LCGrenderer.ml
23.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
(*
* ENIAM: Categorial Syntactic-Semantic Parser for Polish
* Copyright (C) 2016 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
* Copyright (C) 2016 Institute of Computer Science Polish Academy of Sciences
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*)
open WalTypes
open PreTypes
open Xstd
let dir_of_dir = function
Forward -> LCGtypes.Forward
| Backward -> LCGtypes.Backward
| Both -> LCGtypes.Both
let arg_of_ctype = function
Int -> LCGtypes.Atom "int"
| Rel -> LCGtypes.Atom "rel"
| Sub -> LCGtypes.Atom "sub"
| Coord -> LCGtypes.Atom "coord"
| CompTypeUndef -> LCGtypes.Top
| CompTypeAgr -> LCGtypes.Atom "ctype"
open LCGtypes
let simplify_impset = function
ImpSet(s,[]),LambdaSet([],sem) -> s,sem
| ImpSet(s,[d,t]),LambdaSet([v],sem) -> Imp(s,d,t),Lambda(v,sem)
| s,sem -> s,sem
let make_tensor_type quant l =
Xlist.map l (fun s ->
let b = Xlist.fold quant false (fun b (t,_,_) -> if t = s then true else b) in
if b then AVar s else Atom s)
let rec internal_substitute var_name t = function
| Atom x -> Atom x
| AVar x -> if x = var_name then t else AVar x
| With l -> With (Xlist.map l (internal_substitute var_name t))
| Zero -> Zero
| Top -> Top
let rec substitute var_name t = function
| Tensor l -> Tensor (Xlist.map l (internal_substitute var_name t))
| Plus l -> Plus (Xlist.map l (substitute var_name t))
| Imp(s,d,t2) -> Imp(substitute var_name t s,d,substitute var_name t t2)
| One -> One
| ImpSet(s,l) -> ImpSet(substitute var_name t s, Xlist.map l (fun (d,s) -> d, substitute var_name t s))
| WithVar(v,g,e,s) -> if v = var_name then WithVar(v,g,e,s) else WithVar(v,internal_substitute var_name t g,e,substitute var_name t s)
| Star s -> Star (substitute var_name t s)
| Bracket(lf,rf,s) -> Bracket(lf,rf,substitute var_name t s)
| BracketSet d -> BracketSet d
| Maybe s -> Maybe (substitute var_name t s)
let rec internal_count_avar var_name = function
Atom _ -> 0
| AVar x -> if x = var_name then 1 else 0
| With l -> Xlist.fold l 0 (fun b t -> internal_count_avar var_name t + b)
| Zero -> 0
| Top -> 0
let rec count_avar var_name = function
| Tensor l -> Xlist.fold l 0 (fun b t -> internal_count_avar var_name t + b)
| Plus l -> Xlist.fold l 0 (fun b t -> count_avar var_name t + b)
| Imp(s,d,t2) -> count_avar var_name s + count_avar var_name t2
| One -> 0
| ImpSet(s,l) -> count_avar var_name s + Xlist.fold l 0 (fun b (_,t) -> count_avar var_name t + b)
| WithVar(v,g,e,s) -> if v = var_name then 0 else count_avar var_name s + internal_count_avar var_name g
| Star t -> count_avar var_name t
| Bracket(lf,rf,s) -> count_avar var_name s
| BracketSet _ -> 0
| Maybe t -> count_avar var_name t
let rec substitute_substvar v g = function
Var v as t -> t
| Tuple l -> Tuple(Xlist.map l (substitute_substvar v g))
(* | LetIn(l,s,t) -> LetIn(l,substitute_substvar v g s,substitute_substvar v g t) *)
| Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i,substitute_substvar v g t))
| VariantVar(v2,t) -> if v2 = v then VariantVar(v2,t) else VariantVar(v2,substitute_substvar v g t)
| SubstVar v2 -> if v2 = v then g else SubstVar v2
| Case(t,l) -> Case(substitute_substvar v g t,Xlist.map l (fun (x,t) -> x,substitute_substvar v g t))
| App(s,t) -> App(substitute_substvar v g s,substitute_substvar v g t)
| Lambda(v2,t) -> Lambda(v2,substitute_substvar v g t)
| LambdaSet(l,t) -> LambdaSet(l,substitute_substvar v g t)
| Dot -> Dot
| Val s -> Val s
| SetAttr(e,s,t) -> SetAttr(e,substitute_substvar v g s,substitute_substvar v g t)
| Fix(s,t) -> Fix(substitute_substvar v g s,substitute_substvar v g t)
| Node t -> Node{t with attrs=Xlist.map t.attrs (fun (e,t) -> e, substitute_substvar v g t);
gs=substitute_substvar v g t.gs;
args=substitute_substvar v g t.args}
| Morf m -> Morf m
| Gf s -> Gf s
| Cut t -> Cut(substitute_substvar v g t)
| t -> failwith ("substitute_substvar: " ^ LCGstringOf.linear_term 0 t)
let simplify_withvar = function
WithVar(v,Atom t,e,s),VariantVar(_,sem) -> substitute v (Atom t) s, substitute_substvar v (LCGrules.make_subst e (Atom t)) sem
| WithVar(v,g,e,s),VariantVar(v2,sem) ->
if count_avar v s = 0 then
s, substitute_substvar v (LCGrules.make_subst e g) sem
else WithVar(v,g,e,s),VariantVar(v2,sem)
| s -> s
let rec make_type_quantification l (t,sem) =
match l with
[] -> t,sem
| (category,e,[]) :: l ->
let t,sem = make_type_quantification l (t,sem) in
simplify_withvar (WithVar(category,Zero,e,t), VariantVar(category,sem))
| (category,e,[s]) :: l ->
let t,sem = make_type_quantification l (t,sem) in
simplify_withvar (WithVar(category,Atom s,e,t), VariantVar(category,sem))
| (category,e,values) :: l ->
let t,sem = make_type_quantification l (t,sem) in
simplify_withvar (WithVar(category, With(Xlist.map values (function s -> Atom s)), e, t),VariantVar(category,sem))
let make_gs quant l =
Tuple(Xlist.map l (fun s ->
let b = Xlist.fold quant false (fun b (t,_,_) -> if t = s then true else b) in
if b then SubstVar s else Val s))
let make_arg_phrase = function
NP(Case case) -> Tensor[Atom "np"; Top; Atom case; Top; Top]
| NP NomAgr -> Tensor[Atom "np"; AVar "number"; Atom "nom"; AVar "gender"; AVar "person"]
| NP GenAgr -> Tensor[Atom "np"; AVar "number"; Atom "gen"; AVar "gender"; AVar "person"]
| NP AllAgr -> Tensor[Atom "np"; AVar "number"; AVar "case"; AVar "gender"; AVar "person"]
| NP CaseAgr -> Tensor[Atom "np"; Top; AVar "case"; Top; Top]
| NP CaseUndef -> Tensor[Atom "np"; Top; Top; Top; Top]
| PrepNP(_,"",CaseUndef) -> Tensor[Atom "prepnp"; Top; Top]
| PrepNP(_,prep,Case case) -> Tensor[Atom "prepnp"; Atom prep; Atom case]
| AdjP(Case case) -> Tensor[Atom "adjp"; Top; Atom case; Top]
| AdjP NomAgr -> Tensor[Atom "adjp"; AVar "number"; Atom "nom"; AVar "gender"]
| AdjP AllAgr -> Tensor[Atom "adjp"; AVar "number"; AVar "case"; AVar "gender"]
| AdjP CaseAgr -> Tensor[Atom "adjp"; Top; AVar "case"; Top]
| PrepAdjP(_,"",CaseUndef) -> Tensor[Atom "prepnp"; Top; Top]
| PrepAdjP(_,prep,Case case) -> Tensor[Atom "prepadjp"; Atom prep; Atom case]
| NumP(Case case) -> Tensor[Atom "nump"; Top; Atom case; Top; Top]
| NumP NomAgr -> Tensor[Atom "nump"; AVar "number"; Atom "nom"; AVar "gender"; AVar "person"]
| NumP CaseAgr -> Tensor[Atom "nump"; Top; AVar "case"; Top; Top]
| NumP CaseUndef -> Tensor[Atom "nump"; Top; Top; Top; Top]
| PrepNumP(_,"",CaseUndef) -> Tensor[Atom "prepnp"; Top; Top]
| PrepNumP(_,prep,Case case) -> Tensor[Atom "prepnump"; Atom prep; Atom case]
| ComprepNP(_,"") -> Tensor[Atom "comprepnp"; Top]
| ComprepNP(_,prep) -> Tensor[Atom "comprepnp"; Atom prep]
| ComparNP(_,prep,Case case) -> Tensor[Atom "comparnp"; Atom prep; Atom case]
| ComparPP(_,prep) -> Tensor[Atom "comparpp"; Atom prep]
| IP -> Tensor[Atom "ip";Top;Top;Top]
| CP (ctype,Comp comp) -> Tensor[Atom "cp"; arg_of_ctype ctype; Atom comp]
| CP (ctype,CompUndef) -> Tensor[Atom "cp"; arg_of_ctype ctype; Top]
| NCP(Case case,ctype,Comp comp) -> Tensor[Atom "ncp"; Top; Atom case; Top; Top; arg_of_ctype ctype; Atom comp]
| NCP(Case case,CompTypeUndef,CompUndef) -> Tensor[Atom "ncp"; Top; Atom case; Top; Top; Top; Top]
| NCP(NomAgr,ctype,Comp comp) -> Tensor[Atom "ncp"; AVar "number"; Atom "nom"; AVar "gender"; AVar "person"; arg_of_ctype ctype; Atom comp]
| NCP(NomAgr,CompTypeUndef,CompUndef) -> Tensor[Atom "ncp"; AVar "number"; Atom "nom"; AVar "gender"; AVar "person"; Top; Top]
| PrepNCP(_,prep,Case case,ctype,Comp comp) -> Tensor[Atom "prepncp"; Atom prep; Atom case; arg_of_ctype ctype; Atom comp]
| InfP(Aspect aspect) -> Tensor[Atom "infp"; Atom aspect]
| InfP AspectUndef -> Tensor[Atom "infp"; Top]
| PadvP -> Tensor[Atom "padvp"]
| AdvP -> Tensor[Atom "advp"]
| FixedP lex -> Tensor[Atom "fixed"; Atom lex]
| PrepP -> Tensor[Atom "prepp";Top]
| Prep("",CaseAgr) -> Tensor[Atom "prep"; Top; AVar "case"]
| Prep("",CaseUAgr) -> Tensor[Atom "prep"; Top; AVar "ucase"]
| Num(AllAgr,Acm acm) -> Tensor[Atom "num"; AVar "number"; AVar "case"; AVar "gender"; AVar "person"; Atom acm]
| Measure(AllUAgr) -> Tensor[Atom "measure"; AVar "unumber"; AVar "ucase"; AVar "ugender"; AVar "uperson"]
| Or -> Tensor[Atom "or"]
| Qub -> Tensor[Atom "qub"]
| Inclusion -> Tensor[Atom "inclusion"]
| Adja -> Tensor[Atom "adja"]
| Aglt -> Tensor[Atom "aglt"; AVar "number"; AVar "person"]
| AuxPast -> Tensor[Atom "aux-past"; AVar "number"; AVar "gender"; AVar "person"]
| AuxFut -> Tensor[Atom "aux-fut"; AVar "number"; AVar "gender"; AVar "person"]
| AuxImp -> Tensor[Atom "aux-imp"]
| Pro -> One
| ProNG -> One
| Null -> One
| X -> Tensor[Atom "X"]
| Lex lex -> Tensor[Atom lex]
| phrase -> failwith ("make_arg_phrase: " ^ WalStringOf.phrase phrase)
let make_arg_pos = function (* wprowadzam uzgodnienia a nie wartości cech, bo wartości cech są wprowadzane przez leksem a uzgodnienia wiążą je z wartościami u nadrzędnika *)
| SUBST(_,Case case) -> [Atom "subst"; Top; Atom case; Top; Top]
| SUBST(_,NomAgr) -> [Atom "subst"; AVar "number"; Atom "nom"; AVar "gender"; AVar "person"]
| SUBST(_,GenAgr) -> [Atom "subst"; AVar "number"; Atom "gen"; AVar "gender"; AVar "person"]
| SUBST(_,AllAgr) -> [Atom "subst"; AVar "number"; AVar "case"; AVar "gender"; AVar "person"]
| SUBST(_,CaseAgr) -> [Atom "subst"; Top; AVar "case"; Top; Top]
| SUBST(_,CaseUndef) -> [Atom "subst"; Top; Top; Top; Top]
| NUM(Case case,_,_) -> [Atom "num"; Top; Atom case; Top; Top]
| NUM(NomAgr,_,_) -> [Atom "num"; AVar "number"; Atom "nom"; AVar "gender"; AVar "person"]
| NUM(CaseAgr,_,_) -> [Atom "num"; Top; AVar "case"; Top; Top]
| NUM(CaseUndef,_,_) -> [Atom "num"; Top; Top; Top; Top]
| PREP(Case case) -> [Atom "prep"; Atom case]
| ADJ(_,Case case,_,_) -> [Atom "adj"; Top; Atom case; Top]
| ADJ(_,NomAgr,_,_) -> [Atom "adj"; AVar "number"; Atom "nom"; AVar "gender"]
| ADJ(_,CaseAgr,_,_) -> [Atom "adj"; Top; AVar "case"; Top]
| ADJ(_,AllAgr,_,_) -> [Atom "adj"; AVar "number"; AVar "case"; AVar "gender"]
| ADV _ -> [Atom "adv"]
| GER(_,Case case,_,_,_,_) -> [Atom "ger"; Top; Atom case; Top; Top]
| GER(_,NomAgr,_,_,_,_) -> [Atom "ger"; AVar "number"; Atom "nom"; AVar "gender"; AVar "person"]
| GER(_,CaseAgr,_,_,_,_) -> [Atom "ger"; Top; AVar "case"; Top; Top]
| GER(_,CaseUndef,_,_,_,_) -> [Atom "ger"; Top; Top; Top; Top]
| PACT(_,Case case,_,_,_,_) -> [Atom "pact"; Top; Atom case; Top]
| PACT(_,NomAgr,_,_,_,_) -> [Atom "pact"; AVar "number"; Atom "nom"; AVar "gender"]
| PACT(_,AllAgr,_,_,_,_) -> [Atom "pact"; AVar "number"; AVar "case"; AVar "gender"]
| PACT(_,CaseAgr,_,_,_,_) -> [Atom "pact"; Top; AVar "case"; Top]
| PPAS(_,Case case,_,_,_) -> [Atom "ppas"; Top; Atom case; Top]
| PPAS(_,NomAgr,_,_,_) -> [Atom "ppas"; AVar "number"; Atom "nom"; AVar "gender"]
| PPAS(_,AllAgr,_,_,_) -> [Atom "ppas"; AVar "number"; AVar "case"; AVar "gender"]
| PPAS(_,CaseAgr,_,_,_) -> [Atom "ppas"; Top; AVar "case"; Top]
| INF(Aspect aspect,_,_) -> [Atom "inf"; Atom aspect]
| INF(AspectUndef,_,_) -> [Atom "inf"; Top]
| QUB -> [Atom "qub"]
| COMPAR -> [Atom "TODO"] (* FIXME: todo *)
| COMP ctype -> [Atom "comp"; arg_of_ctype ctype]
| PERS _ -> [Atom "TODO"] (* FIXME: todo *)
| pos -> failwith ("make_arg_pos: " ^ WalStringOf.pos pos)
let rec make_arg quant = function
Phrase phrase -> make_arg_phrase phrase
| E phrase -> make_arg_phrase phrase
| LexArg(id,arg,lex) -> Tensor([Atom "lex";Atom id;Atom lex] @ make_arg_pos arg)
(* | LexRealization(arg,lex) -> (match make_arg arg with Tensor l -> Tensor([Atom "lexr";Atom lex] @ l) | _ -> failwith "make_arg") *)
| Raised(arg1,dir,arg2) -> Imp(Tensor(make_tensor_type quant arg1),dir_of_dir dir,Tensor(make_tensor_type quant arg2))
| morf -> failwith ("make_arg: " ^ WalStringOf.morf morf)
let empty_schema_field =
{gf=NOGF; role=""; role_attr=""; sel_prefs=[]; cr=[]; ce=[]; dir=Both; morfs=[]}
let empty_node = {
pred=""; cat=""; weight=0.; (*LCGtypes.*)id=0; gs=Dot; attrs=[]; args=Dot;
agf=NOGF; amorf=Phrase Null; arole=""; arole_attr="";
meaning=""; hipero=StringSet.empty; meaning_weight=0.;
position=empty_schema_field;
}
let pro_id_counter = ref 0
let get_pro_id () =
incr pro_id_counter;
!pro_id_counter
let make_pro ()(*id*) =
Node{empty_node with pred="pro"; cat="pro"; weight=0.; id=get_pro_id (); attrs=[]; args=Dot}
let make_prong ()(*id*) =
Node{empty_node with pred="pro"; cat="pro"; weight=0.; id=get_pro_id (); attrs=["NUM",SubstVar "number";"GEND",SubstVar "gender";"PERS",SubstVar "person"]; args=Dot}
let make_var vars gf =
let v = try String.lowercase (String.sub gf 0 1) with _ -> "v" in
let v = if v = "q" || v = "v" || v = "x" then "y" else v in
try
let i = StringMap.find vars v in
v ^ string_of_int i, StringMap.add vars v (i+1)
with Not_found -> v, StringMap.add vars v 2
(*let string_of_gf = function
SUBJ -> "SUBJ"
| OBJ -> "OBJ"
| ARG -> "ARG"
| CORE -> "CORE"
| NOSEM -> "NOSEM"
| ADJUNCT -> "ADJUNCT"
| RAISED -> "RAISED"
| NOGF -> "NOGF"
| CLAUSE -> "CLAUSE"
| SENTENCE -> "SENTENCE"*)
(*let string_of_gf = function
SUBJ -> "subj"
| OBJ -> "obj"
| ARG -> "arg"
| CORE -> "core"
| NOSEM -> "nosem"
| ADJUNCT -> "adjunct"
| RAISED -> "raised"
| NOGF -> "nogf"
| CLAUSE -> "clause"
| SENTENCE -> "sentence"*)
let make_args quant var_map v = function
{gf=RAISED; morfs=[arg]} as s ->
let arg = make_arg quant arg in
((dir_of_dir s.dir,arg),v,[],[Var v]),var_map
| {gf=RAISED} -> failwith "make_args: RAISED"
(* | {gf=NOSEM; morfs=[arg]} as s ->
let arg = make_arg quant arg in
((dir_of_dir s.dir,arg),v,[Dot],[]),var_map
| {gf=NOSEM} -> failwith "make_args: NOSEM"
| {gf=NOGF} as s -> (* pro ani null nie może się tu pojawić; rolę tematyczną pomijamy *)
let args2 = Xlist.map s.morfs (fun morf -> make_arg quant morf) in
(* let pro_id = get_pro_id () in *)
let sem_args = Xlist.map args2 (function
One -> "q",Dot(*failwith "make_args 1"*)
| _ -> "q",Var "q") in
((dir_of_dir s.dir,Plus args2),v,[Case(Var v,sem_args)],[]),var_map*)
| {morfs=[Multi args]} as s -> (* pod multi nie może być Null, Pro ani ProNG *)
let args2 = Xlist.map args (fun phrase -> make_arg_phrase phrase, Phrase phrase) in
let sem_args =
if s.role = "" then Xlist.map args2 (fun (_,morf) -> "q",SetAttr("GF",Gf s.gf,SetAttr("MORF",Morf morf,(*SetElem*)(Var "q"))))
else Xlist.map args2 (fun (_,morf) -> "q",Cut(SetAttr("AROLE",Val s.role,SetAttr("GF",Gf s.gf,SetAttr("MORF",Morf morf,(*SetElem*)(Var "q")))))) in
((dir_of_dir s.dir,Maybe(Plus(Xlist.map args2 fst))),v,
[Fix(Var v,Lambda("x"^v,Case(Var ("x"^v),sem_args)))],[]),var_map
| s -> (* FIXME: argument pusty występuje tyle razy ile jest preferencji, a chyba powinien jeden raz *)
let args2 = Xlist.map s.morfs (fun morf -> make_arg quant morf, morf) in
let sem_args = Xlist.map args2 (function
One, Phrase Pro -> SetAttr("MORF",Morf(Phrase Pro),make_pro ()) (*s.sel_prefs*)
| One, Phrase ProNG -> SetAttr("MORF",Morf(Phrase ProNG),make_prong ()) (*s.sel_prefs*)
| One, E Pro -> SetAttr("MORF",Morf(E Pro ),make_pro ()) (*s.sel_prefs*)
| One, E ProNG -> SetAttr("MORF",Morf(E ProNG),make_prong ()) (*s.sel_prefs*)
| One, Phrase Null -> Dot
| One, _ -> failwith "make_args 3"
| _,morf -> SetAttr("MORF",Morf morf,Var "q")) in
let sem_args = if s.role = "" then sem_args else Xlist.map sem_args (function Dot -> Dot | t -> SetAttr("AROLE",Val s.role,t)) in
let sem_args = Xlist.fold s.ce sem_args (fun sem_args e ->
Xlist.map sem_args (function Dot -> Dot | t -> SetAttr("LABEL",Val e,t))) in
let sem_args = Xlist.fold s.cr sem_args (fun sem_args e ->
Xlist.map sem_args (function Dot -> Dot | t -> SetAttr("DEF",Val e,t))) in
((dir_of_dir s.dir,Plus(Xlist.map args2 fst)),v,
[Case(Var v,Xlist.map sem_args (function Dot -> "q",Dot | t -> "q",Cut(SetAttr("AROLE",Val s.role,SetAttr("GF",Gf s.gf,(*SetElem*) t)))))],[]),var_map
let make_args2 quant var_map s =
let v,var_map = make_var var_map (String.lowercase s.role) (*gf*) in
(* let s = {s with morfs=List.flatten (Xlist.map s.morfs (function E l -> Xlist.map l (fun p -> E[p]) | m -> [m]))} in *)
make_args quant var_map v s
let make_schema quant schema var_map =
let schema,_,var_map = Xlist.fold schema ([],StringMap.empty,var_map) (fun (schema,labels,var_map) s ->
let schema_pos,var_map = make_args2 quant var_map s in
schema_pos :: schema, labels, var_map) in
Xlist.fold schema ([],[],[],[]) (fun (args,vars,sem_args,raised_args) (arg,var,sem_arg,raised_arg) ->
arg :: args, var :: vars, sem_arg @ sem_args, raised_arg @ raised_args), var_map
let make_frame quant schema_list tl d node = (* UWAGA: to zadziała, gdy jest conajwyżej jeden podniesiony typ *)
let args_vars_list,sem_args,raised_args,_ = Xlist.fold schema_list ([],[],[],StringMap.empty) (fun (args_vars_list,sem_args,raised_args,var_map) schema ->
(* print_endline (WalStringOf.schema schema); *)
let (args,vars,sem_arg,raised_arg),var_map = make_schema quant schema var_map in
(args,vars) :: args_vars_list, sem_arg @ sem_args, raised_arg @ raised_args, var_map) in
let t = Tensor(make_tensor_type quant tl) in
let at = Xlist.fold schema_list tl (fun at schema ->
Xlist.fold schema at (fun at s ->
Xlist.fold s.morfs at (fun at -> function
Raised(arg1,dir,arg2) -> arg2
| _ -> at))) in
(* let dot_list = Xlist.map (List.tl at) (fun _ -> Dot) in *)
let sem = (*Tuple( *)Node{node with args=Tuple(node.args :: sem_args); gs=make_gs quant at}(* :: dot_list)*) in
let sem =
match raised_args with
[] -> sem
| [raised_arg] -> App(raised_arg,sem)
| _ -> failwith "make_frame: raised_args" in
let t,sem = Xlist.fold args_vars_list (t,sem) (fun (t,sem) (args,vars) ->
simplify_impset (ImpSet(t,args),LambdaSet(vars,sem))) in
make_type_quantification quant (t,sem)
let make_frame_raised quant schema_list tl d node sem_mods =
let args_vars_list,sem_args,raised_args,_ = Xlist.fold schema_list ([],[],[],StringMap.empty) (fun (args_vars_list,sem_args,raised_args,var_map) schema ->
let (args,vars,sem_arg,raised_arg),var_map = make_schema quant schema var_map in
(args,vars) :: args_vars_list, sem_arg @ sem_args, raised_arg @ raised_args, var_map) in
let t = Tensor(make_tensor_type quant tl) in
let at = Xlist.fold (List.rev schema_list) tl (fun at schema ->
Xlist.fold schema at (fun at s ->
Xlist.fold s.morfs at (fun at -> function
Raised(arg1,dir,arg2) -> arg2
| _ -> at))) in
(* let dot_list = Xlist.map (List.tl at) (fun _ -> Dot) in *)
let sem = (*Tuple( *)Node{node with args=Tuple(node.args :: sem_args); gs=make_gs quant at}(* :: dot_list)*) in
let sem =
match raised_args with
[] -> sem
| [raised_arg] -> App(raised_arg,sem)
| [raised_arg2;raised_arg1] -> App(raised_arg2,App(raised_arg1,sem))
| [raised_arg3;raised_arg2;raised_arg1] -> App(raised_arg3,App(raised_arg2,App(raised_arg1,sem)))
| _ -> failwith "make_frame_raised: raised_args" in
let sem = Xlist.fold sem_mods sem (fun sem (e,t) -> SetAttr(e,t,sem)) in
let sem = Node{empty_node with args = Cut(SetAttr("GF",Gf CORE,sem)); id=get_pro_id (); gs=make_gs quant tl} in
let t,sem = Xlist.fold args_vars_list (t,sem) (fun (t,sem) (args,vars) ->
simplify_impset (ImpSet(t,args),LambdaSet(vars,sem))) in
make_type_quantification quant (t,sem)
let make_frame_simple quant tl d node =
let t = Tensor(make_tensor_type quant tl) in
(* let dot_list = Xlist.map (List.tl tl) (fun _ -> Dot) in *)
let sem = (*Tuple( *)Node{node with gs=make_gs quant tl} (*:: dot_list)*) in
make_type_quantification quant (t,sem)
let make_conj_frame quant larg rarg tl d node =
make_type_quantification quant
(Imp(Imp(Tensor(make_tensor_type quant tl),Forward,larg),Backward,rarg),
Lambda("x",Lambda("y",Node{node with gs=make_gs quant tl;
args=Tuple[Cut(SetAttr("GF",Gf CORE,Var "x"));Cut(SetAttr("GF",Gf CORE,Var "y"))]})))
let make_quot_frame quant arg qarg tl d node =
make_type_quantification quant
(Imp(Imp(Tensor(make_tensor_type quant tl),Forward,qarg),Forward,arg),
Lambda("x",Lambda("y",Node{node with gs=make_gs quant tl; args=Tuple[
Cut(SetAttr("GF",Gf CORE,SetAttr("QUOT",Val "+",Var "x")));
Cut(SetAttr("GF",Gf NOSEM,Var "y"))]})))
let make_inclusion_frame qarg d node =
Imp(Imp(Tensor[Atom "inclusion"],Forward,qarg),Forward,Plus[
Tensor[Atom "np"; Top; Top; Top; Top];
Tensor[Atom "ip"; Top; Top; Top];
Tensor[Atom "adjp"; Top; Top; Top];
Tensor[Atom "prepnp"; Top; Top]]),
Lambda("x",Lambda("y",Node{node with gs=make_gs [] ["inclusion"]; args=Tuple[
Cut(SetAttr("AROLE",Val "Inclusion",SetAttr("GF",Gf CORE,SetAttr("INCLUSION",Val "+",Case(Var "x",["q",Var "q";"q",Var "q";"q",Var "q";"q",Var "q"])))));
Cut(SetAttr("GF",Gf NOSEM,Var "y"))]}))
let label_counter = ref 0
let get_label () =
incr label_counter;
string_of_int (!label_counter)
(*let find_label labels e =
try StringMap.find labels e, labels
with Not_found -> let label = get_label () in label, StringMap.add labels e label*)
let rec get_controll_labels labels = function
t :: l ->
let labels = Xlist.fold t.cr labels (fun labels e ->
if StringMap.mem labels e then labels else
StringMap.add labels e (get_label ())) in
get_controll_labels labels l
| [] -> labels
let add_label_schema labels schema =
try Xlist.map schema (fun t ->
{t with cr=Xlist.map t.cr (StringMap.find labels);
ce=Xlist.map t.ce (StringMap.find labels)})
with Not_found -> failwith "add_label_schema" (* FIXME: pojawia się błąd co znaczy, że zdarzają się schematy z brakującymi cr *)
let make_controll frames =
let labels = Xlist.fold frames StringMap.empty (fun labels -> function
_,Frame(_,schema) -> get_controll_labels labels schema
| _,LexFrame(_,_,_,schema) -> get_controll_labels labels schema
| _,ComprepFrame(_,_,_,schema) -> get_controll_labels labels schema) in
Xlist.map frames (function
n,Frame(a,schema) -> n,Frame(a,add_label_schema labels schema)
| n,LexFrame(a,b,r,schema) -> n,LexFrame(a,b,r,add_label_schema labels schema)
| n,ComprepFrame(a,b,r,schema) -> n,ComprepFrame(a,b,r,add_label_schema labels schema))
(* List.rev(fst (Xlist.fold schema ([],StringMap.empty) (fun (schema,labels) s ->
let cr,labels = Xlist.fold s.cr ([],labels) (fun (cr,labels) e ->
let label,labels = find_label labels e in
label :: cr, labels) in
let ce,labels = Xlist.fold s.ce ([],labels) (fun (ce,labels) e ->
let label,labels = find_label labels e in
label :: ce, labels) in
{s with cr=cr; ce=ce} :: schema, labels)))*)