Parser.java
16.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
package is2.parserR2;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.util.Map.Entry;
import java.util.zip.ZipEntry;
import java.util.zip.ZipInputStream;
import java.util.zip.ZipOutputStream;
//import extractors.ExtractorClusterStackedR2;
import extractors.Extractor;
import extractors.ExtractorFactory;
import is2.data.Cluster;
import is2.data.DataF;
import is2.data.Edges;
import is2.data.FV;
import is2.data.Instances;
import is2.data.Long2Int;
import is2.data.Long2IntInterface;
import is2.data.MFB;
import is2.data.Parse;
import is2.data.ParseNBest;
import is2.data.PipeGen;
import is2.data.SentenceData09;
import is2.io.CONLLReader09;
import is2.io.CONLLWriter09;
import is2.tools.Tool;
import is2.util.DB;
import is2.util.OptionsSuper;
import is2.util.ParserEvaluator;
public class Parser implements Tool {
// output evaluation info
private static final boolean MAX_INFO = true;
public static int THREADS = 4;
Long2IntInterface l2i;
ParametersFloat params;
Pipe pipe;
OptionsSuper options;
HashMap<Integer, Integer> rank = new HashMap<Integer, Integer>();
int amongxbest = 0, amongxbest_ula = 0, nbest = 0, bestProj = 0, smallestErrorSum = 0, countAllNodes = 0;
static int NBest = 1000;
ExtractorFactory extractorFactory = new ExtractorFactory(ExtractorFactory.StackedClusteredR2);
/**
* Initialize the parser
*
* @param options
*/
public Parser(OptionsSuper options) {
this.options = options;
pipe = new Pipe(options);
params = new ParametersFloat(0);
// load the model
try {
readModel(options, pipe, params);
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* @param modelFileName
* The file name of the parsing model
*/
public Parser(String modelFileName) {
this(new Options(new String[] { "-model", modelFileName }));
}
/**
*
*/
public Parser() {
// TODO Auto-generated constructor stub
}
public static void main(String[] args) throws Exception {
long start = System.currentTimeMillis();
OptionsSuper options = new Options(args);
NBest = options.best;
DB.println("n-best" + NBest);
Runtime runtime = Runtime.getRuntime();
THREADS = runtime.availableProcessors();
if (options.cores < THREADS && options.cores > 0)
THREADS = options.cores;
DB.println("Found " + runtime.availableProcessors() + " cores use " + THREADS);
if (options.train) {
Parser p = new Parser();
p.options = options;
p.l2i = new Long2Int(options.hsize);
p.pipe = new Pipe(options);
Instances is = new Instances();
p.pipe.extractor = new Extractor[THREADS];
for (int t = 0; t < THREADS; t++)
p.pipe.extractor[t] = p.extractorFactory.getExtractor(p.l2i);
p.params = new ParametersFloat(p.l2i.size());
if (options.useMapping != null) {
String model = options.modelName;
options.modelName = options.useMapping;
DB.println("Using mapping of model " + options.modelName);
ZipInputStream zis = new ZipInputStream(
new BufferedInputStream(new FileInputStream(options.modelName)));
zis.getNextEntry();
DataInputStream dis = new DataInputStream(new BufferedInputStream(zis));
p.pipe.mf.read(dis);
DB.println("read\n" + p.pipe.mf.toString());
ParametersFloat params = new ParametersFloat(0);
params.read(dis);
Edges.read(dis);
dis.close();
DB.println("end read model");
options.modelName = model;
}
p.pipe.createInstances(options.trainfile, is);
p.train(options, p.pipe, p.params, is, p.pipe.cl);
p.writeModell(options, p.params, null, p.pipe.cl);
}
if (options.test) {
Parser p = new Parser();
p.options = options;
p.pipe = new Pipe(options);
p.params = new ParametersFloat(0); // total should be zero and the
// parameters are later read
// load the model
p.readModel(options, p.pipe, p.params);
DB.println("test on " + options.testfile);
System.out.println("" + p.pipe.mf.toString());
p.outputParses(options, p.pipe, p.params, !MAX_INFO);
}
System.out.println();
if (options.eval) {
System.out.println("\nEVALUATION PERFORMANCE:");
ParserEvaluator.evaluate(options.goldfile, options.outfile);
}
long end = System.currentTimeMillis();
System.out.println("used time " + ((float) ((end - start) / 100) / 10));
Decoder.executerService.shutdown();
Pipe.executerService.shutdown();
System.out.println("end.");
}
/**
* Read the models and mapping
*
* @param options
* @param pipe
* @param params
* @throws IOException
*/
public void readModel(OptionsSuper options, Pipe pipe, Parameters params) throws IOException {
DB.println("Reading data started");
// prepare zipped reader
ZipInputStream zis = new ZipInputStream(new BufferedInputStream(new FileInputStream(options.modelName)));
zis.getNextEntry();
DataInputStream dis = new DataInputStream(new BufferedInputStream(zis));
pipe.mf.read(dis);
pipe.cl = new Cluster(dis);
params.read(dis);
this.l2i = new Long2Int(params.size());
DB.println("parsing -- li size " + l2i.size());
pipe.extractor = new Extractor[THREADS];
for (int t = 0; t < THREADS; t++)
pipe.extractor[t] = this.extractorFactory.getExtractor(l2i);
Edges.read(dis);
options.decodeProjective = dis.readBoolean();
int maxForm = dis.readInt();
for (int t = 0; t < THREADS; t++) {
pipe.extractor[t].setMaxForm(maxForm);
pipe.extractor[t].initStat();
pipe.extractor[t].init();
}
boolean foundInfo = false;
try {
String info = null;
int icnt = dis.readInt();
for (int i = 0; i < icnt; i++) {
info = dis.readUTF();
System.out.println(info);
}
} catch (Exception e) {
if (!foundInfo)
System.out.println("no info about training");
}
dis.close();
DB.println("Reading data finnished");
Decoder.NON_PROJECTIVITY_THRESHOLD = (float) options.decodeTH;
for (int t = 0; t < THREADS; t++) {
pipe.extractor[t].initStat();
pipe.extractor[t].init();
}
}
/**
* Do the training
*
* @param instanceLengths
* @param options
* @param pipe
* @param params
* @param is
* @param cluster
* @throws IOException
* @throws InterruptedException
* @throws ClassNotFoundException
*/
public void train(OptionsSuper options, Pipe pipe, ParametersFloat params, Instances is, Cluster cluster)
throws IOException, InterruptedException, ClassNotFoundException {
DB.println("\nTraining Information ");
DB.println("-------------------- ");
Decoder.NON_PROJECTIVITY_THRESHOLD = (float) options.decodeTH;
if (options.decodeProjective)
System.out.println("Decoding: " + (options.decodeProjective ? "projective" : "non-projective"));
else
System.out.println("" + Decoder.getInfo());
int numInstances = is.size();
int maxLenInstances = 0;
for (int i = 0; i < numInstances; i++)
if (maxLenInstances < is.length(i))
maxLenInstances = is.length(i);
DataF data = new DataF(maxLenInstances, pipe.mf.getFeatureCounter().get(PipeGen.REL).shortValue());
int iter = 0;
int del = 0;
float error = 0;
float f1 = 0;
FV pred = new FV();
FV act = new FV();
double upd = (double) (numInstances * options.numIters) + 1;
for (; iter < options.numIters; iter++) {
System.out.print("Iteration " + iter + ": ");
long start = System.currentTimeMillis();
long last = System.currentTimeMillis();
error = 0;
f1 = 0;
for (int n = 0; n < numInstances; n++) {
upd--;
if (is.labels[n].length > options.maxLen)
continue;
String info = " td " + ((Decoder.timeDecotder) / 1000000F) + " tr "
+ ((Decoder.timeRearrange) / 1000000F) + " te " + ((Pipe.timeExtract) / 1000000F);
if ((n + 1) % 500 == 0)
del = PipeGen.outValueErr(n + 1, Math.round(error * 1000) / 1000, f1 / n, del, last, upd, info);
short pos[] = is.pposs[n];
data = pipe.fillVector(params.getFV(), is, n, data, cluster, THREADS, l2i);
List<ParseNBest> parses = Decoder.decode(pos, data, options.decodeProjective, pipe.extractor[0]);
Parse d = parses.get(0);
double e = pipe.errors(is, n, d);
if (d.f1 > 0)
f1 += (d.labels.length - 1 - e) / (d.labels.length - 1);
if (e <= 0)
continue;
// get predicted feature vector
pred.clear();
pipe.extractor[0].encodeCat(is, n, pos, is.forms[n], is.plemmas[n], d.heads, d.labels, is.feats[n],
pipe.cl, pred);
error += e;
act.clear();
pipe.extractor[0].encodeCat(is, n, pos, is.forms[n], is.plemmas[n], is.heads[n], is.labels[n],
is.feats[n], pipe.cl, act);
params.update(act, pred, is, n, d, upd, e);
}
String info = " td " + ((Decoder.timeDecotder) / 1000000F) + " tr " + ((Decoder.timeRearrange) / 1000000F)
+ " te " + ((Pipe.timeExtract) / 1000000F) + " nz " + params.countNZ();
PipeGen.outValueErr(numInstances, Math.round(error * 1000) / 1000, f1 / numInstances, del, last, upd, info);
del = 0;
long end = System.currentTimeMillis();
System.out.println(" time:" + (end - start));
ParametersFloat pf = params.average2((iter + 1) * is.size());
try {
if (options.testfile != null) {
outputParses(options, pipe, pf, !MAX_INFO);
ParserEvaluator.evaluate(options.goldfile, options.outfile);
// writeModell(options, pf, ""+(iter+1),pipe.cl);
}
} catch (Exception e) {
e.printStackTrace();
}
Decoder.timeDecotder = 0;
Decoder.timeRearrange = 0;
Pipe.timeExtract = 0;
}
params.average(iter * is.size());
}
/**
* Do the parsing
*
* @param options
* @param pipe
* @param params
* @throws IOException
*/
private void outputParses(OptionsSuper options, Pipe pipe, ParametersFloat params, boolean maxInfo)
throws Exception {
long start = System.currentTimeMillis();
CONLLReader09 depReader = new CONLLReader09(options.testfile, options.formatTask);
CONLLWriter09 depWriter = new CONLLWriter09(options.outfile, options.formatTask);
// ExtractorClusterStacked.initFeatures();
int cnt = 0;
int del = 0;
long last = System.currentTimeMillis();
if (maxInfo)
System.out.println("\nParsing Information ");
if (maxInfo)
System.out.println("------------------- ");
if (maxInfo && !options.decodeProjective)
System.out.println("" + Decoder.getInfo());
// if (!maxInfo) System.out.println();
String[] types = new String[pipe.mf.getFeatureCounter().get(PipeGen.REL)];
for (Entry<String, Integer> e : MFB.getFeatureSet().get(PipeGen.REL).entrySet())
types[e.getValue()] = e.getKey();
System.out.print("Processing Sentence: ");
while (true) {
Instances is = new Instances();
is.init(1, new MFB(), options.formatTask);
SentenceData09 instance = pipe.nextInstance(is, depReader);
if (instance == null)
break;
cnt++;
SentenceData09 i09 = this.parse(instance, params);
// }
depWriter.write(i09);
del = PipeGen.outValue(cnt, del, last);
// DB.println("xbest "+amongxbest+" cnt "+cnt+"
// "+((float)((float)amongxbest/cnt))+" nbest "+((float)nbest/cnt)+
// " 1best "+((float)(rank.get(0)==null?0:rank.get(0))/cnt)+"
// best-proj "+((float)bestProj/cnt));
}
// pipe.close();
depWriter.finishWriting();
long end = System.currentTimeMillis();
DB.println("rank\n" + rank + "\n");
DB.println("x-best-las " + amongxbest + " x-best-ula " + amongxbest_ula + " cnt " + cnt + " x-best-las "
+ ((float) amongxbest / cnt) + " x-best-ula " + ((float) amongxbest_ula / cnt) + " nbest "
+ ((float) nbest / cnt) + " 1best " + ((float) (rank.get(0) == null ? 0 : rank.get(0)) / cnt)
+ " best-proj " + ((float) bestProj / cnt) + " Sum LAS "
+ ((float) this.smallestErrorSum / countAllNodes));
// DB.println("errors "+error);
rank.clear();
amongxbest = 0;
amongxbest_ula = 0;
cnt = 0;
nbest = 0;
bestProj = 0;
if (maxInfo)
System.out.println("Used time " + (end - start));
if (maxInfo)
System.out.println("forms count " + Instances.m_count + " unkown " + Instances.m_unkown);
}
public SentenceData09 parse(SentenceData09 instance, ParametersFloat params) {
String[] types = new String[pipe.mf.getFeatureCounter().get(PipeGen.REL)];
for (Entry<String, Integer> e : MFB.getFeatureSet().get(PipeGen.REL).entrySet())
types[e.getValue()] = e.getKey();
Instances is = new Instances();
is.init(1, new MFB(), options.formatTask);
new CONLLReader09().insert(is, instance);
String[] forms = instance.forms;
// use for the training ppos
DataF d2;
try {
d2 = pipe.fillVector(params.getFV(), is, 0, null, pipe.cl, THREADS, l2i);// cnt-1
} catch (Exception e) {
e.printStackTrace();
return null;
}
short[] pos = is.pposs[0];
List<ParseNBest> parses = null;
Parse d = null;
try {
parses = Decoder.decode(pos, d2, options.decodeProjective, pipe.extractor[0]); // cnt-1
d = parses.get(0);
} catch (Exception e) {
e.printStackTrace();
}
if (parses.size() > NBest)
parses = parses.subList(0, NBest);
int g_las = Decoder.getGoldRank(parses, is, 0, Decoder.LAS);
int g_ula = Decoder.getGoldRank(parses, is, 0, !Decoder.LAS);
int smallest = Decoder.getSmallestError(parses, is, 0, !Decoder.LAS);
smallestErrorSum += is.length(0) - smallest;
countAllNodes += is.length(0);
if (g_las >= 0)
amongxbest++;
if (g_ula >= 0)
amongxbest_ula++;
nbest += parses.size();
Integer r = rank.get(g_las);
if (r == null)
rank.put(g_las, 1);
else
rank.put(g_las, r + 1);
this.pipe.errors(is, 0, d);
float errBestProj = (float) this.pipe.errors(is, 0, Decoder.bestProj);
if (errBestProj == 0)
bestProj++;
SentenceData09 i09 = new SentenceData09(instance);
i09.createSemantic(instance);
for (int j = 0; j < forms.length - 1; j++) {
i09.plabels[j] = types[d.labels[j + 1]];
i09.pheads[j] = d.heads[j + 1];
}
return i09;
}
public List<ParseNBest> parseNBest(SentenceData09 instance) {
Instances is = new Instances();
is.init(1, new MFB(), options.formatTask);
new CONLLReader09().insert(is, instance);
// use for the training ppos
DataF d2;
try {
d2 = pipe.fillVector(params.getFV(), is, 0, null, pipe.cl, THREADS, l2i);// cnt-1
} catch (Exception e) {
e.printStackTrace();
return null;
}
short[] pos = is.pposs[0];
List<ParseNBest> parses = null;
try {
parses = Decoder.decode(pos, d2, options.decodeProjective, pipe.extractor[0]); // cnt-1
} catch (Exception e) {
e.printStackTrace();
}
if (parses.size() > NBest)
parses = parses.subList(0, NBest);
return parses;
}
/*
* (non-Javadoc)
*
* @see is2.tools.Tool#apply(is2.data.SentenceData09)
*/
@Override
public SentenceData09 apply(SentenceData09 snt09) {
SentenceData09 it = new SentenceData09();
it.createWithRoot(snt09);
SentenceData09 out = null;
try {
// for(int k=0;k<it.length();k++) {
// it.forms[k] = reader.normalize(it.forms[k]);
// it.plemmas[k] = reader.normalize(it.plemmas[k]);
// }
out = parse(it, this.params);
} catch (Exception e) {
e.printStackTrace();
}
Decoder.executerService.shutdown();
Pipe.executerService.shutdown();
return out;
}
/**
* Write the parsing model
*
* @param options
* @param params
* @param extension
* @throws FileNotFoundException
* @throws IOException
*/
private void writeModell(OptionsSuper options, ParametersFloat params, String extension, Cluster cs)
throws FileNotFoundException, IOException {
String name = extension == null ? options.modelName : options.modelName + extension;
// System.out.println("Writting model: "+name);
ZipOutputStream zos = new ZipOutputStream(new BufferedOutputStream(new FileOutputStream(name)));
zos.putNextEntry(new ZipEntry("data"));
DataOutputStream dos = new DataOutputStream(new BufferedOutputStream(zos));
MFB.writeData(dos);
cs.write(dos);
params.write(dos);
Edges.write(dos);
dos.writeBoolean(options.decodeProjective);
dos.writeInt(pipe.extractor[0].getMaxForm());
dos.writeInt(5); // Info count
dos.writeUTF("Used parser " + Parser.class.toString());
dos.writeUTF("Creation date " + (new SimpleDateFormat("yyyy.MM.dd HH:mm:ss")).format(new Date()));
dos.writeUTF("Training data " + options.trainfile);
dos.writeUTF("Iterations " + options.numIters + " Used sentences " + options.count);
dos.writeUTF("Cluster " + options.clusterFile);
dos.flush();
dos.close();
}
}