ENIAM_LCGrenderer.ml
9.84 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
(*
* ENIAM_LCGparser, a parser for Logical Categorial Grammar formalism
* Copyright (C) 2016 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
* Copyright (C) 2016 Institute of Computer Science Polish Academy of Sciences
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*)
open ENIAM_LCGtypes
let rec internal_substitute var_name t = function
| Atom x -> Atom x
| AVar x -> if x = var_name then t else AVar x
| With l -> With (Xlist.map l (internal_substitute var_name t))
| Zero -> Zero
| Top -> Top
let rec substitute var_name t = function
| Tensor l -> Tensor (Xlist.map l (internal_substitute var_name t))
| Plus l -> Plus (Xlist.map l (substitute var_name t))
| Imp(s,d,t2) -> Imp(substitute var_name t s,d,substitute var_name t t2)
| One -> One
| ImpSet(s,l) -> ImpSet(substitute var_name t s, Xlist.map l (fun (d,s) -> d, substitute var_name t s))
| WithVar(v,g,e,s) -> if v = var_name then WithVar(v,g,e,s) else WithVar(v,internal_substitute var_name t g,e,substitute var_name t s)
| Star s -> Star (substitute var_name t s)
| Bracket(lf,rf,s) -> Bracket(lf,rf,substitute var_name t s)
| BracketSet d -> BracketSet d
| Maybe s -> Maybe (substitute var_name t s)
let rec substitute_schema var_name t = function
| Tensor l -> Tensor l
| Plus l -> Plus (Xlist.map l (substitute_schema var_name t))
| Imp(s,d,t2) -> Imp(substitute_schema var_name t s,d,substitute_schema var_name t t2)
| One -> One
| ImpSet(s,l) -> ImpSet(substitute_schema var_name t s, List.flatten (Xlist.map l (function
Both,Tensor[AVar var_name] -> t
| d,s -> [d, substitute_schema var_name t s])))
| WithVar(v,g,e,s) -> WithVar(v,g,e,substitute_schema var_name t s)
| Star s -> Star (substitute_schema var_name t s)
| Bracket(lf,rf,s) -> Bracket(lf,rf,substitute_schema var_name t s)
| BracketSet d -> BracketSet d
| Maybe s -> Maybe (substitute_schema var_name t s)
let rec internal_count_avar var_name = function
Atom _ -> 0
| AVar x -> if x = var_name then 1 else 0
| With l -> Xlist.fold l 0 (fun b t -> internal_count_avar var_name t + b)
| Zero -> 0
| Top -> 0
let rec count_avar var_name = function
| Tensor l -> Xlist.fold l 0 (fun b t -> internal_count_avar var_name t + b)
| Plus l -> Xlist.fold l 0 (fun b t -> count_avar var_name t + b)
| Imp(s,d,t2) -> count_avar var_name s + count_avar var_name t2
| One -> 0
| ImpSet(s,l) -> count_avar var_name s + Xlist.fold l 0 (fun b (_,t) -> count_avar var_name t + b)
| WithVar(v,g,e,s) -> if v = var_name then 0 else count_avar var_name s + internal_count_avar var_name g
| Star t -> count_avar var_name t
| Bracket(lf,rf,s) -> count_avar var_name s
| BracketSet _ -> 0
| Maybe t -> count_avar var_name t
let rec substitute_substvar v g = function
Var v as t -> t
| Tuple l -> Tuple(Xlist.map l (substitute_substvar v g))
(* | LetIn(l,s,t) -> LetIn(l,substitute_substvar v g s,substitute_substvar v g t) *)
| Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i,substitute_substvar v g t))
| VariantVar(v2,t) -> if v2 = v then VariantVar(v2,t) else VariantVar(v2,substitute_substvar v g t)
| SubstVar v2 -> if v2 = v then g else SubstVar v2
| Case(t,l) -> Case(substitute_substvar v g t,Xlist.map l (fun (x,t) -> x,substitute_substvar v g t))
| App(s,t) -> App(substitute_substvar v g s,substitute_substvar v g t)
| Lambda(v2,t) -> Lambda(v2,substitute_substvar v g t)
| LambdaSet(l,t) -> LambdaSet(l,substitute_substvar v g t)
| Dot -> Dot
| Val s -> Val s
| SetAttr(e,s,t) -> SetAttr(e,substitute_substvar v g s,substitute_substvar v g t)
| Fix(s,t) -> Fix(substitute_substvar v g s,substitute_substvar v g t)
| Node t -> Node{t with attrs=Xlist.map t.attrs (fun (e,t) -> e, substitute_substvar v g t);
symbol=substitute_substvar v g t.symbol;
arg_symbol=substitute_substvar v g t.arg_symbol;
args=substitute_substvar v g t.args}
| Cut t -> Cut(substitute_substvar v g t)
| t -> failwith ("substitute_substvar: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let empty_node = {
orth=""; lemma=""; pos=""; weight=0.; id=0; symbol=Dot; arg_symbol=Dot; attrs=[]; args=Dot;}
let variable_num_ref = ref 0
let reset_variable_numbers () =
variable_num_ref := 0
let add_variable_numbers () =
incr variable_num_ref
let variable_name_ref = ref []
let reset_variable_names () =
variable_name_ref := []
let rec add_variable_name = function
[] -> ["a"]
| "z" :: l -> "a" :: add_variable_name l
| s :: l -> String.make 1 (Char.chr (Char.code (String.get s 0) + 1)) :: l
let get_variable_name () =
variable_name_ref := add_variable_name (!variable_name_ref);
String.concat "" (List.rev (!variable_name_ref)) ^ (string_of_int !variable_num_ref)
let make_arg_symbol l =
Tuple(Xlist.map l (function
Atom s -> Val s
| AVar s -> Val s
| Top -> Val "T"
| _ -> failwith "make_arg_symbol"))
let rec make_term_arg = function
Tensor l -> let v = get_variable_name () in v, Cut(SetAttr("ARG_SYMBOL",make_arg_symbol l,Var v))
| Plus l -> let v = get_variable_name () in v, Case(Var v,Xlist.map l make_term_arg)
(* | Imp(s,d,t2) -> *)
| One -> get_variable_name (), Dot
| Maybe s ->
let v,arg = make_term_arg s in
let w = get_variable_name () in
w, Fix(Var w,Lambda(v,arg))
| _ -> failwith "make_term_arg"
let add_args node args =
{node with args=Tuple(node.args :: args)}
let make_raised_arg_symbol = function
Imp(Tensor l,_,_) -> make_arg_symbol l
| _ -> failwith "arg_symbol"
let rec make_raised_term_imp inner_node outer_node arg_symbol = function
| Imp(s,d,t2) ->
let v = get_variable_name () in
let arg_symbol = make_raised_arg_symbol t2 in
Lambda(v,make_raised_term_imp (App(Var v,inner_node)) outer_node arg_symbol s)
| ImpSet(s,[d,t2]) ->
let v = get_variable_name () in
let arg_symbol = make_raised_arg_symbol t2 in
LambdaSet([v],make_raised_term_imp (App(Var v,inner_node)) outer_node arg_symbol s)
| Tensor l ->
if outer_node.lemma="" then inner_node else
Node (add_args outer_node [Cut(SetAttr("ARG_SYMBOL",arg_symbol,inner_node))])
| _ -> failwith "make_raised_term_imp"
let is_raised = function
[_,Imp(_,_,_)] -> true
| _ -> false
let rec make_term_imp node outer_node = function
| Imp(s,d,t2) ->
if is_raised [d,t2] then make_raised_term_imp (Node node) outer_node Dot (Imp(s,d,t2)) else
let v,arg = make_term_arg t2 in
Lambda(v,make_term_imp (add_args node [arg]) outer_node s)
| ImpSet(s,l) ->
if is_raised l then make_raised_term_imp (Node node) outer_node Dot (ImpSet(s,l)) else
let vars,args = List.split (Xlist.map l (fun (_,t) -> make_term_arg t)) in
LambdaSet(vars,make_term_imp (add_args node args) outer_node s)
| Tensor l -> Node node
| _ -> failwith "make_term_imp"
let rec make_term_withvar node outer_node = function
WithVar(category,_,_,t) -> VariantVar(category,make_term_withvar node outer_node t)
| Bracket(_,_,t) -> make_term_withvar node outer_node t
| t -> make_term_imp node outer_node t
let make_term node = make_term_withvar node empty_node
let make_raised_term node outer_node = make_term_withvar node outer_node
let rec make_symbol = function
| Tensor l -> Tuple(Xlist.map l (function
Atom s -> Val s
| AVar s -> SubstVar s
| _ -> failwith "make_symbol"))
| Plus l -> failwith "make_symbol"
| Imp(s,d,t2) -> make_symbol s
| One -> failwith "make_symbol"
| ImpSet(s,l) -> make_symbol s
| WithVar(v,g,e,s) -> make_symbol s
| Star t -> failwith "make_symbol"
| Bracket(lf,rf,s) -> make_symbol s
| BracketSet _ -> failwith "make_symbol"
| Maybe t -> failwith "make_symbol"
let make_raised_symbol_arg = function
[_,Imp(_,_,Tensor l)] ->
Tuple(Xlist.map l (function
Atom s -> Val s
| AVar s -> SubstVar s
| _ -> failwith "make_raised_symbol_arg"))
| _ -> failwith "make_raised_symbol_arg"
let rec make_raised_symbol = function
| Tensor l -> failwith "make_raised_symbol"
| Plus l -> failwith "make_raised_symbol"
| Imp(s,d,t2) -> if is_raised [d,t2] then make_raised_symbol_arg [d,t2] else make_raised_symbol s
| One -> failwith "make_raised_symbol"
| ImpSet(s,l) -> if is_raised l then make_raised_symbol_arg l else make_raised_symbol s
| WithVar(v,g,e,s) -> make_raised_symbol s
| Star t -> failwith "make_raised_symbol"
| Bracket(lf,rf,s) -> make_raised_symbol s
| BracketSet _ -> failwith "make_raised_symbol"
| Maybe t -> failwith "make_raised_symbol"
let rec simplify = function
ImpSet(s,[]),LambdaSet([],t) -> simplify (s,t)
| ImpSet(s,[d,a]),LambdaSet([v],t) -> let s,t = simplify (s,t) in Imp(s,d,a),Lambda(v,t)
| ImpSet(s,l),LambdaSet(vl,t) -> let s,t = simplify (s,t) in ImpSet(s,l),LambdaSet(vl,t)
| WithVar(v,Atom g,e,s),VariantVar(_,t) -> simplify (substitute v (Atom g) s, substitute_substvar v (ENIAM_LCGrules.make_subst e (Atom g)) t)
| WithVar(v,g,e,s),VariantVar(v2,t) ->
if count_avar v s = 0 then
simplify (s, substitute_substvar v (ENIAM_LCGrules.make_subst e g) t)
else let s,t = simplify (s,t) in WithVar(v,g,e,s),VariantVar(v2,t)
| Bracket(lf,rf,s),t -> let s,t = simplify (s,t) in Bracket(lf,rf,s),t
| s,t -> s,t
let make_quant_restriction = function
[] -> Zero
| [s] -> Atom s
| l -> With(Xlist.map l (fun s -> Atom s))