to_string xml)
let load_example = function
| Fs("example",example_elements) ->
let result = {exm_id = empty_id; meaning = empty_id; phrases = []; sentence = "";
source = ""; opinion = OpinionUndef; note = "";} in
let result = Xlist.fold example_elements result load_example_info in
result
| xml -> failwith ("load_example :\n " ^ tei_to_string xml)
let load_examples = function
| Fset("examples",examples_set) ->
List.rev (Xlist.rev_map examples_set load_example)
| xml -> failwith ("load_examples:\n " ^ tei_to_string xml)
let load_self_prefs_sets = function
| Numeric value -> NumericP(value)
| Symbol value -> SymbolP(value)
| Fs("relation",[F("type",Symbol value);F("to",SameAs(same_as, "argument"))]) ->
RelationP(value,same_as)
| xml -> failwith ("load_self_prefs_sets :\n " ^ tei_to_string xml)
let load_argument_self_prefs = function
| Fset(name,self_prefs_set) ->
List.rev (Xlist.rev_map self_prefs_set load_self_prefs_sets)
| xml -> failwith ("load_argument_self_prefs :\n " ^ tei_to_string xml)
let load_argument_info arg = function
| F("role",Symbol value) -> {arg with role = value}
| F("role_attribute",Symbol value) -> {arg with role_attribute = value}
| F("sel_prefs",Fs("sel_prefs_groups", self_prefs)) ->
{arg with sel_prefs = List.rev (Xlist.rev_map self_prefs load_argument_self_prefs)}
| Id id -> {arg with arg_id = id}
| xml -> failwith ("load_argument_info :\n " ^ tei_to_string xml)
let load_arguments_set = function
| Fs("argument", info) ->
let result = {arg_id = empty_id; role = ""; role_attribute = ""; sel_prefs = []} in
let result = Xlist.fold info result load_argument_info in
result
| xml -> failwith ("load_arguments_set :\n " ^ tei_to_string xml)
let load_meanings_set = function
| SameAs(same_as,"lexical_unit") -> same_as
| xml -> failwith ("load_meanings_set :\n " ^ tei_to_string xml)
let load_frame = function
| Fs("frame",[
Id id;
F("opinion",Symbol opinion);
Fset("meanings",meanings_set);
Fset("arguments",arguments_set)]) ->
{frm_id = id;
opinion = opinion;
meanings = List.rev (Xlist.rev_map meanings_set load_meanings_set);
arguments = List.rev (Xlist.rev_map arguments_set load_arguments_set)}
| xml -> failwith ("load_frame :\n " ^ tei_to_string xml)
let load_semantic = function
| Fset("frames",frame_set) ->
List.rev (Xlist.rev_map frame_set load_frame)
| xml -> failwith ("load_semantic:\n " ^ tei_to_string xml)
let load_meaning_info arg = function
| F("name",TEIstring name_string) -> {arg with name = name_string}
| F("variant",TEIstring variant_string) -> {arg with variant = variant_string}
| F("plwnluid",Numeric value) -> {arg with plwnluid = value}
| F("gloss",TEIstring gloss_string) -> {arg with gloss = gloss_string}
| Id id -> {arg with mng_id = id}
| xml -> failwith ("load_meaning_info:\n " ^ tei_to_string xml)
let load_meaning = function
| Fs("lexical_unit", meaning_info) ->
Xlist.fold meaning_info empty_meaning load_meaning_info
| xml -> failwith ("load_meaning:\n " ^ tei_to_string xml)
let load_phrases_connections = function
| SameAs(same_as,"phrase") -> same_as
| xml -> failwith ("load_phrases_connections: \n " ^ tei_to_string xml)
let load_alter_connection = function
| Fs("connection", [
F("argument",SameAs(same_as,"argument"));
Fset("phrases",phrases)]) ->
{argument = same_as; phrases = List.rev (Xlist.rev_map phrases load_phrases_connections)}
| xml -> failwith ("load_alter_connections: \n " ^ tei_to_string xml)
let load_alternations = function
| Fs("alternation",[Fset("connections",connections_set)]) ->
{connections = List.rev (Xlist.rev_map connections_set load_alter_connection)}
| xml -> failwith ("load_alternations: \n " ^ tei_to_string xml)
let load_connections = function
| Fset("alternations",alternations) ->
List.rev (Xlist.rev_map alternations load_alternations)
| xml -> failwith ("load_connections: \n " ^ tei_to_string xml)
let load_entry = function
| Xml.Element("entry",["xml:id",id], l) ->
let entry = {empty_entry with ent_id = parse_id id} in
Xlist.fold l entry (fun e -> function
Xml.Element("form", [], [
Xml.Element("orth",[],[Xml.PCData orth]);
Xml.Element("pos",[],[Xml.PCData pos])]) -> {e with form_orth=orth; form_pos=pos}
| xml -> (match parse_tei xml with
| Fs("syntactic_layer", [syntax]) -> {e with schemata = load_syntax syntax}
| Fs("examples_layer", [examples]) -> {e with examples = load_examples examples}
| Fs("semantic_layer", [semantic]) -> {e with frames = load_semantic semantic}
| Fs("meanings_layer", [Fset("meanings",meanings_set)]) ->
{e with meanings = List.rev (Xlist.rev_map meanings_set load_meaning)}
| Fs("connections_layer",[connections]) -> {e with alternations = load_connections connections}
| Fs("general_info",[F("status",TEIstring status)]) -> {e with status=status}
| xml -> failwith ("load_entry: \n" ^ tei_to_string xml)))
| xml -> failwith ("load_entry: \n" ^ Xml.to_string_fmt xml)
let load_walenty filename:entry list =
begin
match Xml.parse_file filename with
Xml.Element("TEI", _,
[Xml.Element("teiHeader",_,_) ;
Xml.Element("text",[],[Xml.Element("body",[],entries)])]) ->
List.rev (Xlist.rev_map entries load_entry)
| _ -> failwith "load_walenty"
end
type expansion = Phrases of morf list | Positions of position list
let load_expansion = function
Fs("expansion",[F("opinion",Symbol opinion);Fset("phrases",set)]) -> Phrases(List.rev (Xlist.map set (fun p -> snd (load_phrase p))))
| Fs("expansion",[F("opinion",Symbol opinion);Fset("positions",set)]) -> Positions(List.rev (Xlist.map set load_position))
| tei -> failwith ("load_expansion: \n" ^ tei_to_string tei)
let load_rentry = function
| Xml.Element("entry",["xml:id",id], [phrase;exp]) ->
let id = parse_id id in
let morf = snd (load_phrase (parse_tei phrase)) in
let expansions = match parse_tei exp with
| Fs("phrase_type_expansions", [Fset("expansions",expansions)]) -> List.rev (Xlist.map expansions load_expansion)
| Fs("phrase_type_expansions", [F("expansions",expansion)]) -> [load_expansion expansion]
| tei -> failwith ("load_entry: \n" ^ tei_to_string tei) in
id,morf,expansions
| xml -> failwith ("load_entry: \n" ^ Xml.to_string_fmt xml)
let load_expands filename =
begin
match Xml.parse_file filename with
Xml.Element("TEI", _,
[Xml.Element("teiHeader",_,_) ;
Xml.Element("text",[],[Xml.Element("body",[],entries)])]) ->
List.rev (Xlist.rev_map entries load_rentry)
| _ -> failwith "load_walenty"
end
(* !!! Wczytywanie walentego *)
(*let walenty = load_walenty Paths.walenty_filename *)
let walenty = load_walenty "/home/yacheu/Dokumenty/NLP resources/Walenty/walenty_20170304.xml"
let expands = load_expands "/home/yacheu/Dokumenty/NLP resources/Walenty/phrase_types_expand_20170304.xml"
let subtypes = ["int",[
"co"; "czemu"; "czy"; "czyj"; "dlaczego"; "dokąd"; "gdzie"; "ile"; "jak";
"jaki"; "kiedy"; "kto"; "którędy"; "który"; "odkąd"; "skąd"; "jakoby"];
"rel",[
"co"; "dokąd"; "gdzie"; "jak"; "jakby"; "jaki"; "jakoby"; "kiedy"; "kto";
"którędy"; "który"; "odkąd"; "skąd"]]
let equivalents = ["jak","niczym"; "przeciw";"przeciwko"]
nonch-->
co [pewna]
coś [pewna]
nic [pewna]
to [pewna]
advp(pron)-->
tak [pewna]
jak [pewna]
(*
Autor: Maciej Hołubowicz
*)
let przejdz funkcja poczym =
let _ = List.rev (List.fold_left (fun l nazwa -> funkcja nazwa :: l) [] poczym) in
()
(*zwraca liste zwróconych wartosci przez funkcje*)
let przejdz_lista funkcja poczym =
List.rev (List.fold_left (fun l nazwa -> funkcja nazwa :: l) [] poczym)
let przejdz_lista_second funkcja poczym =
List.rev (List.fold_left (fun l nazwa -> (snd (funkcja nazwa)) :: l) [] poczym)
(*łączy listy zwróconych wartości przez funkcje*)
let przejdz_scal funkcja poczym =
List.rev (List.fold_left (fun l nazwa -> funkcja nazwa @ l) [] poczym)
(*zapisuje wynik wywołania do zmiennej i wywołuje ze zmienną*)
let przejdz_zapisz funkcja zmienna poczym =
List.fold_left (fun zmienna nazwa -> funkcja zmienna nazwa) zmienna poczym
let rec last l =
match l with
| [a] -> a
| a::b -> last b
| _ -> failwith "pusta lista"
let parse_full_id s =
if String.length s = 0 then empty_id else
if String.length s < 6 then failwith "za krótkie id" else
let hash,s = if (String.get s 0) = '#' then true, String.sub s 1 (String.length s - 1) else false, s in
if String.sub s 0 4 <> "wal_" then failwith "id nie ma wal" else
let s,suf = match Str.split (Str.regexp "-") s with
[s;suf] -> s,suf
| _ -> failwith "zła ilość '-'" in
let id = {hash = hash; suffix = suf; numbers = (Str.split (Str.regexp "\\.") s)} in
id
let parse_id s =
if String.length s = 0 then empty_id else
if String.length s < 6 then failwith "za krótkie id" else
let hash,s = if (String.get s 0) = '#' then true, String.sub s 1 (String.length s - 1) else false, s in
if String.sub s 0 4 <> "wal_" then failwith "id nie ma wal" else
let s,suf = match Str.split (Str.regexp "-") s with
[s;suf] -> s,suf
| _ -> failwith "zła ilość '-'" in
let id = {hash = hash; suffix = suf; numbers = (Str.split (Str.regexp "\\.") s)} in
{id with numbers = [last id.numbers]}
(* Początek kodu do wczytywania syntaticLayer *)
(*
type preposition = string
type case = string
type comp = string * (string list)(* oznaczony w xmlu jako "type" *)
type aspect = string
type lemmas = string list
type category =
string * phrase list
and phrase =
NP of case
| PrepNP of preposition * case
| AdjP of case
| PrepAdjP of preposition * case
| ComprepNP of preposition
| CP of comp
| NCP of case * comp
| PrepNCP of preposition * case * comp
| InfP of aspect
| XP of category
| AdvP of string
| GerP of case
| PrepGerP of preposition * case
| NumP of case
| PrepNumP of preposition * case
| PpasP of case
| PrepPpasP of preposition * case
| PactP of case
| PrepPactP of preposition * case
| Qub
| ComparP of string
| Nonch
| Or
| Refl
| Recip
| E
| DistrP
| PossP
| FixedP of phrase list * string
| Lex of lex
| Null
and lex = {
phrases_list: phrase list;
lemma: string * string * lemmas;
numeral_lemma: string * string * lemmas;
negation: string;
degree: string;
number: string;
reflex: string;
gender: string;
modification: string * position list;
}
and*) (*type position = {psn_id: id; gf: string; phrases: (id * morf) list; control: string list}*)
(* let _ = Printf.printf "loading: OK\n" *)
(* ******************************************* *)
(****
(*
(*sprawdzanie czy id jednoznacznie definiuje zawartość typu*)
(*meaningsLayer*)
module StringMap = Map.Make(String)
let cnt = ref 0;;
let add_new map meaning =
let num_id = match meaning.mng_id with
{hash=false; numbers=[num_id]; suffix="mng"} -> num_id
| _ -> failwith "zła składnia id" in
if StringMap.mem num_id map then
(Printf.printf "okkk\n";
let meaning2 = StringMap.find num_id map in
if meaning = meaning2 then map else
failwith "różne1111")
else (cnt:=!cnt+1;StringMap.add num_id meaning map)
let check_entry_menaings mapa entry =
przejdz_zapisz add_new mapa entry.meanings
let check_meanings walenty =
przejdz_zapisz check_entry_menaings StringMap.empty walenty
(*
let _ = check_meanings walenty
let _ = Printf.printf "meaning map.size: %d\n" !cnt
*)
(*semanticLayer*)
let cnt = ref 0;;
(*arg_id*)
let add_new map argument =
let arg_id = match argument.arg_id with
{hash=false; numbers=[num_id]; suffix="arg"} -> num_id
| _ -> failwith "zła składnia id" in
if StringMap.mem arg_id map then
(Printf.printf "okkk\n";
let val2 = StringMap.find arg_id map in
let val1 = argument in
if val1 = val2 then map else
failwith "różne1111")
else (cnt:=!cnt+1; StringMap.add arg_id argument map)
let check_frame mapa frame =
przejdz_zapisz add_new mapa frame.arguments
let check_entry_frames mapa entry =
przejdz_zapisz check_frame mapa entry.frames
let check_meanings walenty =
przejdz_zapisz check_entry_frames StringMap.empty walenty
(*
let _ = check_meanings walenty
let _ = Printf.printf "entry.frame.argument map.size: %d\n" !cnt
*)
(*arg_id done*)
let cnt = ref 0;;
(*frm_id*)
let add_new map frame =
let id = match frame.frm_id with
{hash=false; numbers=[num_id]; suffix="frm"} -> num_id
| _ -> failwith "zła składnia id" in
if StringMap.mem id map then
(Printf.printf "okkk\n";
let val2 = StringMap.find id map in
let val1 = frame in
if val1 = val2 then map else
failwith "różne1111")
else (cnt:=!cnt+1; StringMap.add id frame map)
let check_entry_frames mapa entry =
przejdz_zapisz add_new mapa entry.frames
let check_meanings walenty =
przejdz_zapisz check_entry_frames StringMap.empty walenty
(*
let _ = check_meanings walenty
let _ = Printf.printf "entry.frame map.size: %d\n" !cnt
*)
(*frm.id done*)
(*examplesLayer*)
(*na razie zeruje phrases!!!!*)
let print_example example =
Printf.printf "meaning: %s\n phrases: " example.meaning;
(* print_endline (String.concat "; " example.phrases);*)
Printf.printf "sentence: %s\n" example.sentence;
Printf.printf "source: %s\n" example.source;
Printf.printf "opinion: %s\n" example.opinion;
Printf.printf "note: %s\n\n" example.note
let cnt = ref 0;;
let takiesame = ref 0;;
let add_new map example =
let id = match example.exm_id with
{hash=false; numbers=[num_id]; suffix="exm"} -> num_id
| _ -> failwith "zła składnia id" in
(* let example = {example with phrases = []} in (*uwaga!!!! zeruje phrases!!!*)*)
let example = {example with meaning = ""} in (*uwaga!!!! zeruje meaning!!!*)
if StringMap.mem id map then
(takiesame:=!takiesame+1;
(* Printf.printf "okkk\n";*)
let val2 = StringMap.find id map in
let val1 = example in
if val1 = val2 then map else
let _ = print_example val1 in
let _ = print_example val2 in
failwith "różne1111")
else (cnt:=!cnt+1; StringMap.add id example map)
let check_entry_example mapa entry =
przejdz_zapisz add_new mapa entry.examples
let check_meanings walenty =
przejdz_zapisz check_entry_example StringMap.empty walenty
(*
let _ = check_meanings walenty
let _ = Printf.printf "examples map.size: %d takich samych: %d\n" !cnt !takiesame
*)
(*syntatcticLayer position*)
let cnt = ref 0;;
let takiesame = ref 0;;
let add_new map position =
let id = match position.psn_id with
{hash=false; numbers=[num_id]; suffix="psn"} -> num_id
| _ -> failwith "zła składnia id" in
(* let position = {position with phrases = przejdz_lista (fun (x,y) -> (parse_id "",y)) position.phrases} in*) (*uwaga!!!!*)
if StringMap.mem id map then
(takiesame:=!takiesame+1;
(* Printf.printf "okkk\n";*)
let val2 = StringMap.find id map in
let val1 = position in
if val1 = val2 then map else
failwith "różne1111")
else (cnt:=!cnt+1; StringMap.add id position map)
let check_schema mapa schema =
przejdz_zapisz add_new mapa schema.positions
let check_entry mapa entry =
przejdz_zapisz check_schema mapa entry.schemata
let check walenty =
przejdz_zapisz check_entry StringMap.empty walenty
(*
let _ = check walenty
let _ = Printf.printf "syntactic...position map.size: %d takich samych: %d\n" !cnt !takiesame
*)
(* schema *)
let cnt = ref 0;;
let takiesame = ref 0;;
(*let clear_id (position:position) =
let position = {position with phrases = [](*przejdz_lista (fun (x,y) -> (empty_id,y)) position.phrases*)} in (*uwaga!!!!*)
let position = {position with psn_id = empty_id} in
position*)
let print_schema (schema:schema) =
Printf.printf "schema.opinion= %s\n" schema.opinion;
Printf.printf "schema.reflexiveMark= %s\n" schema.reflexiveMark;
Printf.printf "schema.aspect= %s\n" schema.aspect;
Printf.printf "schema.negativity= %s\n" schema.negativity;
Printf.printf "schema.predicativity= %s\n___________________\n" schema.predicativity
let add_new map schema =
let id = match schema.sch_id with
{hash=false; numbers=[num_id]; suffix="sch"} -> num_id
| _ -> failwith "zła składnia id" in
let schema = {schema with opinion = ""} in (*uwaga, zeruje opinie!!!*)
if StringMap.mem id map then
(takiesame:=!takiesame+1;
(* Printf.printf "okkk\n";*)
let val2 = StringMap.find id map in
let val1 = schema in
if val1 = val2 then map else
let _ = print_schema val1 in
let _ = print_schema val2 in
failwith "różne1111")
else (cnt:=!cnt+1; StringMap.add id schema map)
let check_schema mapa schema =
add_new mapa schema
let check_entry mapa entry =
przejdz_zapisz check_schema mapa entry.schemata
let check walenty =
przejdz_zapisz check_entry StringMap.empty walenty
(*
let _ = check walenty
let _ = Printf.printf "syntactic...schema map.size: %d takich samych: %d\n" !cnt !takiesame
*)
(*phrases*)
let cnt = ref 0;;
let takiesame = ref 0;;
let add_new map (id, phrase) =
let id = match id with
{hash=false; numbers=[num_id]; suffix="phr"} -> num_id
| _ -> failwith "zła składnia id" in
if StringMap.mem id map then
(takiesame:=!takiesame+1;
(* Printf.printf "okkk\n";*)
let val2 = StringMap.find id map in
let val1 = phrase in
if val1 = val2 then map else
failwith "różne1111")
else (cnt:=!cnt+1; StringMap.add id phrase map)
let check_pos mapa (position:position) =
przejdz_zapisz add_new mapa position.phrases
let check_schema mapa schema =
przejdz_zapisz check_pos mapa schema.positions
let check_entry mapa entry =
przejdz_zapisz check_schema mapa entry.schemata
let check walenty =
przejdz_zapisz check_entry StringMap.empty walenty
*)
(*
let _ = check walenty
let _ = Printf.printf "syntactic...phrases map.size: %d takich samych: %d\n" !cnt !takiesame
*)
(*
loading: OK
meaning map.size: 32962
entry.frame.argument map.size: 10475
entry.frame map.size: 3463
examples map.size: 146536 takich samych: 64
syntactic...position map.size: 7021 takich samych: 195288
syntactic...schema map.size: 21247 takich samych: 51241
*)
(* author: Wojciech Jaworski *)
open Xstd
let rec parse_comp = function
"int",[] -> ENIAMwalTypes.Int,[]
| "rel",[] -> ENIAMwalTypes.Rel,[]
| "int",l -> ENIAMwalTypes.Int, Xlist.map l (fun s -> ENIAMwalTypes.Comp s)
| "rel",l -> ENIAMwalTypes.Rel, Xlist.map l (fun s -> ENIAMwalTypes.Comp s)
| s,[] -> ENIAMwalTypes.CompTypeUndef,[ENIAMwalTypes.Comp s]
| _ -> failwith "parse_comp"
let rec morf_of_phrase = function
NP c -> ENIAMwalTypes.Phrase (ENIAMwalTypes.NP(ENIAMwalParser.parse_case [ENIAMwalTypes.Text c]))
| PrepNP(prep,c) -> ENIAMwalTypes.Phrase (ENIAMwalTypes.PrepNP(ENIAMwalTypes.Sem,ENIAMwalParser.parse_prep [ENIAMwalTypes.Text prep],ENIAMwalParser.parse_case [ENIAMwalTypes.Text c]))
| AdjP c -> ENIAMwalTypes.Phrase (ENIAMwalTypes.AdjP(ENIAMwalParser.parse_case [ENIAMwalTypes.Text c]))
| PrepAdjP(prep,c) -> ENIAMwalTypes.Phrase (ENIAMwalTypes.PrepAdjP(ENIAMwalTypes.Sem,ENIAMwalParser.parse_prep [ENIAMwalTypes.Text prep],ENIAMwalParser.parse_case [ENIAMwalTypes.Text c]))
| ComprepNP prep -> ENIAMwalTypes.Phrase (ENIAMwalTypes.ComprepNP(ENIAMwalTypes.Sem,ENIAMwalParser.parse_prep [ENIAMwalTypes.Text prep]))
| CP(co) -> ENIAMwalTypes.PhraseComp(ENIAMwalTypes.Cp,parse_comp co)
| NCP(c,co) -> ENIAMwalTypes.PhraseComp(ENIAMwalTypes.Ncp(ENIAMwalParser.parse_case [ENIAMwalTypes.Text c]),parse_comp co)
| PrepNCP(prep,c,co) -> ENIAMwalTypes.PhraseComp(ENIAMwalTypes.Prepncp(ENIAMwalParser.parse_prep [ENIAMwalTypes.Text prep],ENIAMwalParser.parse_case [ENIAMwalTypes.Text c]),parse_comp co)
| InfP(a) -> ENIAMwalTypes.Phrase (ENIAMwalTypes.InfP(ENIAMwalParser.parse_aspect [ENIAMwalTypes.Text a]))
| XP(mode,phrases) -> ENIAMwalTypes.PhraseAbbr(ENIAMwalTypes.Xp(fst (ENIAMwalParser.parse_mode [ENIAMwalTypes.Text mode])), Xlist.map phrases morf_of_phrase)
| AdvP mode -> ENIAMwalTypes.PhraseAbbr(ENIAMwalTypes.Advp(fst (ENIAMwalParser.parse_mode [ENIAMwalTypes.Text mode])), [])
| NumP(c) -> ENIAMwalTypes.Phrase (ENIAMwalTypes.NumP(ENIAMwalParser.parse_case [ENIAMwalTypes.Text c]))
| PrepNumP(prep,c) -> ENIAMwalTypes.Phrase (ENIAMwalTypes.PrepNumP(ENIAMwalTypes.Sem,ENIAMwalParser.parse_prep [ENIAMwalTypes.Text prep],ENIAMwalParser.parse_case [ENIAMwalTypes.Text c]))
| ComparP prep -> ENIAMwalTypes.PhraseAbbr (ENIAMwalTypes.ComparP(ENIAMwalParser.parse_prep [ENIAMwalTypes.Text prep]),[])
| Nonch -> ENIAMwalTypes.PhraseAbbr (ENIAMwalTypes.Nonch,[])
| Or -> ENIAMwalTypes.Phrase ENIAMwalTypes.Or
| Refl -> ENIAMwalTypes.Phrase (ENIAMwalTypes.Lex "się")
| Recip -> ENIAMwalTypes.Phrase (ENIAMwalTypes.Lex "się")
| E -> ENIAMwalTypes.E ENIAMwalTypes.Null
| DistrP -> ENIAMwalTypes.PhraseAbbr (ENIAMwalTypes.Distrp,[])
| PossP -> ENIAMwalTypes.PhraseAbbr (ENIAMwalTypes.Possp,[])
| FixedP(_,s) -> ENIAMwalTypes.Phrase (ENIAMwalTypes.FixedP s)
| Lex lex -> (*print_endline "lex";*) ENIAMwalTypes.Phrase (ENIAMwalTypes.Null) (* FIXME: ni *)
| Null -> ENIAMwalTypes.Phrase (ENIAMwalTypes.Null)
| _ -> failwith "morf_of_phrase"
(* | GerP(c) -> ENIAMwalTypes.Phrase (ENIAMwalTypes.
| PrepGerP(prep,c) -> ENIAMwalTypes.Phrase (ENIAMwalTypes.
| PpasP(c) -> ENIAMwalTypes.Phrase (ENIAMwalTypes.
| PrepPpasP(prep,c) -> ENIAMwalTypes.Phrase (ENIAMwalTypes.
| PPact(c) -> ENIAMwalTypes.Phrase (ENIAMwalTypes.
| PrepPactP(prep,c) -> ENIAMwalTypes.Phrase (ENIAMwalTypes.
| Qub -> ENIAMwalTypes.Phrase (ENIAMwalTypes.*)
open ENIAMwalTypes
let process_phrases phrases =
Xlist.fold phrases StringMap.empty (fun phrases (id,phrase) ->
let id =
match id with
{hash=false; numbers=[(*_;_;_;*)id]; suffix="phr"} -> id
| _ -> failwith "process_phrases" in
StringMap.add phrases id phrase)
let process_positions positions =
Xlist.fold positions StringMap.empty (fun positions position ->
let id =
match position.psn_id with
{hash=false; numbers=[(*_;_;*)id]; suffix="psn"} -> id
| _ -> failwith "process_positions" in
let r,cr,ce = ENIAMwalParser.parse_roles (position.gf :: position.control) in
let phrases = process_phrases position.phrases in
StringMap.add positions id (r,cr,ce,phrases))
let process_schemata schemata =
Xlist.fold schemata StringMap.empty (fun schemata schema ->
let id =
match schema.sch_id with
{hash=false; numbers=[(*_;*)id]; suffix="sch"} -> id
| _ -> failwith "process_schemata" in
let schema_atrs = DefaultAtrs([],
ENIAMwalParser.parse_refl [Text schema.reflexiveMark],
ENIAMwalParser.parse_opinion schema.opinion,
ENIAMwalParser.parse_negation [Text schema.negativity],
ENIAMwalParser.parse_pred [Text schema.predicativity],
ENIAMwalParser.parse_aspect [Text schema.aspect]) in
let positions = process_positions schema.positions in
StringMap.add schemata id (schema_atrs,positions))
let add_meanings meanings = function
DefaultAtrs(_,r,o,n,p,a) -> DefaultAtrs(meanings,r,o,n,p,a)
| _ -> failwith "add_meanings"
let process_arguments arguments =
Xlist.fold arguments StringMap.empty (fun arguments argument ->
let id =
match argument.arg_id with
{hash=false; numbers=[(*_;_;*)id]; suffix="arg"} -> id
| _ -> failwith "process_arguments" in
StringMap.add arguments id (argument.role,argument.role_attribute,argument.sel_prefs))
let get_meaning_id meaning =
match parse_full_id meaning with
{hash=true; numbers=[_;id]; suffix="mng"} -> id
| _ -> failwith "get_meaning_id"
let get_schema_id alt =
try
match parse_full_id (List.hd ((List.hd alt.connections).phrases)) with
{hash=true; numbers=[_;id;_;_]; suffix="phr"} -> id
| _ -> failwith "get_schema_id 1"
with _ -> failwith "get_schema_id 2"
let get_frame_id alt =
try
match parse_full_id ((List.hd alt.connections).argument) with
{hash=true; numbers=[_;id;_]; suffix="arg"} -> id
| _ -> failwith "get_frame_id"
with _ -> failwith "get_frame_id"
let get_argument_id arg =
match parse_full_id arg with
{hash=true; numbers=[_;_;id]; suffix="arg"} -> id
| _ -> failwith "get_argument_id"
let get_position_id phrases =
try
match parse_full_id (List.hd phrases) with
{hash=true; numbers=[_;_;id;_]; suffix="phr"} -> id
| _ -> failwith "get_position_id"
with _ -> failwith "get_position_id"
let get_phrase_id arg =
match parse_full_id arg with
{hash=true; numbers=[_;_;_;id]; suffix="phr"} -> id
| _ -> failwith "get_phrase_id"
let process_frames frames =
Xlist.fold frames StringMap.empty (fun frames frame ->
let id =
match frame.frm_id with
{hash=false; numbers=[(*_;*)id]; suffix="frm"} -> id
| _ -> failwith "process_frames" in
let arguments = process_arguments frame.arguments in
let meaning_ids = Xlist.map frame.meanings get_meaning_id in
StringMap.add frames id (meaning_ids,arguments))
let process_meanings meanings =
Xlist.fold meanings StringMap.empty (fun meanings meaning ->
let id =
match meaning.mng_id with
{hash=false; numbers=[(*_;*)id]; suffix="mng"} -> id
| _ -> failwith "process_meanings" in
StringMap.add meanings id (meaning.name ^ " " ^ meaning.variant))
let process_sel_pref = function
Numeric s -> (try ENIAMplWordnet.synset_name s with Not_found -> "unknown")
| Symbol s -> s
| Relation(s,t) -> "REL" (* FIXME *)
let connect entry =
let schemata = process_schemata entry.schemata in
let frames = process_frames entry.frames in
let meanings = process_meanings entry.meanings in
Xlist.fold entry.alternations [] (fun found alt ->
if alt.connections = [] then found else
let schema_id = get_schema_id alt in
let frame_id = get_frame_id alt in
let schema_atrs,positions = StringMap.find schemata schema_id in
let meaning_ids,arguments = StringMap.find frames frame_id in
let positions = Xlist.fold alt.connections [] (fun positions2 conn ->
let argument_id = get_argument_id conn.argument in
let position_id = get_position_id conn.phrases in
let r,cr,ce,phrases = StringMap.find positions position_id in
let phrases = Xlist.fold conn.phrases [] (fun phrases2 id ->
let phrase_id = get_phrase_id id in
try StringMap.find phrases phrase_id :: phrases2
with Not_found -> (*Printf.printf "%s\n%!" entry.form_orth;*)phrases2) in
let role,role_attribute,sel_prefs = StringMap.find arguments argument_id in
let sel_prefs = Xlist.map (List.flatten sel_prefs) process_sel_pref in
{gf=r; role=role; role_attr=role_attribute; sel_prefs=sel_prefs;
cr=cr; ce=ce; dir=Both; morfs=Xlist.map phrases morf_of_phrase} :: positions2) in
let meanings = List.rev (Xlist.fold meaning_ids [] (fun l id ->
(StringMap.find meanings id) :: l)) in
let schema_atrs = add_meanings meanings schema_atrs in
(entry.form_orth,entry.form_pos,Frame(schema_atrs,positions)) :: found)
let connect2 entry =
let schemata = process_schemata entry.schemata in
StringMap.fold schemata [] (fun found _ (schema_atrs,positions) ->
let positions = StringMap.fold positions [] (fun positions2 _ (r,cr,ce,phrases) ->
let phrases = StringMap.fold phrases [] (fun phrases2 _ phrase -> phrase :: phrases2) in
{gf=r; role=""; role_attr=""; sel_prefs=[];
cr=cr; ce=ce; dir=Both; morfs=Xlist.map phrases morf_of_phrase} :: positions2) in
(entry.form_orth,entry.form_pos,Frame(schema_atrs,positions)) :: found)
let load_walenty2 () =
let walenty = load_walenty walenty_filename in
Xlist.fold walenty StringMap.empty (fun walenty entry ->
if entry.frames = [] then Xlist.fold (connect2 entry) walenty (fun walenty (lemma,pos,frame) ->
let map = try StringMap.find walenty pos with Not_found -> StringMap.empty in
let map = StringMap.add_inc map lemma [frame] (fun l -> frame :: l) in
StringMap.add walenty pos map)
else Xlist.fold (connect entry) walenty (fun walenty (lemma,pos,frame) ->
let map = try StringMap.find walenty pos with Not_found -> StringMap.empty in
let map = StringMap.add_inc map lemma [frame] (fun l -> frame :: l) in
StringMap.add walenty pos map))
let print_stringqmap filename qmap =
let l = StringQMap.fold qmap [] (fun l k v -> (v,k) :: l) in
File.file_out filename (fun file ->
Xlist.iter (Xlist.sort l compare) (fun (v,k) ->
Printf.fprintf file "%5d %s\n" v k))
let sel_prefs_quantities walenty =
Xlist.fold walenty StringQMap.empty (fun quant e ->
Xlist.fold e.frames quant (fun quant f ->
Xlist.fold f.arguments quant (fun quant a ->
Xlist.fold a.sel_prefs quant (fun quant l ->
Xlist.fold l quant (fun quant -> function
Numeric s ->
let name = try ENIAMplWordnet.synset_name s with Not_found -> "unknown" in
StringQMap.add quant ("N " ^ s ^ " " ^ name)
| Symbol s -> StringQMap.add quant ("S " ^ s)
| Relation(s,t) -> StringQMap.add quant ("R " ^ s ^ " | " ^ t))))))
(*let _ =
let walenty = load_walenty walenty_filename in
let quant = sel_prefs_quantities walenty in
print_stringqmap "results/quant_sel_prefs.txt" quant*)
let print_entry filename lex =
match Xml.parse_file filename with
Xml.Element("TEI", _,
[Xml.Element("teiHeader",_,_) ;
Xml.Element("text",[],[Xml.Element("body",[],entries)])]) ->
Xlist.iter entries (function
Xml.Element("entry",_,Xml.Element("form", [], [Xml.Element("orth",[],[Xml.PCData orth]);_]) :: xml :: _) ->
if orth = lex then print_endline (Xml.to_string_fmt xml)
| _ -> failwith "print_entry")
| _ -> failwith "print_entry"
(*let _ =
print_entry walenty_filename "bębnić"*)
let print_full_entry filename lex =
match Xml.parse_file filename with
Xml.Element("TEI", _,
[Xml.Element("teiHeader",_,_) ;
Xml.Element("text",[],[Xml.Element("body",[],entries)])]) ->
Xlist.iter entries (function
Xml.Element("entry",e,Xml.Element("form",[],[Xml.Element("orth",[],[Xml.PCData orth]);p]) :: syn :: _ :: l) ->
let xml = Xml.Element("entry",e,Xml.Element("form",[],[Xml.Element("orth",[],[Xml.PCData orth]);p]) :: syn :: l) in
if orth = lex then print_endline (Xml.to_string_fmt xml)
| _ -> failwith "print_full_entry")
| _ -> failwith "print_full_entry"
(*let _ =
print_full_entry walenty_filename "bębnić"*)
(*let _ =
let walenty = load_walenty2 () in
let frames_sem = try StringMap.find (StringMap.find walenty "verb") "bębnić" with Not_found -> failwith "walTEI" in
Xlist.iter frames_sem (fun frame ->
print_endline (WalStringOf.frame "bębnić" frame))*)
****)