ruleGenerator.ml
25.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
open Xstd
open Printf
open Types
(* let alternation_map = Rules.alternation_map *)
let rule_types = Xlist.fold [
(* Xlist.map (StringMap.find alternation_map "obce_ch") (fun (_,s,t) -> sprintf "%sch\t%s" s t), "{x}ych\t{x}";
Xlist.map (StringMap.find alternation_map "obce_ch") (fun (_,s,t) -> sprintf "%smi\t%s" s t), "{x}ymi\t{x}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_iy") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{'}y\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_iy") (fun (_,s,t) -> sprintf "%sch\t%s" s t), "{'}ych\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_iy") (fun (_,s,t) -> sprintf "%sm\t%s" s t), "{'}ym\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_iy") (fun (_,s,t) -> sprintf "%smi\t%s" s t), "{'}ymi\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%se\t%s" s t), "{'}e\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%sego\t%s" s t), "{'}ego\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%sej\t%s" s t), "{'}ej\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%semu\t%s" s t), "{'}emu\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%sa\t%s" s t), "{'}a\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%są\t%s" s t), "{'}ą\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%so\t%s" s t), "{'}o\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%sę\t%s" s t), "{'}ę\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%su\t%s" s t), "{'}u\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%sów\t%s" s t), "{'}ów\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%som\t%s" s t), "{'}om\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%sami\t%s" s t), "{'}ami\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%sach\t%s" s t), "{'}ach\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%sowi\t%s" s t), "{'}owi\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%sowie\t%s" s t), "{'}owie\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%sum\t%s" s t), "{'}um\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ae") (fun (_,s,t) -> sprintf "%sem\t%s" s t), "{'}em\t{'}";
(* Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_ii") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{'}ii\t{'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_yj") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{'}yj\t{'}";*)
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_wyglos") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{'}ε\t{'}";
(* Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{v'}y\t{v'}"; *)
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%sch\t%s" s t), "{v'}ych\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%sm\t%s" s t), "{v'}ym\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%smi\t%s" s t), "{v'}ymi\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%se\t%s" s t), "{v'}e\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%sego\t%s" s t), "{v'}ego\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%sej\t%s" s t), "{v'}ej\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%semu\t%s" s t), "{v'}emu\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%sa\t%s" s t), "{v'}a\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%są\t%s" s t), "{v'}ą\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%so\t%s" s t), "{v'}o\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%sę\t%s" s t), "{v'}ę\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%su\t%s" s t), "{v'}u\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%sów\t%s" s t), "{v'}ów\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%som\t%s" s t), "{v'}om\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%sami\t%s" s t), "{v'}ami\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%sach\t%s" s t), "{v'}ach\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%sowi\t%s" s t), "{v'}owi\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%sowie\t%s" s t), "{v'}owie\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%sum\t%s" s t), "{v'}um\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe") (fun (_,s,t) -> sprintf "%sem\t%s" s t), "{v'}em\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_miekkie_nowe_wyglos") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{v'}ε\t{v'}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_y") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{}y\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_y") (fun (_,s,t) -> sprintf "%sch\t%s" s t), "{}ych\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_y") (fun (_,s,t) -> sprintf "%sm\t%s" s t), "{}ym\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_y") (fun (_,s,t) -> sprintf "%smi\t%s" s t), "{}ymi\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_e") (fun (_,s,t) -> sprintf "%se\t%s" s t), "{}e\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_e") (fun (_,s,t) -> sprintf "%sego\t%s" s t), "{}ego\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_e") (fun (_,s,t) -> sprintf "%sej\t%s" s t), "{}ej\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_e") (fun (_,s,t) -> sprintf "%semu\t%s" s t), "{}emu\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_a") (fun (_,s,t) -> sprintf "%sa\t%s" s t), "{}a\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_a") (fun (_,s,t) -> sprintf "%są\t%s" s t), "{}ą\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_a") (fun (_,s,t) -> sprintf "%so\t%s" s t), "{}o\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_a") (fun (_,s,t) -> sprintf "%sę\t%s" s t), "{}ę\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_a") (fun (_,s,t) -> sprintf "%su\t%s" s t), "{}u\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_a") (fun (_,s,t) -> sprintf "%sów\t%s" s t), "{}ów\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_a") (fun (_,s,t) -> sprintf "%som\t%s" s t), "{}om\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_a") (fun (_,s,t) -> sprintf "%sami\t%s" s t), "{}ami\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_a") (fun (_,s,t) -> sprintf "%sach\t%s" s t), "{}ach\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_a") (fun (_,s,t) -> sprintf "%sowi\t%s" s t), "{}owi\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_a") (fun (_,s,t) -> sprintf "%sowie\t%s" s t), "{}owie\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_a") (fun (_,s,t) -> sprintf "%sum\t%s" s t), "{}um\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_e") (fun (_,s,t) -> sprintf "%sem\t%s" s t), "{}em\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_i") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{}'i\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_ie") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{}'ie\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_wyglos") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{}ε\t{}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe_y") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{v}y\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe_y") (fun (_,s,t) -> sprintf "%sch\t%s" s t), "{v}ych\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe_y") (fun (_,s,t) -> sprintf "%sm\t%s" s t), "{v}ym\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe_y") (fun (_,s,t) -> sprintf "%smi\t%s" s t), "{v}ymi\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%se\t%s" s t), "{v}e\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%sego\t%s" s t), "{v}ego\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%sej\t%s" s t), "{v}ej\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%semu\t%s" s t), "{v}emu\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%sa\t%s" s t), "{v}a\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%są\t%s" s t), "{v}ą\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%so\t%s" s t), "{v}o\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%sę\t%s" s t), "{v}ę\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%su\t%s" s t), "{v}u\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%sów\t%s" s t), "{v}ów\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%som\t%s" s t), "{v}om\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%sami\t%s" s t), "{v}ami\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%sach\t%s" s t), "{v}ach\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%sowi\t%s" s t), "{v}owi\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%sowie\t%s" s t), "{v}owie\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe") (fun (_,s,t) -> sprintf "%sum\t%s" s t), "{v}um\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe_ie") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{v}'ie\t{v}";
Xlist.map (StringMap.find alternation_map "funkcjonalnie_twarde_nowe_wyglos") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{v}ε\t{v}";
Xlist.map (StringMap.find alternation_map "kapitaliki_y") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{-}y\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_y") (fun (_,s,t) -> sprintf "%sch\t%s" s t), "{-}ych\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_y") (fun (_,s,t) -> sprintf "%sm\t%s" s t), "{-}ym\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_y") (fun (_,s,t) -> sprintf "%smi\t%s" s t), "{-}ymi\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%se\t%s" s t), "{-}e\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%sego\t%s" s t), "{-}ego\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%sej\t%s" s t), "{-}ej\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%semu\t%s" s t), "{-}emu\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%sa\t%s" s t), "{-}a\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%są\t%s" s t), "{-}ą\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%so\t%s" s t), "{-}o\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%sę\t%s" s t), "{-}ę\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%su\t%s" s t), "{-}u\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%sów\t%s" s t), "{-}ów\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%som\t%s" s t), "{-}om\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%sem\t%s" s t), "{-}em\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%sami\t%s" s t), "{-}ami\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%sach\t%s" s t), "{-}ach\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%sowi\t%s" s t), "{-}owi\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%sowie\t%s" s t), "{-}owie\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_a") (fun (_,s,t) -> sprintf "%sum\t%s" s t), "{-}um\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_ie") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{-}'ie\t{-}";
Xlist.map (StringMap.find alternation_map "kapitaliki_wyglos") (fun (_,s,t) -> sprintf "%s\t%s" s t), "{-}ε\t{-}";*)
] StringMap.empty (fun map (l,code) ->
Xlist.fold l map (fun map rule -> StringMap.add_inc map rule code (fun code2 ->
print_endline ("rule_types: " ^ rule ^ " " ^ code ^ " " ^ code2); code2)))
let rec cut_prefix_list c ll =
Xlist.map ll (function
[] -> raise Not_found
| x :: l -> if x = c then l else raise Not_found)
let rec find_common_prefix_length_rec n = function
[] :: _ -> n
| (c :: l) :: ll ->
(try
let ll = cut_prefix_list c ll in
find_common_prefix_length_rec (n + String.length c) (l :: ll)
with Not_found -> n)
| [] -> failwith "find_common_prefix_length_rec"
let find_common_prefix_length l =
let ll = Xlist.map l Xunicode.utf8_chars_of_utf8_string(*Stem.text_to_chars*) in
find_common_prefix_length_rec 0 ll
let cut_prefixn i s =
let n = String.length s in
if i >= n then "" else
try String.sub s i (n-i) with _ -> failwith ("cut_prefixn: " ^ s ^ " " ^ string_of_int i)
let rule_code (a,b) =
let s = sprintf "%s\t%s" a b in
try StringMap.find rule_types s, true with Not_found ->
if Xstring.check_prefix b a then
let suf = Xstring.cut_prefix b a in
suf ^ "_" ^ (String.concat "_" (List.rev (Xunicode.utf8_chars_of_utf8_string(*Stem.text_to_chars*) b))), false
else "???", false
let generate_rule stem stem_pref orth =
let n = find_common_prefix_length [stem_pref;orth] in
let a = cut_prefixn n orth in
let b = cut_prefixn n stem in
let c,f = rule_code (a,b) in
if f then "\t" ^ c else sprintf "%s\t%s\t%s" c a b
let rec classify_entry entry = function
(class_interp,suf,cl) :: class_sel ->
let l = Xlist.fold entry.forms [] (fun l form ->
if form.interp = class_interp then form.orth :: l else l) in
let b = Xlist.fold l false (fun b orth ->
if Xstring.check_sufix suf orth then true else b) in
if b then cl else classify_entry entry class_sel
(* let l = StringSet.to_list (Xlist.fold l StringSet.empty (fun set orth ->
if check_prefix stem orth then
StringSet.add set (cut_prefix stem orth)
else set)) in
if Xlist.mem l suf then cl else classify_noun lemma stem interps class_sel
let l = StringSet.to_list (Xlist.fold l StringSet.empty (fun set orth ->
if check_prefix stem orth then
StringSet.add set (cut_prefix stem orth)
else set)) in
if Xlist.mem l suf then cl else classify_noun lemma stem interps class_sel*)
(* (match l with
[] -> classify_noun lemma stem interps class_sel
| [s] -> if s = suf then cl else classify_noun lemma stem interps class_sel
| _ -> print_endline ("classify_noun multiple class: " ^ lemma ^ " " ^ String.concat " " l);
classify_noun lemma stem interps class_sel)*)
| [] -> (*print_endline ("classify_noun unknown class: " ^ lemma);*) "X"
let entry_classes =
List.flatten (Xlist.map ["m1";"m2";"m3";"n1";"n2";"f";"p1";"p2";"p3"] (fun gender ->
Xlist.map ["ii";"ji";"yj"] (fun sufix ->
"subst:pl:gen:" ^ gender, sufix,"II"))) @
List.flatten (Xlist.map ["m1";"m2";"m3";"n1";"n2";"f"] (fun gender ->
Xlist.map ["a"] (fun sufix ->
"subst:sg:nom:" ^ gender, sufix,"A"))) @
List.flatten (Xlist.map ["m1";"m2";"m3";"n1";"n2";"f"] (fun gender ->
Xlist.map ["ę"] (fun sufix ->
"subst:sg:acc:" ^ gender, sufix,"Ę"))) @
List.flatten (Xlist.map ["m1";"m2";"m3";"n1";"n2";"f"] (fun gender ->
Xlist.map ["ą"] (fun sufix ->
"subst:sg:inst:" ^ gender, sufix,"Ą"))) @
(* List.flatten (Xlist.map ["m1";"m2";"m3";"n1";"n2";"f";"p1";"p2";"p3"] (fun gender ->
Xlist.map ["ym";"im";"m"] (fun sufix ->
"subst:pl:dat:" ^ gender, sufix,"ADJ"))) @
List.flatten (Xlist.map ["m1";"m2";"m3";"n1";"n2";"f"] (fun gender ->
Xlist.map ["a","A";"o","O";"e","E"] (fun (sufix,s) ->
"subst:sg:nom:" ^ gender, sufix,s))) @*)
[
"subst:sg:nom:n2","um","UM";
]
let generate_rules_entry entry =
let stem_pref = Stem.cut_stem_sufix entry.stem in
let cl = classify_entry entry entry_classes in
Xlist.map entry.forms (fun form ->
form.interp,cl ^ "\t" ^ generate_rule entry.stem stem_pref form.orth)
let phon_generate_rules_entry entry =
Xlist.fold entry.phon_stem [] (fun found stem ->
let stem_pref = Stem.cut_stem_sufix stem in
let cl = classify_entry entry entry_classes in
Xlist.fold entry.forms found (fun found form ->
Xlist.fold form.phon_orth found (fun found orth ->
(* printf "lemma=%s stem=%s phon_stem=%s stem_pref=%s phon_orth=%s interp=%s\n%!" entry.lemma entry.stem stem stem_pref orth form.interp; *)
(form.interp,cl ^ "\t" ^ generate_rule stem stem_pref orth) :: found)))
let generate_rules_lu_entry entry =
let stem_pref = Stem.cut_stem_sufix entry.lu_stem in
let v1 = if entry.validated1 then "V" else "" in
let v2 = if entry.validated2 then "V" else "" in
[v1 ^ "A" ^ string_of_int entry.rel_id,generate_rule entry.lu_stem stem_pref entry.lemma1,entry.lemma1 ^ "->" ^ entry.lemma2;
v2 ^ "B" ^ string_of_int entry.rel_id,generate_rule entry.lu_stem stem_pref entry.lemma2,entry.lemma2 ^ "->" ^ entry.lemma1]
let generate_interp_rules rules con_flag group_flag lemma_flag simple_lemma form =
let candidates = Rules.CharTrees.find rules form.orth in
(* printf "S %d\n" (Xlist.size forms); *)
let candidates = Xlist.fold candidates [] (fun candidates (stem,rule) ->
(* printf "R %s\t%s\n" stem (Rules.string_of_rule rule); *)
if stem ^ rule.set = simple_lemma then rule :: candidates else candidates) in
Xlist.rev_map candidates (fun rule ->
let tags = rule.tags in
let tags = if con_flag then snd (Rules.extract_tag "con" [] tags) else tags in
let tags = if group_flag then snd (Rules.extract_tag "group" [] tags) else tags in
let tags = if lemma_flag then snd (Rules.extract_tag "lemma" [] tags) else tags in
let tags = Xlist.sort tags Rules.compare_tag in
String.concat " " (Xlist.map tags (fun (k,v) -> k ^ "=" ^ v)) ^ "\t" ^ form.interp)
(* let check_patal tags =
try
let patal = Xlist.assoc tags "patal" in
let lpatal = Xlist.assoc tags "lpatal" in
patal = lpatal
with Not_found -> true *)
let calculate_number_value = function
"sg" -> 2
| "pl" -> 1
| "sg.pl" -> 0
| _ -> failwith "calculate_number_value2"
let calculate_case_value2 = function
"nom" -> 7
| "gen" -> 6
| "dat" -> 5
| "acc" -> 4
| "inst" -> 3
| "loc" -> 2
| "voc" -> 1
| "" -> 0
| _ -> failwith "calculate_case_value2"
let calculate_case_value s =
let c1,c2,c3 = match Xstring.split "\\." s with
[c1] -> c1,"",""
| [c1;c2] -> c1,c2,""
| c1 :: c2 :: c3 :: _ -> c1,c2,c3
| _ -> failwith "calculate_case_value" in
100 * calculate_case_value2 c1 + 10 * calculate_case_value2 c2 + calculate_case_value2 c3
let calculate_gender_value = function
| "m1" -> 8
| "m2" -> 7
| "m3" -> 6
| "f" -> 5
| "n:ncol" -> 4
| "n:col" -> 3
| "n:pt" -> 2
| "m1:pt" -> 1
| "depr:pl:nom.acc.voc:m2" -> 8
(* | s -> print_endline ("calculate_gender_value: " ^ s); 0 *)
| s -> failwith ("calculate_gender_value: " ^ s)
let calculate_grad_value = function
| "pos" -> 3
| "com" -> 2
| "sub" -> 1
| s -> failwith ("calculate_grad_value: " ^ s)
let calculate_person_value = function
| "pri" -> 3
| "sec" -> 2
| "ter" -> 1
| s -> failwith ("calculate_person_value: " ^ s)
let calculate_rule_value tags interp =
if interp = "" then failwith "calculate_rule_value: empty interp" else
let cat = try Xlist.assoc tags "cat" with Not_found -> "" in
let lemma = try Xlist.assoc tags "lemma" with Not_found -> "" in
let group = try Xlist.assoc tags "group" with Not_found -> "" in
if cat = "noun" || cat = "adj" then
let lemma_val = match lemma with
"a" -> 20
| "ε" -> 19
| "y" -> 18
| "e" -> 17
| "o" -> 16
| "um" -> 15
| "us" -> 14
| "owie" -> 13
| "i" -> 12
| "o(n)" -> 11
| "ę" -> 10
| "anin" -> 9
| "mię" -> 8
| "stwo" -> 7
| _ -> 0 in
let interp_val =
match Xstring.split ":" (List.hd (Xstring.split "|" interp)) with
"subst" :: n :: c :: g -> 10000 * calculate_gender_value (String.concat ":" g) + 1000 * calculate_number_value n + calculate_case_value c
| "depr" :: _ -> 10000 * calculate_gender_value interp
| "adj" :: n :: c :: g :: d :: [] -> 10000 * calculate_grad_value d + 1000 * calculate_number_value n + calculate_case_value c
| ["adjc"] -> 1
| ["adja"] -> 2
| ["adjp"] -> 3
| _ -> failwith "calculate_rule_value" in
100000 * lemma_val + interp_val
else if cat = "verb" then
let lemma_val = match lemma with
"ać" -> 20
| "ować" -> 19
| "ywać" -> 18
| "iwać" -> 17
| "awać" -> 16
| "owywać" -> 15
| "uć" -> 14
| "yć" -> 13
| "nąć" -> 12
| "ąć" -> 11
| "eć" -> 10
| "ć" -> 9
| "c" -> 8
| "patal-ć" -> 7
| "patal-eć" -> 6
| _ -> 0 in
let group_val = match group with
"a" -> 32
| "aje" -> 31
| "aj" -> 30
| "e" -> 29
| "eje" -> 28
| "ej" -> 27
| "u" -> 26
| "uje" -> 25
| "uj" -> 24
| "y" -> 23
| "yje" -> 22
| "yj" -> 21
| "ε" -> 20
| "J" -> 19
| "j" -> 18
| "Je" -> 17
| "Ja" -> 16
| "Jo" -> 15
| "ną" -> 14
| "ą" -> 13
| "nie" -> 12
| "nię" -> 11
| "ę" -> 10
| "nę" -> 9
| "ie" -> 8
| "ń" -> 7
| "nij" -> 6
| "mij" -> 5
| "n" -> 4
| "o" -> 3
| "io" -> 2
| _ -> 0 in
let interp_val =
match Xstring.split ":" (List.hd (Xstring.split "|" interp)) with
["fin";n;p;_] -> 4200000 + 4 * calculate_number_value n + calculate_person_value p
| ["impt";n;p;_] -> 4100000 + 4 * calculate_number_value n + calculate_person_value p
| ["pcon";_] -> 3000100
| ["pacta"] -> 3000000
| ["pact";n;c;g;_;_] -> 2000000 + 1000 * calculate_number_value n + calculate_case_value c
| ["inf";_] -> 1500000
| ["praet";n;g] -> 1001000 + 1000 * calculate_number_value n
| ["pant";_] -> 1000200
| ["imps";_] -> 1000100
| ["ger";n;c;g;_] -> 1000000 + 1000 * calculate_number_value n + calculate_case_value c
| ["ppas";n;c;g;_;_] -> 1000 * calculate_number_value n + calculate_case_value c
| _ -> 0 in
10000000 * lemma_val + 10000 * group_val + interp_val
else 0
let phon_generate_interp_rules rules selected_tags simple_lemma form =
Xlist.fold form.phon_orth [] (fun found orth ->
let candidates = Rules.CharTrees.find rules orth in
(* printf "S %d\n" (Xlist.size forms); *)
let candidates = Xlist.fold candidates [] (fun candidates (stem,rule) ->
let candidate_lemma = Fonetics.translate_single true Fonetics.rev_rules (stem ^ rule.set) in
(* printf "R %s\t%s\n" stem (Rules.string_of_rule rule); *)
if candidate_lemma = simple_lemma (*&& check_patal rule.tags*) then rule :: candidates else candidates) in
Xlist.rev_map candidates (fun rule ->
let tags = Xlist.fold rule.tags [] (fun tags (k,v) ->
if StringSet.mem selected_tags k then (k,v) :: tags else tags) in
let tags = Xlist.sort tags Rules.compare_tag in
calculate_rule_value rule.tags form.interp,
String.concat " " (Xlist.map tags (fun (k,v) -> k ^ "=" ^ v)) ^ "\t" ^ form.interp) @ found)