preProcessing.ml 30.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
(*
 *  ENIAM: Categorial Syntactic-Semantic Parser for Polish
 *  Copyright (C) 2016 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
 *  Copyright (C) 2016 Institute of Computer Science Polish Academy of Sciences
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *)

open Xstd
open PreTypes

(* uwagi:
jak przetwarzać num:comp
czy rzeczownik niepoliczalny w liczbie mnogiej jest nadal niepoliczalny np. "Wody szumią."
trzeba zrobić słownik mwe, i nazw własnych
trzeba zweryfikować słownik niepoliczalnych
przetwarzanie liczebników złożonych np dwadzieścia jeden, jedna druga
*)



(**********************************************************************************)

let proper_names =
  let l = Str.split_delim (Str.regexp "\n") (File.load_file Paths.proper_names_filename) in
  let l2 = Str.split_delim (Str.regexp "\n") (File.load_file Paths.proper_names_filename2) in
  Xlist.fold (l2 @ l) StringMap.empty (fun proper line ->
    if String.length line = 0 then proper else
    if String.get line 0 = '#' then proper else
    match Str.split_delim (Str.regexp "\t") line with
      [lemma; types] ->
        let types = Str.split (Str.regexp "|") types in
        StringMap.add_inc proper lemma types (fun types2 -> types @ types2)
    | _ -> failwith ("proper_names: " ^ line))

let remove l s =
  Xlist.fold l [] (fun l t ->
    if s = t then l else t :: l)

let find_proper_names (paths,last) =
  List.rev (Xlist.rev_map paths (fun t ->
    match t.token with
      Lemma(lemma,pos,interp) ->
        if StringMap.mem proper_names lemma then
          {t with token=Proper(lemma,pos,interp,StringMap.find proper_names lemma);
                  attrs=remove t.attrs "notvalidated proper"}
        else
          if Xlist.mem t.attrs "notvalidated proper" then
            {t with token=Proper(lemma,pos,interp,[])}
          else t
    | _ -> t)), last

(**********************************************************************************)

module OrderedStringList = struct

  type t = string list

  let compare x y = compare (Xlist.sort x compare) (Xlist.sort y compare)

end

module OrderedStringListList = struct

  type t = string list list

  let compare x y = compare (Xlist.sort x compare) (Xlist.sort y compare)

end

module StringListMap = Xmap.Make(OrderedStringList)
module StringListListMap = Xmap.Make(OrderedStringListList)
module StringListListSet = Xset.Make(OrderedStringListList)

type tree = T of tree StringListMap.t | S of StringSet.t

let single_tags = function
    [_] :: _ -> true
  | _ -> false

let rec make_tree interp =
  if single_tags interp then S (StringSet.of_list (List.flatten (List.flatten interp))) else
  let map = Xlist.fold interp StringListMap.empty (fun map tags ->
    StringListMap.add_inc map (List.hd tags) [List.tl tags] (fun l -> (List.tl tags) :: l)) in
  T(StringListMap.map map make_tree)

let is_s_tree map =
  StringListListMap.fold map false (fun b _ -> function
      S _ -> true
    | T _ -> b)

let rec fold_tree_rec rev s f = function
    S set -> f s (List.rev rev) set
  | T map -> StringListMap.fold map s (fun s tag tree ->
       fold_tree_rec (tag :: rev) s f tree)

let fold_tree tree s f = fold_tree_rec [] s f tree

let rec combine_interps_rec map =
  if is_s_tree map then
    StringListListMap.fold map [] (fun interp tail_tags -> function
        S tag -> ((Xlist.sort (StringSet.to_list tag) compare) :: tail_tags) :: interp
      | _ -> failwith "combine_interps_rec")
  else
    let map = StringListListMap.fold map StringListListMap.empty (fun map tail_tags tree ->
      fold_tree tree map (fun map head_tags tag ->
        StringListListMap.add_inc map ((Xlist.sort (StringSet.to_list tag) compare) :: tail_tags) [head_tags] (fun l -> head_tags :: l))) in
    combine_interps_rec (StringListListMap.map map make_tree)

let combine_interp interp =
  let map = StringListListMap.add StringListListMap.empty [] (make_tree interp) in
  combine_interps_rec map

let combine_pos = StringSet.of_list ["subst"; "depr"; "ppron12"; "ppron3"; "siebie"; "adj"; "num"; "ger"; "praet"; "fin"; "impt"; "imps"; "pcon"; "ppas"; "pact";
  "inf"; "bedzie"; "aglt"; "winien"; "pant"; "prep"]

let combine_interps (paths,last) =
  List.rev (Xlist.rev_map paths (fun t ->
    match t.token with
      Lemma(lemma,pos,interp) ->
(*         Printf.printf "%s %s %s\n" lemma pos (PreTokenizer.string_of_interps interp); *)
        let interp =
          if pos = "ppron12" then Xlist.map interp (fun tags -> if Xlist.size tags = 4 then tags @ [["_"]] else tags)
          else interp in
        let interp =
          if StringSet.mem combine_pos pos then combine_interp interp else
          StringListListSet.to_list (StringListListSet.of_list interp) in
        {t with token=Lemma(lemma,pos,interp)}
    | _ -> t)), last

(**********************************************************************************)

let translate_digs (paths,last) =
  Xlist.map paths (fun t ->
    match t.token with
      Dig(lemma,"dig") -> t
    | Dig(lemma,"intnum") -> {t with token=Lemma(lemma,"intnum",[[]])}
    | Dig(lemma,"realnum") -> {t with token=Lemma(lemma,"realnum",[[]])}
    | Dig(lemma,"year") -> {t with token=Proper(lemma,"year",[[]],["rok"])}
    | Dig(lemma,"month") -> t (*{t with token=Proper(lemma,"month",[[]],["miesiąc"])}*)
    | Dig(lemma,"hour") -> {t with token=Proper(lemma,"hour",[[]],["godzina"])}
    | Dig(lemma,"day") -> {t with token=Proper(lemma,"day",[[]],["dzień"])}
    | Dig(lemma,"minute") -> t (*{t with token=Proper(lemma,"minute",[[]],["minuta"])}*)
    | Dig(lemma,"2dig") -> t
    | Dig(lemma,"3dig") -> t
    | Dig(lemma,"pref3dig") -> t
    | RomanDig(lemma,"roman") -> {t with token=Lemma(lemma,"roman",[[]]); attrs=t.attrs}
    | RomanDig(lemma,"month") -> t (*{t with token=Proper(lemma,"symbol",[[]],["month"]); attrs="roman" :: t.attrs}*)
    | Dig(lemma,"ordnum") -> {t with token=Lemma(lemma,"ordnum",[[]])}
    | Compound("date",[Dig(d,"day");Dig(m,"month");Dig(y,"year")]) -> {t with token=Proper(d ^ "." ^ m ^ "." ^ y,"date",[[]],["data"])}
    | Compound("date",[Dig(d,"day");RomanDig(m,"month");Dig(y,"year")]) -> {t with token=Proper(d ^ "." ^ m ^ "." ^ y,"date",[[]],["data"])}
    | Compound("date",[Dig(d,"day");Dig(m,"month");Dig(y,"2dig")]) -> {t with token=Proper(d ^ "." ^ m ^ "." ^ y,"date",[[]],["data"])}
    | Compound("date",[Dig(d,"day");RomanDig(m,"month");Dig(y,"2dig")]) -> {t with token=Proper(d ^ "." ^ m ^ "." ^ y,"date",[[]],["data"])}
    | Compound("day-month",[Dig(d,"day");Dig(m,"month")]) -> {t with token=Proper(d ^ "." ^ m,"day-month",[[]],["data"])}
    | Compound("hour-minute",[Dig(h,"hour");Dig(m,"minute")]) -> {t with token=Proper(h ^ ":" ^ m,"hour-minute",[[]],["godzina"])}
    | Compound("match-result",[Dig(x,"intnum");Dig(y,"intnum")]) -> {t with token=Proper(x ^ ":" ^ y,"match-result",[[]],["rezultat"])}
    | Compound("intnum-interval",[Dig(x,"intnum");Dig(y,"intnum")]) -> {t with token=Lemma(x ^ "-" ^ y,"intnum-interval",[[]])}
    | Compound("roman-interval",[RomanDig(x,"roman");RomanDig(y,"roman")]) -> {t with token=Lemma(x ^ "-" ^ y,"roman-interval",[[]]); attrs=t.attrs}
    | Compound("realnum-interval",[Dig(x,"realnum");Dig(y,"realnum")]) -> {t with token=Lemma(x ^ "-" ^ y,"realnum-interval",[[]])}
    | Compound("realnum-interval",[Dig(x,"intnum");Dig(y,"realnum")]) -> {t with token=Lemma(x ^ "-" ^ y,"realnum-interval",[[]])}
    | Compound("realnum-interval",[Dig(x,"realnum");Dig(y,"intnum")]) -> {t with token=Lemma(x ^ "-" ^ y,"realnum-interval",[[]])}
    | Compound("date-interval",[Compound("date",[Dig(d1,"day");Dig(m1,"month");Dig(y1,"year")]);
        Compound("date",[Dig(d2,"day");Dig(m2,"month");Dig(y2,"year")])]) -> {t with token=Proper(d1 ^ "." ^ m1 ^ "." ^ y1 ^ "-" ^ d2 ^ "." ^ m2 ^ "." ^ y2,"date-interval",[[]],["interwał"])}
    | Compound("day-month-interval",[Compound("day-month",[Dig(d1,"day");Dig(m1,"month")]);
        Compound("day-month",[Dig(d2,"day");Dig(m2,"month")])]) -> {t with token=Proper(d1 ^ "." ^ m1 ^ "-" ^ d2 ^ "." ^ m2,"day-month-interval",[[]],["interwał"])}
    | Compound("day-interval",[Dig(d1,"day");Dig(d2,"day")]) -> {t with token=Proper(d1 ^ "-" ^ d2,"day-interval",[[]],["interwał"])}
    | Compound("month-interval",[Dig(m1,"month");Dig(m2,"month")]) -> {t with token=Proper(m1 ^ "-" ^ m2,"month-interval",[[]],["interwał"])}
    | Compound("month-interval",[RomanDig(m1,"month");RomanDig(m2,"month")]) -> {t with token=Proper(m1 ^ "-" ^ m2,"month-interval",[[]],["interwał"]); attrs="roman" :: t.attrs}
    | Compound("year-interval",[Dig(y1,"year");Dig(y2,"year")]) -> {t with token=Proper(y1 ^ "-" ^ y2,"year-interval",[[]],["interwał"])}
    | Compound("year-interval",[Dig(y1,"year");Dig(y2,"2dig")]) -> {t with token=Proper(y1 ^ "-" ^ y2,"year-interval",[[]],["interwał"])}
    | Compound("hour-minute-interval",[Compound("hour-minute",[Dig(h1,"hour");Dig(m1,"minute")]);Compound("hour-minute",[Dig(h2,"hour");Dig(m2,"minute")])]) ->
       {t with token=Proper(h1 ^ ":" ^ m1 ^ "-" ^ h2 ^ ":" ^ m2,"hour-minute-interval",[[]],["interwał"])}
    | Compound("hour-interval",[Dig(h1,"hour");Dig(h2,"hour")]) -> {t with token=Proper(h1 ^ "-" ^ h2,"hour-interval",[[]],["interwał"])}
    | Compound("minute-interval",[Dig(m1,"minute");Dig(m2,"minute")]) -> t (*{t with token=Proper(m1 ^ "-" ^ m2,"minute-interval",[[]],["interwał"])}*)
    | Dig(lemma,"url") -> {t with token=Proper(lemma,"url",[[]],["url"])}
    | Dig(lemma,"email") -> {t with token=Proper(lemma,"email",[[]],["email"])}
    | Dig(cat,_) -> failwith ("translate_digs: Dig " ^ cat)
    | RomanDig(cat,_) -> failwith ("translate_digs: Romandig " ^ cat)
    | Compound(cat,_) as t -> failwith ("translate_digs: " ^ PreTokenizer.string_of_token t)
    | _ -> t), last

let assign_valence (paths,last) =
  let lexemes = Xlist.fold paths StringMap.empty (fun lexemes t ->
    match t.token with
      Lemma(lemma,pos,_) ->
        StringMap.add_inc lexemes lemma (StringSet.singleton pos) (fun set -> StringSet.add set pos)
    | Proper(lemma,pos,_,_) ->
        let pos = match pos with
          "subst" -> "psubst"
        | "depr" -> "pdepr"
        | _ -> pos (*failwith ("assign_valence: Proper " ^ pos ^ " " ^ lemma)*) in
        StringMap.add_inc lexemes lemma (StringSet.singleton pos) (fun set -> StringSet.add set pos) (* nazwy własne mają przypisywaną domyślną walencję rzeczowników *)
    | _ -> lexemes) in
  let valence = WalFrames.find_frames lexemes in
  List.rev (Xlist.rev_map paths (fun t ->
    match t.token with
      Lemma(lemma,pos,_) -> {t with valence=try Xlist.rev_map (StringMap.find (StringMap.find valence lemma) pos) (fun frame -> 0,frame) with Not_found -> []}
    | Proper(lemma,pos,interp,_) -> {t with valence=(try Xlist.rev_map (StringMap.find (StringMap.find valence lemma)
                                                         (if pos = "subst" || pos = "depr" then "p" ^ pos else pos)) (fun frame -> 0,frame) with Not_found -> [](*failwith ("assign_valence: Proper(" ^ lemma ^ "," ^ pos ^ ")")*));
                                            token=Lemma(lemma,pos,interp)}
    | _ -> t)), last

(**********************************************************************************)

let prepare_indexes (paths,_) =
  let set = Xlist.fold paths IntSet.empty (fun set t ->
    IntSet.add (IntSet.add set t.beg) t.next) in
  let map,last = Xlist.fold (Xlist.sort (IntSet.to_list set) compare) (IntMap.empty,0) (fun (map,n) x ->
    IntMap.add map x n, n+1) in
  List.rev (Xlist.rev_map paths (fun t ->
    {t with lnode=IntMap.find map t.beg; rnode=IntMap.find map t.next})), last - 1

let select_tokens (paths,last) =
  List.rev (Xlist.fold paths [] (fun paths t ->
    match t.token with
(*      RomanDig(v,cat) -> {t with token=Lemma(v,cat,[[]])} :: paths
    | Interp orth -> {t with token=Lemma(orth,"interp",[[]])} :: paths
    | Dig(value,cat) -> {t with token=Lemma(value,cat,[[]])} :: paths
    | Other2 orth -> {t with token=Lemma(orth,"unk",[[]])} :: paths
    | Lemma(lemma,cat,interp) -> t :: paths
    | Proper _ -> failwith "select_tokens"
    | Compound _ -> t :: paths*)
(*       RomanDig(v,cat) -> t :: paths *)
    | Interp orth -> t :: paths
(*     | Dig(value,cat) -> t :: paths *)
    | Other2 orth -> t :: paths
    | Lemma(lemma,cat,interp) -> t :: paths
    | Proper _ -> failwith "select_tokens"
(*     | Compound _ -> t :: paths *)
    | _ -> paths)), last

let get_prefs_schema prefs schema =
  Xlist.fold schema prefs (fun prefs t ->
    Xlist.fold t.WalTypes.sel_prefs prefs StringSet.add)

let map_prefs_schema senses schema =
  Xlist.map schema (fun t ->
    if Xlist.mem t.WalTypes.morfs (WalTypes.Phrase WalTypes.Pro) || Xlist.mem t.WalTypes.morfs (WalTypes.Phrase WalTypes.ProNG) then t else
    {t with WalTypes.sel_prefs = Xlist.fold t.WalTypes.sel_prefs [] (fun l s ->
      if StringSet.mem senses s then s :: l else l)})

let disambiguate_senses (paths,last) =
  let prefs = Xlist.fold paths (StringSet.singleton "ALL") (fun prefs t ->
    Xlist.fold t.valence prefs (fun prefs -> function
      _,WalTypes.Frame(_,schema) -> get_prefs_schema prefs schema
    | _,WalTypes.LexFrame(_,_,_,schema) -> get_prefs_schema prefs schema
    | _,WalTypes.ComprepFrame(_,_,_,schema) -> get_prefs_schema prefs schema)) in
  let hipero = Xlist.fold paths (StringSet.singleton "ALL") (fun hipero t ->
    Xlist.fold t.senses hipero (fun hipero (_,l,_) ->
      Xlist.fold l hipero StringSet.add)) in
  let senses = StringSet.intersection prefs hipero in
  let is_zero = StringSet.mem hipero "0" in
  let senses = if is_zero then StringSet.add senses "0" else senses in
  Xlist.map paths (fun t ->
    {t with valence = if is_zero then t.valence else
        Xlist.map t.valence (function
          n,WalTypes.Frame(a,schema) -> n,WalTypes.Frame(a,map_prefs_schema senses schema)
        | n,WalTypes.LexFrame(s,p,r,schema) -> n,WalTypes.LexFrame(s,p,r,map_prefs_schema senses schema)
        | n,WalTypes.ComprepFrame(s,p,r,schema) -> n,WalTypes.ComprepFrame(s,p,r,map_prefs_schema senses schema));
      senses = Xlist.map t.senses (fun (s,l,w) ->
        s, List.rev (Xlist.fold l [] (fun l s -> if StringSet.mem senses s then s :: l else l)),w)}), last

let load_lemma_frequencies filename =
  let l = Str.split_delim (Str.regexp "\n") (File.load_file filename) in
  Xlist.fold l StringMap.empty (fun map line ->
    if String.length line = 0 then map else
    if String.get line 0 = '#' then map else
    match Str.split_delim (Str.regexp "\t") line with
      [count; lemma; cat] -> StringMap.add map (lemma ^ "\t" ^ cat) (log10 (float_of_string count +. 1.))
    | _ -> failwith ("load_lemma_frequencies: " ^ line))

let lemma_frequencies = load_lemma_frequencies Paths.lemma_frequencies_filename

let modify_weights (paths,last) =
  List.rev (Xlist.fold paths [] (fun paths t ->
    let w = Xlist.fold t.attrs t.weight (fun w -> function
        "token not found" -> w -. 25.
      | "lemma not validated"-> w -. 20.
      | "notvalidated proper" -> w -. 1.
      | "lemmatized as lowercase" -> w -. 0.1
      | _ -> w) in
    let w = match t.token with
        Lemma(lemma,cat,_) -> (try w +. StringMap.find lemma_frequencies (lemma ^ "\t" ^ cat) with Not_found -> w)
      | Proper(lemma,cat,_,_) -> (try w +. StringMap.find lemma_frequencies (lemma ^ "\t" ^ cat) with Not_found -> w)
      | _ -> w in
    {t with weight = w} :: paths)),last

(*let single_sense (paths,last) =
  List.rev (Xlist.rev_map paths (fun t ->
    let sense =
      if t.senses = [] then [] else
      [Xlist.fold t.senses ("",[],-.max_float) (fun (max_meaning,max_hipero,max_weight) (meaning,hipero,weight) ->
        if max_weight >= weight then max_meaning,max_hipero,max_weight else meaning,hipero,weight)] in
    {t with senses=sense})), last*)

open WalTypes

(*let single_schema schemata =
  let map = Xlist.fold schemata StringMap.empty (fun map schema ->
    let t = WalStringOf.schema (List.sort compare (Xlist.fold schema [] (fun l s ->
      if s.gf <> ARG && s.gf <> ADJUNCT then {s with role=""; role_attr=""; sel_prefs=[]} :: l else
      if s.cr <> [] || s.ce <> [] then {s with role=""; role_attr=""; sel_prefs=[]} :: l else l))) in
    StringMap.add_inc map t [schema] (fun l -> schema :: l)) in
  StringMap.fold map [] (fun l _ schemata ->
    let map = Xlist.fold schemata StringMap.empty (fun map schema ->
      Xlist.fold schema map (fun map s ->
        let t = WalStringOf.schema [{s with role=""; role_attr=""; sel_prefs=[]}] in
        StringMap.add_inc map t [s] (fun l -> s :: l))) in
    let schema = StringMap.fold map [] (fun schema _ l ->
      let s = List.hd l in
      {s with sel_prefs=Xlist.fold s.sel_prefs [] (fun l t -> if t = "0" || t = "T" then t :: l else l)} :: schema) in
    schema :: l)*)

let remove_meaning = function
    DefaultAtrs(m,r,o,neg,p,a) -> DefaultAtrs([],r,o,neg,p,a)
  | EmptyAtrs m -> EmptyAtrs []
  | NounAtrs(m,nsyn,s(*,typ*)) -> NounAtrs([],nsyn,s(*,typ*))
  | AdjAtrs(m,c,adjsyn(*,adjsem,typ*)) -> AdjAtrs([],c,adjsyn(*,adjsem,typ*))
  | PersAtrs(m,le,neg,mo,t,au,a) -> PersAtrs([],le,neg,mo,t,au,a)
  | GerAtrs(m,le,neg,a) -> GerAtrs([],le,neg,a)
  | NonPersAtrs(m,le,role,role_attr,neg,a) -> NonPersAtrs([],le,role,role_attr,neg,a)
  | _ -> failwith "remove_meaning"


(*let single_frame (paths,last) =
  List.rev (Xlist.rev_map paths (fun t ->
    let lex_frames,frames = Xlist.fold t.valence ([],StringMap.empty) (fun (lex_frames,frames) -> function
        Frame(attrs,schema) ->
          let attrs = remove_meaning attrs in
          lex_frames, StringMap.add_inc frames (WalStringOf.frame_atrs attrs) (attrs,[schema]) (fun (_,l) -> attrs, schema :: l)
      | frame -> frame :: lex_frames, frames) in
    let frames = StringMap.fold frames lex_frames (fun frames _ (attrs,schemata) ->
      Xlist.fold (single_schema schemata) frames (fun frames frame -> Frame(attrs,frame) :: frames)) in
    {t with valence=frames})), last    *)

let simplify_position_verb l = function (* FIXME: dodać czyszczenie E Pro *)
    Phrase(NP(Case "dat")) -> l
  | Phrase(NP(Case "inst")) -> l
  | Phrase(PrepNP _) -> l
  | Phrase(PrepAdjP _) -> l
  | Phrase(NumP (Case "dat")) -> l
  | Phrase(NumP (Case "inst")) -> l
  | Phrase(PrepNumP _) -> l
  | Phrase(ComprepNP _) -> l
  | Phrase(ComparNP _) -> l
  | Phrase(ComparPP _) -> l
  | Phrase(IP) -> l
  | Phrase(CP _) -> l
  | Phrase(NCP(Case "dat",_,_)) -> l
  | Phrase(NCP(Case "inst",_,_)) -> l
  | Phrase(PrepNCP _) -> l
(*   | Phrase(PadvP) -> l *)
  | Phrase(AdvP) -> l
  | Phrase(PrepP) -> l
  | Phrase(Or) -> l
  | Phrase(Qub) -> l
  | Phrase(Adja) -> l
  | Phrase(Inclusion) -> l
  | Phrase Pro -> Phrase Null :: l
  | t -> t :: l

let simplify_position_noun l = function
    Phrase(NP(Case "gen")) -> l
  | Phrase(NP(Case "nom")) -> l
  | Phrase(NP(CaseAgr)) -> l
  | Phrase(PrepNP _) -> l
  | Phrase(AdjP AllAgr) -> l
  | Phrase(NumP (Case "gen")) -> l
  | Phrase(NumP (Case "nom")) -> l
  | Phrase(NumP (CaseAgr)) -> l
  | Phrase(PrepNumP _) -> l
  | Phrase(ComprepNP _) -> l
  | Phrase(ComparNP _) -> l
  | Phrase(ComparPP _) -> l
  | Phrase(IP) -> l
  | Phrase(NCP(Case "gen",_,_)) -> l
  | Phrase(PrepNCP _) -> l
  | Phrase(PrepP) -> l
  | Phrase(Qub) -> l
  | Phrase(Adja) -> l
  | Phrase(Inclusion) -> l
  | Phrase Pro -> Phrase Null :: l
  | t -> t :: l

let simplify_position_adj l = function
    Phrase(AdvP) -> l
  | t -> t :: l

let simplify_position_adv l = function
    Phrase(AdvP) -> l
  | t -> t :: l


let simplify_position pos l s =
  let morfs = match pos with
      "verb" -> List.rev (Xlist.fold s.morfs [] simplify_position_verb)
    | "noun" -> List.rev (Xlist.fold s.morfs [] simplify_position_noun)
    | "adj" -> List.rev (Xlist.fold s.morfs [] simplify_position_adj)
    | "adv" -> List.rev (Xlist.fold s.morfs [] simplify_position_adv)
    | _ -> s.morfs in
  match morfs with
    [] -> l
  | [Phrase Null] -> l
  | _ -> {s with morfs=morfs} :: l

let simplify_schemata pos schemata =
  let schemata = Xlist.fold schemata StringMap.empty (fun schemata (schema,frame) ->
    let schema = List.sort compare (Xlist.fold schema [] (fun l s ->
      let s = {s with role=""; role_attr=""; sel_prefs=[]; cr=[]; ce=[]; morfs=List.sort compare s.morfs} in
      if s.gf <> ARG && s.gf <> ADJUNCT then s :: l else
(*       if s.cr <> [] || s.ce <> [] then s :: l else  *)
      simplify_position pos l s)) in
    StringMap.add_inc schemata (WalStringOf.schema schema) (schema,[frame]) (fun (_,frames) -> schema, frame :: frames)) in
  StringMap.fold schemata [] (fun l _ s -> s :: l)

(* FIXME: problem ComprepNP i PrepNCP *)
(* FIXME: problem gdy ten sam token występuje w  kilku ścieżkach *)
let generate_verb_prep_adjuncts preps =
  Xlist.map preps (fun (lemma,case) -> WalFrames.verb_prep_adjunct_schema_field lemma case)

let generate_verb_comprep_adjuncts compreps =
  Xlist.map compreps (fun lemma -> WalFrames.verb_comprep_adjunct_schema_field lemma)

let generate_verb_compar_adjuncts compars =
  Xlist.map compars (fun lemma -> WalFrames.verb_compar_adjunct_schema_field lemma)

let generate_noun_prep_adjuncts preps =
  WalFrames.noun_prep_adjunct_schema_field preps

let generate_noun_compar_adjuncts compars =
  WalFrames.noun_compar_adjunct_schema_field compars

let generate_adj_compar_adjuncts compars =
  WalFrames.noun_compar_adjunct_schema_field compars

let compars = StringSet.of_list ["jak";"jako";"niż";"niczym";"niby";"co"]

let generate_prep_adjunct_tokens paths =
  let map = Xlist.fold paths StringMap.empty (fun map t ->
    match t.token with
      Lemma(lemma,"prep",interp) ->
        let map = if lemma = "po" then StringMap.add map "po:postp" ("po","postp") else map in
        if StringSet.mem compars lemma then map else
        Xlist.fold interp map (fun map -> function
          [cases] -> Xlist.fold cases map (fun map case -> StringMap.add map (lemma ^ ":" ^ case) (lemma,case))
        | [cases;_] -> Xlist.fold cases map (fun map case -> StringMap.add map (lemma ^ ":" ^ case) (lemma,case))
        | _ -> map)
    | _ -> map) in
  StringMap.fold map [] (fun l _ v -> v :: l)

let generate_comprep_adjunct_tokens paths =
  let lemmas = Xlist.fold paths StringSet.empty (fun lemmas t ->
    match t.token with
      Lemma(lemma,_,_) -> StringSet.add lemmas lemma
    | _ -> lemmas) in
  StringMap.fold WalFrames.comprep_reqs [] (fun compreps comprep reqs ->
    let b = Xlist.fold reqs true (fun b s -> b && StringSet.mem lemmas s) in
    if b then comprep :: compreps else compreps)

let generate_compar_adjunct_tokens paths =
  let set = Xlist.fold paths StringSet.empty (fun set t ->
    match t.token with
      Lemma(lemma,"prep",interp) ->
        if not (StringSet.mem compars lemma) then set else
        StringSet.add set lemma
    | _ -> set) in
  StringSet.to_list set

let is_measure = function
    NounAtrs(_,_,Common "measure") -> true
  | _ -> false

let assign_simplified_valence (paths,last) =
  let preps = generate_prep_adjunct_tokens paths in
  let compreps = generate_comprep_adjunct_tokens paths in
  let compars = generate_compar_adjunct_tokens paths in
  let verb_prep_adjuncts = generate_verb_prep_adjuncts preps in
  let verb_comprep_adjuncts = generate_verb_comprep_adjuncts compreps in
  let verb_compar_adjuncts = generate_verb_compar_adjuncts compars in
  let noun_prep_adjuncts = generate_noun_prep_adjuncts preps compreps in
  let noun_compar_adjuncts = generate_noun_compar_adjuncts compars in
  let adj_compar_adjuncts = generate_adj_compar_adjuncts compars in
  let verb_adjuncts = WalFrames.verb_adjuncts_simp @ verb_prep_adjuncts @ verb_comprep_adjuncts @ verb_compar_adjuncts in
  let noun_adjuncts = WalFrames.noun_adjuncts_simp @ [noun_prep_adjuncts] @ [noun_compar_adjuncts] in
  let noun_measure_adjuncts = WalFrames.noun_measure_adjuncts_simp @ [noun_prep_adjuncts] @ [noun_compar_adjuncts] in
  let adj_adjuncts = WalFrames.adj_adjuncts_simp @ [adj_compar_adjuncts] in
  let adv_adjuncts = WalFrames.adv_adjuncts_simp @ [adj_compar_adjuncts] in
  List.rev (Xlist.rev_map paths (fun t ->
    let pos = match t.token with
        Lemma(_,pos,_) -> WalFrames.simplify_pos pos
      | _ -> "" in
    let lex_frames,frames = Xlist.fold t.valence ([],StringMap.empty) (fun (lex_frames,frames) -> function
        _,(Frame(attrs,schema) as frame) ->
          let attrs = remove_meaning attrs in
          lex_frames, StringMap.add_inc frames (WalStringOf.frame_atrs attrs) (attrs,[schema,frame]) (fun (_,l) -> attrs, (schema,frame) :: l)
      | _,frame -> frame :: lex_frames, frames) in
    let simp_frames,full_frames,n = Xlist.fold lex_frames ([],[],1) (fun (simp_frames,full_frames,n) frame ->
      (n,frame) :: simp_frames, (n,frame) :: full_frames, n+1) in
    let simp_frames,full_frames,_ = StringMap.fold frames (simp_frames,full_frames,n) (fun (simp_frames,full_frames,n) _ (attrs,schemata) ->
      Xlist.fold (simplify_schemata pos schemata) (simp_frames,full_frames,n) (fun (simp_frames,full_frames,n) (schema,frames) ->
        let schema = match pos with
            "verb" -> schema @ verb_adjuncts
          | "noun" -> schema @ (if is_measure attrs then noun_measure_adjuncts else noun_adjuncts)
          | "adj" -> schema @ adj_adjuncts
          | "adv" -> schema @ adv_adjuncts
          | _ -> schema in
        (n,Frame(attrs,schema)) :: simp_frames,
        Xlist.fold frames full_frames (fun full_frames frame -> (n,frame) :: full_frames),
        n+1)) in
    {t with simple_valence=simp_frames; valence=full_frames})), last

(* FIXME: dodać do walencji preferencje selekcyjne nadrzędników symboli: dzień, godzina, rysunek itp. *)
(* FIXME: sprawdzić czy walencja nazw własnych jest dobrze zrobiona. *)

let add_ids (paths,last) =
  let paths,next_id = Xlist.fold ((*List.rev*) paths) ([],1) (fun (paths,id) t -> (* id=0 jest zarezerwowane dla pro *)
    {t with id=id} :: paths, id+1) in
  (paths,last),next_id

let parse query =
(*   print_endline "a1"; *)
  let l = Xunicode.classified_chars_of_utf8_string query in
(*   print_endline "a2"; *)
  let l = PreTokenizer.tokenize l in
(*   print_endline "a3"; *)
  let l = PrePatterns.normalize_tokens [] l in
(*   print_endline "a4"; *)
  let l = PrePatterns.find_replacement_patterns l in
(*   print_endline "a5"; *)
  let l = PrePatterns.remove_spaces [] l in
  let l = PrePatterns.find_abr_patterns PreAcronyms.abr_patterns l in
  let l = PrePatterns.normalize_tokens [] l in
(*   print_endline "a6"; *)
  let paths = PrePaths.translate_into_paths l in
(*   print_endline "a7"; *)
  let paths = PrePaths.lemmatize paths in
(*   print_endline "a8"; *)
  let paths = PreMWE.process paths in
(*   print_endline "a12"; *)
  let paths = find_proper_names paths in
(*   print_endline "a13"; *)
  let paths = modify_weights paths in
  let paths = translate_digs paths in
  let paths = PreWordnet.assign_senses paths in
(*   print_endline "a14"; *)
  let paths = combine_interps paths in (* FIXME: to powinno też działać dla Proper *)
(*   print_endline "a15"; *)
  let paths = assign_valence paths in
(*   print_endline "a16"; *)
  let paths = disambiguate_senses paths in
  let paths = assign_simplified_valence paths in
  let paths = PreSemantics.assign_semantics paths in
(*   print_endline "a16"; *)
  let paths = select_tokens paths in
(*   print_endline "a17"; *)
(*  let paths = if !single_sense_flag then single_sense paths else paths in
  let paths = if !single_frame_flag then single_frame paths else paths in*)
  let paths, next_id = add_ids paths in
  let paths = prepare_indexes paths in
(*   print_endline "a18"; *)
  paths, next_id
(*     print_endline (PrePaths.to_string paths);     *)
(*   let paths =
    if PrePaths.no_possible_path (PrePaths.map paths PreLemmatization.remove_postags) then
      PrePaths.map paths process_ign
    else paths in
  let paths = PrePaths.map paths PreLemmatization.remove_postags in
  let paths = PreCaseShift.manage_lower_upper_case paths in (* FIXME: niepotrzebnie powiększa pierwszy token (przymiotniki partykuły itp.) *)
  let paths = PreLemmatization.combine_interps paths in
(*     print_endline (PrePaths.to_string paths);     *)*)

let split_into_sentences par paths last next_id =
  let paths,last,next_id = PreSentences.find_sentences (paths,last) next_id in
  PreSentences.extract_sentences par (paths,last), next_id
  (* [{pid="";pbeg=(-1); plen=(-1); psentence=StructSentence(paths,last,next_id)}] *)

let parse_text = function
    RawText query ->
      print_endline query;
      AltText[Raw,RawText query; Struct,StructText (Xlist.map (Xstring.split "\n" query) (fun par ->
        let (paths,last : PreTypes.token_record list * int), next_id = parse par in
        let sentences, next_id = split_into_sentences par paths last next_id in
        AltParagraph[Raw,RawParagraph par; Struct,StructParagraph(sentences,next_id)]))]
  | _ -> failwith "parse_text: not implemented"

let rec main_loop in_chan out_chan =
  (* let query = input_line in_chan in *)
  (* print_endline "main_loop 1"; *)
  let query = (Marshal.from_channel in_chan : text) in
  (* print_endline "main_loop 2"; *)
  if query = RawText "" then () else (
  (try
(*     let time0 = Sys.time () in *)
    let utime0 = Unix.gettimeofday () in
  (* print_endline "main_loop 3"; *)
    let text = parse_text query in
  (* print_endline "main_loop 4"; *)
    (* let (paths,last : (int * int * PreTypes.token_record) list * int), next_id = parse query in *)
(*     let time2 = Sys.time () in *)
    let utime2 = Unix.gettimeofday () in
(*     Printf.printf "time=%f utime=%f\n%!" (time2 -. time0) (utime2 -. utime0); *)
    Marshal.to_channel out_chan (text(*paths,last,next_id*),"",utime2 -. utime0) [];
  (* print_endline "main_loop 5"; *)
    ()
(*     output_string out_chan (Xml.to_string_fmt (PrePaths.to_xml paths) ^ "\n") *)
  with e ->
    Marshal.to_channel out_chan (RawText ""(*[],0*),Printexc.to_string e,0.) []);
(*    output_string out_chan (Xml.to_string_fmt (Xml.Element("error",[],
      [Xml.PCData (Printexc.to_string e)])) ^ "\n"));*)
  flush out_chan;
  main_loop in_chan out_chan)

(* let _ = main_loop stdin stdout *)

let sockaddr = Unix.ADDR_INET(Unix.inet_addr_any,Paths.pre_port)

let _ =
  Gc.compact ();
  print_endline "Ready!";
  Unix.establish_server main_loop sockaddr