LCGrenderer.ml 23.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
(*
 *  ENIAM: Categorial Syntactic-Semantic Parser for Polish
 *  Copyright (C) 2016 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
 *  Copyright (C) 2016 Institute of Computer Science Polish Academy of Sciences
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *)

open WalTypes
open PreTypes
open Xstd

let dir_of_dir = function
   Forward -> LCGtypes.Forward
 | Backward  -> LCGtypes.Backward
 | Both -> LCGtypes.Both

let arg_of_ctype = function
    Int -> LCGtypes.Atom "int"
  | Rel -> LCGtypes.Atom "rel"
  | Sub -> LCGtypes.Atom "sub"
  | Coord -> LCGtypes.Atom "coord"
  | CompTypeUndef -> LCGtypes.Top
  | CompTypeAgr -> LCGtypes.Atom "ctype"

open LCGtypes

let simplify_impset = function
    ImpSet(s,[]),LambdaSet([],sem) -> s,sem
  | ImpSet(s,[d,t]),LambdaSet([v],sem) -> Imp(s,d,t),Lambda(v,sem)
  | s,sem -> s,sem
  
let make_tensor_type quant l =
  Xlist.map l (fun s ->
    let b = Xlist.fold quant false (fun b (t,_,_) -> if t = s then true else b) in
    if b then AVar s else Atom s)
  
let rec internal_substitute var_name t = function
  | Atom x -> Atom x
  | AVar x -> if x = var_name then t else AVar x
  | With l -> With (Xlist.map l (internal_substitute var_name t))
  | Zero -> Zero
  | Top -> Top

let rec substitute var_name t = function
  | Tensor l -> Tensor (Xlist.map l (internal_substitute var_name t))
  | Plus l -> Plus (Xlist.map l (substitute var_name t))
  | Imp(s,d,t2) -> Imp(substitute var_name t s,d,substitute var_name t t2)
  | One -> One
  | ImpSet(s,l) -> ImpSet(substitute var_name t s, Xlist.map l (fun (d,s) -> d, substitute var_name t s))
  | WithVar(v,g,e,s) -> if v = var_name then WithVar(v,g,e,s) else WithVar(v,internal_substitute var_name t g,e,substitute var_name t s)
  | Star s -> Star (substitute var_name t s)
  | Bracket(lf,rf,s) -> Bracket(lf,rf,substitute var_name t s)
  | BracketSet d -> BracketSet d
  | Maybe s -> Maybe (substitute var_name t s)

let rec internal_count_avar var_name = function
    Atom _ -> 0
  | AVar x -> if x = var_name then 1 else 0
  | With l -> Xlist.fold l 0 (fun b t -> internal_count_avar var_name t + b)
  | Zero -> 0
  | Top -> 0

let rec count_avar var_name = function
  | Tensor l -> Xlist.fold l 0 (fun b t -> internal_count_avar var_name t + b)
  | Plus l -> Xlist.fold l 0 (fun b t -> count_avar var_name t + b)
  | Imp(s,d,t2) -> count_avar var_name s + count_avar var_name t2
  | One -> 0
  | ImpSet(s,l) -> count_avar var_name s + Xlist.fold l 0 (fun b (_,t) -> count_avar var_name t + b)
  | WithVar(v,g,e,s) -> if v = var_name then 0 else count_avar var_name s +  internal_count_avar var_name g
  | Star t -> count_avar var_name t
  | Bracket(lf,rf,s) -> count_avar var_name s
  | BracketSet _ -> 0
  | Maybe t -> count_avar var_name t

let rec substitute_substvar v g = function
    Var v as t -> t
  | Tuple l -> Tuple(Xlist.map l (substitute_substvar v g))
(*   | LetIn(l,s,t) -> LetIn(l,substitute_substvar v g s,substitute_substvar v g t) *)
  | Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i,substitute_substvar v g t))
  | VariantVar(v2,t) -> if v2 = v then VariantVar(v2,t) else VariantVar(v2,substitute_substvar v g t)
  | SubstVar v2 -> if v2 = v then g else SubstVar v2
  | Case(t,l) -> Case(substitute_substvar v g t,Xlist.map l (fun (x,t) -> x,substitute_substvar v g t))
  | App(s,t) -> App(substitute_substvar v g s,substitute_substvar v g t)
  | Lambda(v2,t) -> Lambda(v2,substitute_substvar v g t)
  | LambdaSet(l,t) -> LambdaSet(l,substitute_substvar v g t)
  | Dot -> Dot
  | Val s -> Val s
  | SetAttr(e,s,t) -> SetAttr(e,substitute_substvar v g s,substitute_substvar v g t)
  | Fix(s,t) -> Fix(substitute_substvar v g s,substitute_substvar v g t)
  | Node t -> Node{t with attrs=Xlist.map t.attrs (fun (e,t) -> e, substitute_substvar v g t);
                          gs=substitute_substvar v g t.gs;
                          args=substitute_substvar v g t.args}
  | Morf m -> Morf m
  | Gf s -> Gf s
  | Cut t -> Cut(substitute_substvar v g t)
  | t -> failwith ("substitute_substvar: " ^ LCGstringOf.linear_term 0 t)
  
let simplify_withvar = function
    WithVar(v,Atom t,e,s),VariantVar(_,sem) -> substitute v (Atom t) s, substitute_substvar v (LCGrules.make_subst e (Atom t)) sem
  | WithVar(v,g,e,s),VariantVar(v2,sem) -> 
       if count_avar v s = 0 then 
         s, substitute_substvar v (LCGrules.make_subst e g) sem
       else WithVar(v,g,e,s),VariantVar(v2,sem)
  | s -> s

let rec make_type_quantification l (t,sem) = 
  match l with 
    [] -> t,sem
  | (category,e,[]) :: l -> 
      let t,sem = make_type_quantification l (t,sem) in
      simplify_withvar (WithVar(category,Zero,e,t), VariantVar(category,sem))
  | (category,e,[s]) :: l -> 
      let t,sem = make_type_quantification l (t,sem) in
      simplify_withvar (WithVar(category,Atom s,e,t), VariantVar(category,sem))
  | (category,e,values) :: l -> 
      let t,sem = make_type_quantification l (t,sem) in
      simplify_withvar (WithVar(category, With(Xlist.map values (function s -> Atom s)), e, t),VariantVar(category,sem))
      
let make_gs quant l =
  Tuple(Xlist.map l (fun s ->
    let b = Xlist.fold quant false (fun b (t,_,_) -> if t = s then true else b) in
    if b then SubstVar s else Val s))

let make_arg_phrase = function
    NP(Case case) -> Tensor[Atom "np"; Top; Atom case; Top; Top]
  | NP NomAgr -> Tensor[Atom "np"; AVar "number"; Atom "nom"; AVar "gender"; AVar "person"]
  | NP GenAgr -> Tensor[Atom "np"; AVar "number"; Atom "gen"; AVar "gender"; AVar "person"]
  | NP AllAgr -> Tensor[Atom "np"; AVar "number"; AVar "case"; AVar "gender"; AVar "person"]
  | NP CaseAgr -> Tensor[Atom "np"; Top; AVar "case"; Top; Top]
  | NP CaseUndef -> Tensor[Atom "np"; Top; Top; Top; Top]
  | PrepNP(_,"",CaseUndef) -> Tensor[Atom "prepnp"; Top; Top]
  | PrepNP(_,prep,Case case) -> Tensor[Atom "prepnp"; Atom prep; Atom case]
  | AdjP(Case case) -> Tensor[Atom "adjp"; Top; Atom case; Top]
  | AdjP NomAgr -> Tensor[Atom "adjp"; AVar "number"; Atom "nom"; AVar "gender"]
  | AdjP AllAgr -> Tensor[Atom "adjp"; AVar "number"; AVar "case"; AVar "gender"]
  | AdjP CaseAgr -> Tensor[Atom "adjp"; Top; AVar "case"; Top]
  | PrepAdjP(_,"",CaseUndef) -> Tensor[Atom "prepnp"; Top; Top]
  | PrepAdjP(_,prep,Case case) -> Tensor[Atom "prepadjp"; Atom prep; Atom case]
  | NumP(Case case) -> Tensor[Atom "nump"; Top; Atom case; Top; Top]
  | NumP NomAgr -> Tensor[Atom "nump"; AVar "number"; Atom "nom"; AVar "gender"; AVar "person"]
  | NumP CaseAgr -> Tensor[Atom "nump"; Top; AVar "case"; Top; Top]
  | NumP CaseUndef -> Tensor[Atom "nump"; Top; Top; Top; Top]
  | PrepNumP(_,"",CaseUndef) -> Tensor[Atom "prepnp"; Top; Top]
  | PrepNumP(_,prep,Case case) -> Tensor[Atom "prepnump"; Atom prep; Atom case]
  | ComprepNP(_,"") -> Tensor[Atom "comprepnp"; Top]
  | ComprepNP(_,prep) -> Tensor[Atom "comprepnp"; Atom prep]
  | ComparNP(_,prep,Case case) -> Tensor[Atom "comparnp"; Atom prep; Atom case] 
  | ComparPP(_,prep) -> Tensor[Atom "comparpp"; Atom prep] 
  | IP -> Tensor[Atom "ip";Top;Top;Top]
  | CP (ctype,Comp comp) -> Tensor[Atom "cp"; arg_of_ctype ctype; Atom comp]
  | CP (ctype,CompUndef) -> Tensor[Atom "cp"; arg_of_ctype ctype; Top]
  | NCP(Case case,ctype,Comp comp) -> Tensor[Atom "ncp"; Top; Atom case; Top; Top; arg_of_ctype ctype; Atom comp]
  | NCP(Case case,CompTypeUndef,CompUndef) -> Tensor[Atom "ncp"; Top; Atom case; Top; Top; Top; Top]
  | NCP(NomAgr,ctype,Comp comp) -> Tensor[Atom "ncp"; AVar "number"; Atom "nom"; AVar "gender"; AVar "person"; arg_of_ctype ctype; Atom comp]
  | NCP(NomAgr,CompTypeUndef,CompUndef) -> Tensor[Atom "ncp"; AVar "number"; Atom "nom"; AVar "gender"; AVar "person"; Top; Top]
  | PrepNCP(_,prep,Case case,ctype,Comp comp) -> Tensor[Atom "prepncp"; Atom prep; Atom case; arg_of_ctype ctype; Atom comp]
  | InfP(Aspect aspect) -> Tensor[Atom "infp"; Atom aspect]
  | InfP AspectUndef -> Tensor[Atom "infp"; Top]
  | PadvP -> Tensor[Atom "padvp"]
  | AdvP -> Tensor[Atom "advp"]
  | FixedP lex -> Tensor[Atom "fixed"; Atom lex]
  | PrepP -> Tensor[Atom "prepp";Top]
  | Prep("",CaseAgr) -> Tensor[Atom "prep"; Top; AVar "case"]
  | Prep("",CaseUAgr) -> Tensor[Atom "prep"; Top; AVar "ucase"]
  | Num(AllAgr,Acm acm) -> Tensor[Atom "num"; AVar "number"; AVar "case"; AVar "gender"; AVar "person"; Atom acm]
  | Measure(AllUAgr) -> Tensor[Atom "measure"; AVar "unumber"; AVar "ucase"; AVar "ugender"; AVar "uperson"]
  | Or -> Tensor[Atom "or"] 
  | Qub -> Tensor[Atom "qub"]
  | Inclusion -> Tensor[Atom "inclusion"]
  | Adja -> Tensor[Atom "adja"]
  | Aglt -> Tensor[Atom "aglt"; AVar "number"; AVar "person"]
  | AuxPast -> Tensor[Atom "aux-past"; AVar "number"; AVar "gender"; AVar "person"]
  | AuxFut -> Tensor[Atom "aux-fut"; AVar "number"; AVar "gender"; AVar "person"]
  | AuxImp -> Tensor[Atom "aux-imp"]
  | Pro -> One
  | ProNG -> One
  | Null -> One
  | X -> Tensor[Atom "X"]
  | Lex lex -> Tensor[Atom lex]
  | phrase -> failwith ("make_arg_phrase: " ^ WalStringOf.phrase phrase)    
      
let make_arg_pos = function (* wprowadzam uzgodnienia a nie wartości cech, bo wartości cech są wprowadzane przez leksem a uzgodnienia wiążą je z wartościami u nadrzędnika *)
  | SUBST(_,Case case) -> [Atom "subst"; Top; Atom case; Top; Top]
  | SUBST(_,NomAgr) -> [Atom "subst"; AVar "number"; Atom "nom"; AVar "gender"; AVar "person"]
  | SUBST(_,GenAgr) -> [Atom "subst"; AVar "number"; Atom "gen"; AVar "gender"; AVar "person"]
  | SUBST(_,AllAgr) -> [Atom "subst"; AVar "number"; AVar "case"; AVar "gender"; AVar "person"]
  | SUBST(_,CaseAgr) -> [Atom "subst"; Top; AVar "case"; Top; Top]
  | SUBST(_,CaseUndef) -> [Atom "subst"; Top; Top; Top; Top]
  | NUM(Case case,_,_) -> [Atom "num"; Top; Atom case; Top; Top]
  | NUM(NomAgr,_,_) -> [Atom "num"; AVar "number"; Atom "nom"; AVar "gender"; AVar "person"]
  | NUM(CaseAgr,_,_) -> [Atom "num"; Top; AVar "case"; Top; Top]
  | NUM(CaseUndef,_,_) -> [Atom "num"; Top; Top; Top; Top]
  | PREP(Case case) -> [Atom "prep"; Atom case]
  | ADJ(_,Case case,_,_) -> [Atom "adj"; Top; Atom case; Top]
  | ADJ(_,NomAgr,_,_) -> [Atom "adj"; AVar "number"; Atom "nom"; AVar "gender"]
  | ADJ(_,CaseAgr,_,_) -> [Atom "adj"; Top; AVar "case"; Top]
  | ADJ(_,AllAgr,_,_) -> [Atom "adj"; AVar "number"; AVar "case"; AVar "gender"]
  | ADV _ -> [Atom "adv"]
  | GER(_,Case case,_,_,_,_) -> [Atom "ger"; Top; Atom case; Top; Top]
  | GER(_,NomAgr,_,_,_,_) -> [Atom "ger"; AVar "number"; Atom "nom"; AVar "gender"; AVar "person"]
  | GER(_,CaseAgr,_,_,_,_) -> [Atom "ger"; Top; AVar "case"; Top; Top]
  | GER(_,CaseUndef,_,_,_,_) -> [Atom "ger"; Top; Top; Top; Top]
  | PACT(_,Case case,_,_,_,_) -> [Atom "pact"; Top; Atom case; Top] 
  | PACT(_,NomAgr,_,_,_,_) -> [Atom "pact"; AVar "number"; Atom "nom"; AVar "gender"]
  | PACT(_,AllAgr,_,_,_,_) -> [Atom "pact"; AVar "number"; AVar "case"; AVar "gender"]
  | PACT(_,CaseAgr,_,_,_,_) -> [Atom "pact"; Top; AVar "case"; Top]
  | PPAS(_,Case case,_,_,_) -> [Atom "ppas"; Top; Atom case; Top] 
  | PPAS(_,NomAgr,_,_,_) -> [Atom "ppas"; AVar "number"; Atom "nom"; AVar "gender"]
  | PPAS(_,AllAgr,_,_,_) -> [Atom "ppas"; AVar "number"; AVar "case"; AVar "gender"] 
  | PPAS(_,CaseAgr,_,_,_) -> [Atom "ppas"; Top; AVar "case"; Top] 
  | INF(Aspect aspect,_,_) -> [Atom "inf"; Atom aspect]
  | INF(AspectUndef,_,_) -> [Atom "inf"; Top]
  | QUB -> [Atom "qub"]
  | COMPAR -> [Atom "TODO"] (* FIXME: todo *)
  | COMP ctype -> [Atom "comp"; arg_of_ctype ctype]
  | PERS _ -> [Atom "TODO"] (* FIXME: todo *)
  | pos -> failwith ("make_arg_pos: " ^ WalStringOf.pos pos)

let rec make_arg quant = function
    Phrase phrase -> make_arg_phrase phrase
  | E phrase -> make_arg_phrase phrase
  | LexArg(id,arg,lex) -> Tensor([Atom "lex";Atom id;Atom lex] @ make_arg_pos arg)
(*   | LexRealization(arg,lex) -> (match make_arg arg with Tensor l -> Tensor([Atom "lexr";Atom lex] @ l) | _ -> failwith "make_arg") *)
  | Raised(arg1,dir,arg2) -> Imp(Tensor(make_tensor_type quant arg1),dir_of_dir dir,Tensor(make_tensor_type quant arg2))
  | morf -> failwith ("make_arg: " ^ WalStringOf.morf morf)    

let empty_schema_field = 
  {gf=NOGF; role=""; role_attr=""; sel_prefs=[]; cr=[]; ce=[]; dir=Both; morfs=[]}    
  
let empty_node = {
  pred=""; cat=""; weight=0.; (*LCGtypes.*)id=0; gs=Dot; attrs=[]; args=Dot;
  agf=NOGF; amorf=Phrase Null; arole=""; arole_attr=""; 
  meaning=""; hipero=StringSet.empty; meaning_weight=0.; 
  position=empty_schema_field;
}

let pro_id_counter = ref 0

let get_pro_id () =
  incr pro_id_counter;
  !pro_id_counter
  
let make_pro ()(*id*) =
  Node{empty_node with pred="pro"; cat="pro"; weight=0.; id=get_pro_id (); attrs=[]; args=Dot}
 
let make_prong ()(*id*) =
  Node{empty_node with pred="pro"; cat="pro"; weight=0.; id=get_pro_id (); attrs=["NUM",SubstVar "number";"GEND",SubstVar "gender";"PERS",SubstVar "person"]; args=Dot}
 
let make_var vars gf =
  let v = try String.lowercase (String.sub gf 0 1) with _ -> "v" in
  let v = if v = "q" || v = "v" || v = "x" then "y" else v in
  try 
    let i = StringMap.find vars v in
    v ^ string_of_int i, StringMap.add vars v (i+1)
  with Not_found -> v, StringMap.add vars v 2
  
(*let string_of_gf = function
    SUBJ -> "SUBJ"
  | OBJ -> "OBJ"
  | ARG -> "ARG"
  | CORE -> "CORE"
  | NOSEM -> "NOSEM"
  | ADJUNCT -> "ADJUNCT"
  | RAISED -> "RAISED"
  | NOGF -> "NOGF"
  | CLAUSE -> "CLAUSE"
  | SENTENCE -> "SENTENCE"*)
  
(*let string_of_gf = function
    SUBJ -> "subj"
  | OBJ -> "obj"
  | ARG -> "arg"
  | CORE -> "core"
  | NOSEM -> "nosem"
  | ADJUNCT -> "adjunct"
  | RAISED -> "raised"
  | NOGF -> "nogf"
  | CLAUSE -> "clause"
  | SENTENCE -> "sentence"*)
  
let make_args quant var_map v = function
    {gf=RAISED; morfs=[arg]} as s ->
      let arg = make_arg quant arg in
      ((dir_of_dir s.dir,arg),v,[],[Var v]),var_map
  | {gf=RAISED} -> failwith "make_args: RAISED"
(*  | {gf=NOSEM; morfs=[arg]} as s ->
      let arg = make_arg quant arg in
      ((dir_of_dir s.dir,arg),v,[Dot],[]),var_map
  | {gf=NOSEM} -> failwith "make_args: NOSEM"
  | {gf=NOGF} as s -> (* pro ani null nie może się tu pojawić; rolę tematyczną pomijamy *)
      let args2 = Xlist.map s.morfs (fun morf -> make_arg quant morf) in
(*       let pro_id = get_pro_id () in *)
      let sem_args = Xlist.map args2 (function 
          One -> "q",Dot(*failwith "make_args 1"*)
        | _ -> "q",Var "q") in
      ((dir_of_dir s.dir,Plus args2),v,[Case(Var v,sem_args)],[]),var_map*)
  | {morfs=[Multi args]} as s -> (* pod multi nie może być Null, Pro ani ProNG *)
      let args2 = Xlist.map args (fun phrase -> make_arg_phrase phrase, Phrase phrase) in
      let sem_args = 
        if s.role = "" then Xlist.map args2 (fun (_,morf) -> "q",SetAttr("GF",Gf s.gf,SetAttr("MORF",Morf morf,(*SetElem*)(Var "q"))))
        else Xlist.map args2 (fun (_,morf) -> "q",Cut(SetAttr("AROLE",Val s.role,SetAttr("GF",Gf s.gf,SetAttr("MORF",Morf morf,(*SetElem*)(Var "q")))))) in
      ((dir_of_dir s.dir,Maybe(Plus(Xlist.map args2 fst))),v,
         [Fix(Var v,Lambda("x"^v,Case(Var ("x"^v),sem_args)))],[]),var_map      
  | s -> (* FIXME: argument pusty występuje tyle razy ile jest preferencji, a chyba powinien jeden raz *)
      let args2 = Xlist.map s.morfs (fun morf -> make_arg quant morf, morf) in      
      let sem_args = Xlist.map args2 (function 
          One, Phrase Pro -> SetAttr("MORF",Morf(Phrase Pro),make_pro ()) (*s.sel_prefs*) 
        | One, Phrase ProNG -> SetAttr("MORF",Morf(Phrase ProNG),make_prong ()) (*s.sel_prefs*) 
        | One, E Pro  -> SetAttr("MORF",Morf(E Pro ),make_pro ()) (*s.sel_prefs*) 
        | One, E ProNG  -> SetAttr("MORF",Morf(E ProNG),make_prong ()) (*s.sel_prefs*) 
        | One, Phrase Null -> Dot 
        | One, _ -> failwith "make_args 3" 
        | _,morf -> SetAttr("MORF",Morf morf,Var "q")) in
      let sem_args = if s.role = "" then sem_args else Xlist.map sem_args (function Dot -> Dot | t -> SetAttr("AROLE",Val s.role,t)) in
      let sem_args = Xlist.fold s.ce sem_args (fun sem_args e -> 
        Xlist.map sem_args (function Dot -> Dot | t -> SetAttr("LABEL",Val e,t))) in
      let sem_args = Xlist.fold s.cr sem_args (fun sem_args e -> 
        Xlist.map sem_args (function Dot -> Dot | t -> SetAttr("DEF",Val e,t))) in
      ((dir_of_dir s.dir,Plus(Xlist.map args2 fst)),v,
         [Case(Var v,Xlist.map sem_args (function Dot -> "q",Dot | t -> "q",Cut(SetAttr("AROLE",Val s.role,SetAttr("GF",Gf s.gf,(*SetElem*) t)))))],[]),var_map      
  
let make_args2 quant var_map s =
  let v,var_map = make_var var_map (String.lowercase s.role) (*gf*) in
(*   let s = {s with morfs=List.flatten (Xlist.map s.morfs (function E l -> Xlist.map l (fun p -> E[p]) | m -> [m]))} in *)
  make_args quant var_map v s
  
let make_schema quant schema var_map =
  let schema,_,var_map = Xlist.fold schema ([],StringMap.empty,var_map) (fun (schema,labels,var_map) s -> 
    let schema_pos,var_map = make_args2 quant var_map s in
    schema_pos :: schema, labels, var_map) in
  Xlist.fold schema ([],[],[],[]) (fun (args,vars,sem_args,raised_args) (arg,var,sem_arg,raised_arg) ->
    arg :: args, var :: vars, sem_arg @ sem_args, raised_arg @ raised_args), var_map
  
let make_frame quant schema_list tl d node = (* UWAGA: to zadziała, gdy jest conajwyżej jeden podniesiony typ *)
  let args_vars_list,sem_args,raised_args,_ = Xlist.fold schema_list ([],[],[],StringMap.empty) (fun (args_vars_list,sem_args,raised_args,var_map) schema ->
(*     print_endline (WalStringOf.schema schema); *)
    let (args,vars,sem_arg,raised_arg),var_map = make_schema quant schema var_map in
    (args,vars) :: args_vars_list, sem_arg @ sem_args, raised_arg @ raised_args, var_map) in
  let t = Tensor(make_tensor_type quant tl) in
  let at = Xlist.fold schema_list tl (fun at schema ->
    Xlist.fold schema at (fun at s ->
      Xlist.fold s.morfs at (fun at -> function
        Raised(arg1,dir,arg2) -> arg2
      | _ -> at))) in       
(*   let dot_list = Xlist.map (List.tl at) (fun _ -> Dot) in *)
  let sem = (*Tuple( *)Node{node with args=Tuple(node.args :: sem_args); gs=make_gs quant at}(* :: dot_list)*) in
  let sem = 
    match raised_args with
      [] -> sem 
    | [raised_arg] -> App(raised_arg,sem)
    | _ -> failwith "make_frame: raised_args" in
  let t,sem = Xlist.fold args_vars_list (t,sem) (fun (t,sem) (args,vars) ->   
    simplify_impset (ImpSet(t,args),LambdaSet(vars,sem))) in
  make_type_quantification quant (t,sem)

let make_frame_raised quant schema_list tl d node sem_mods = 
  let args_vars_list,sem_args,raised_args,_ = Xlist.fold schema_list ([],[],[],StringMap.empty) (fun (args_vars_list,sem_args,raised_args,var_map) schema ->
    let (args,vars,sem_arg,raised_arg),var_map = make_schema quant schema var_map in
    (args,vars) :: args_vars_list, sem_arg @ sem_args, raised_arg @ raised_args, var_map) in
  let t = Tensor(make_tensor_type quant tl) in
  let at = Xlist.fold (List.rev schema_list) tl (fun at schema ->
    Xlist.fold schema at (fun at s ->
      Xlist.fold s.morfs at (fun at -> function
        Raised(arg1,dir,arg2) -> arg2
      | _ -> at))) in       
(*   let dot_list = Xlist.map (List.tl at) (fun _ -> Dot) in *)
  let sem = (*Tuple( *)Node{node with args=Tuple(node.args :: sem_args); gs=make_gs quant at}(* :: dot_list)*) in
  let sem = 
    match raised_args with
      [] -> sem 
    | [raised_arg] -> App(raised_arg,sem)
    | [raised_arg2;raised_arg1] -> App(raised_arg2,App(raised_arg1,sem))
    | [raised_arg3;raised_arg2;raised_arg1] -> App(raised_arg3,App(raised_arg2,App(raised_arg1,sem)))
    | _ -> failwith "make_frame_raised: raised_args" in
  let sem = Xlist.fold sem_mods sem (fun sem (e,t) -> SetAttr(e,t,sem)) in
  let sem = Node{empty_node with args = Cut(SetAttr("GF",Gf CORE,sem)); id=get_pro_id (); gs=make_gs quant tl} in
  let t,sem = Xlist.fold args_vars_list (t,sem) (fun (t,sem) (args,vars) ->   
    simplify_impset (ImpSet(t,args),LambdaSet(vars,sem))) in
  make_type_quantification quant (t,sem)

let make_frame_simple quant tl d node = 
  let t = Tensor(make_tensor_type quant tl) in
(*   let dot_list = Xlist.map (List.tl tl) (fun _ -> Dot) in *)
  let sem = (*Tuple( *)Node{node with gs=make_gs quant tl} (*:: dot_list)*) in
  make_type_quantification quant (t,sem)

let make_conj_frame quant larg rarg tl d node =
  make_type_quantification quant
    (Imp(Imp(Tensor(make_tensor_type quant tl),Forward,larg),Backward,rarg),
     Lambda("x",Lambda("y",Node{node with gs=make_gs quant tl; 
       args=Tuple[Cut(SetAttr("GF",Gf CORE,Var "x"));Cut(SetAttr("GF",Gf CORE,Var "y"))]})))
   
let make_quot_frame quant arg qarg tl d node =
  make_type_quantification quant
    (Imp(Imp(Tensor(make_tensor_type quant tl),Forward,qarg),Forward,arg),
     Lambda("x",Lambda("y",Node{node with gs=make_gs quant tl; args=Tuple[
       Cut(SetAttr("GF",Gf CORE,SetAttr("QUOT",Val "+",Var "x")));
       Cut(SetAttr("GF",Gf NOSEM,Var "y"))]})))
 
let make_inclusion_frame qarg d node =
  Imp(Imp(Tensor[Atom "inclusion"],Forward,qarg),Forward,Plus[
             Tensor[Atom "np"; Top; Top; Top; Top];
             Tensor[Atom "ip"; Top; Top; Top];
             Tensor[Atom "adjp"; Top; Top; Top];
             Tensor[Atom "prepnp"; Top; Top]]),
  Lambda("x",Lambda("y",Node{node with gs=make_gs [] ["inclusion"]; args=Tuple[
    Cut(SetAttr("AROLE",Val "Inclusion",SetAttr("GF",Gf CORE,SetAttr("INCLUSION",Val "+",Case(Var "x",["q",Var "q";"q",Var "q";"q",Var "q";"q",Var "q"])))));
    Cut(SetAttr("GF",Gf NOSEM,Var "y"))]}))
 
let label_counter = ref 0

let get_label () =
  incr label_counter;
  string_of_int (!label_counter)
  
(*let find_label labels e =     
  try StringMap.find labels e, labels 
  with Not_found -> let label = get_label () in label, StringMap.add labels e label*)
  
let rec get_controll_labels labels = function
    t :: l -> 
        let labels = Xlist.fold t.cr labels (fun labels e ->
          if StringMap.mem labels e then labels else 
          StringMap.add labels e (get_label ())) in
        get_controll_labels labels l
  | [] -> labels          
  
let add_label_schema labels schema =
  try Xlist.map schema (fun t ->
    {t with cr=Xlist.map t.cr (StringMap.find labels);
            ce=Xlist.map t.ce (StringMap.find labels)})
  with Not_found -> failwith "add_label_schema" (* FIXME: pojawia się błąd co znaczy, że zdarzają się schematy z brakującymi cr *)
  
let make_controll frames = 
  let labels = Xlist.fold frames StringMap.empty (fun labels -> function
      _,Frame(_,schema) -> get_controll_labels labels schema
    | _,LexFrame(_,_,_,schema) -> get_controll_labels labels schema
    | _,ComprepFrame(_,_,_,schema) -> get_controll_labels labels schema) in
  Xlist.map frames (function
      n,Frame(a,schema) -> n,Frame(a,add_label_schema labels schema)
    | n,LexFrame(a,b,r,schema) -> n,LexFrame(a,b,r,add_label_schema labels schema)
    | n,ComprepFrame(a,b,r,schema) -> n,ComprepFrame(a,b,r,add_label_schema labels schema))
    
(*  List.rev(fst (Xlist.fold schema ([],StringMap.empty) (fun (schema,labels) s -> 
    let cr,labels = Xlist.fold s.cr ([],labels) (fun (cr,labels) e -> 
      let label,labels = find_label labels e in
      label :: cr, labels) in
    let ce,labels = Xlist.fold s.ce ([],labels) (fun (ce,labels) e -> 
      let label,labels = find_label labels e in
      label :: ce, labels) in
    {s with cr=cr; ce=ce} :: schema, labels)))*)