LCGreductions.ml
11.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
(*
* ENIAM: Categorial Syntactic-Semantic Parser for Polish
* Copyright (C) 2016 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
* Copyright (C) 2016 Institute of Computer Science Polish Academy of Sciences
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*)
open LCGtypes
open Xstd
let variant_label_ref = ref []
let rec add_variant_label = function
[] -> ["A"]
| "Z" :: l -> "A" :: add_variant_label l
| s :: l -> String.make 1 (Char.chr (Char.code (String.get s 0) + 1)) :: l
let get_variant_label () =
variant_label_ref := add_variant_label (!variant_label_ref);
String.concat "" (List.rev (!variant_label_ref))
let prepare_references t references next_reference =
let a = Array.make next_reference Dot in
Xlist.iter references (fun (i,t) -> a.(i) <- t);
a.(0) <- t;
a
let prepare_references2 t references next_reference =
let a = Array.make next_reference Dot in
TermMap.iter references (fun t i -> a.(i) <- t);
a.(0) <- t;
a
let rec extract_nth n rev = function
[] -> failwith "extract_nth"
| s :: l ->
if n = 1 then s, (List.rev rev) @ l
else extract_nth (n-1) (s :: rev) l
let rec is_reduced_rec = function
Tuple l -> Xlist.fold l true (fun b t -> b && is_reduced_rec t)
| Variant(_,l) -> Xlist.fold l true (fun b (_,t) -> b && is_reduced_rec t)
| Dot -> true
| Val s -> true
| Node t -> Xlist.fold t.attrs true (fun b (_,t) -> b && is_reduced_rec t) && is_reduced_rec t.gs && is_reduced_rec t.args
| Morf m -> true
| Cut t -> is_reduced_rec t
| Ref i -> true
| _ -> false
let is_reduced = (*function
Triple(_,_,_) as t -> is_reduced_rec t
| _ -> false*) is_reduced_rec
let is_reduced_references references =
Int.fold 0 (Array.length references - 1) true (fun b i ->
b && is_reduced references.(i))
let rec assign_labels_rec = function
Tuple l -> Tuple(Xlist.map l assign_labels_rec)
| Variant(_,l) -> Variant(get_variant_label (), fst (Xlist.fold l ([],1) (fun (l,i) (_,t) ->
(string_of_int i, assign_labels_rec t) :: l,i+1)))
| Dot -> Dot
| Val s -> Val s
| Node t -> Node{t with args=assign_labels_rec t.args}
| Morf m -> Morf m
| Cut t -> Cut(assign_labels_rec t)
| Ref i -> Ref i
| _ -> failwith "assign_labels_rec"
let assign_labels references =
Int.iter 0 (Array.length references - 1) (fun i ->
references.(i) <- assign_labels_rec references.(i))
let rec remove_cuts_rec = function
Tuple l -> Tuple(Xlist.map l remove_cuts_rec)
| Variant(e,l) -> Variant(e, Xlist.map l (fun (i,t) -> i, remove_cuts_rec t))
| Dot -> Dot
| Val s -> Val s
| Node t -> Node{t with args=remove_cuts_rec t.args}
| Morf m -> Morf m
| Cut t -> remove_cuts_rec t
| Ref i -> Ref i
| _ -> failwith "remove_cuts_rec"
let remove_cuts references =
Int.iter 0 (Array.length references - 1) (fun i ->
references.(i) <- remove_cuts_rec references.(i))
let linear_term_beta_reduction4 references =
let reduced = Array.make (Array.length references) Dot in
let size = ref 0 in
let refs = ref TermMap.empty in
let next_ref = ref 1 in
let rec flatten_variant set = function
Variant(_,l) -> Xlist.fold l set (fun set (_,t) -> flatten_variant set t)
| Cut t -> TermSet.add set (Cut t)
| _ -> failwith "flatten_variant" in
let rec simplify_args = function
Tuple l -> Tuple(Xlist.map l simplify_args)
| Dot -> Dot
| Variant(e,l) -> (match TermSet.to_list (flatten_variant TermSet.empty (Variant(e,l))) with
[] -> failwith "simplify_args 1"
| [t] -> t
| l -> Variant("",Xlist.map l (fun t -> ("0",t))))
| Cut t -> Cut t
| t -> failwith ("simplify_args 2: " ^ LCGstringOf.linear_term 0 t) in
let rec create_cut_refs = function
Node t ->
let t = {t with args=simplify_args t.args} in
(try
let i = TermMap.find !refs (Node t) in
Cut(Ref i)
with Not_found ->
refs := TermMap.add !refs (Node t) !next_ref;
let t = Cut(Ref !next_ref) in
incr next_ref;
t)
| Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i,create_cut_refs t))
| _ -> failwith "create_cut_refs" in
let rec linear_term_beta_reduction subst = function
Var v -> (try StringMap.find subst v with Not_found -> Var v) (* zakladam, ze termy, ktore sa podstawiane na zmienne nie maja zmiennych wolnych *)
| Tuple l ->
let l = Xlist.map l (linear_term_beta_reduction subst) in
(match Xlist.fold l [] (fun l t -> if t = Dot then l else t :: l) with
[] -> Dot
| [t] -> t
| l -> Tuple(List.rev l))
| Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i,linear_term_beta_reduction subst t))
| VariantVar(v,t) -> VariantVar(v, linear_term_beta_reduction subst t)
| ProjVar(v,t) ->
(match linear_term_beta_reduction subst t with
VariantVar(v2,t2) -> if v = v2 then t2 else ProjVar(v,VariantVar(v2,t2))
| Variant(e,l) -> Variant(e,Xlist.map l (fun (i,s) -> i,linear_term_beta_reduction subst (ProjVar(v,s))))
| t2 -> ProjVar(v,t2))
| SubstVar v -> SubstVar v
| Subst(s,v,t) ->
(match linear_term_beta_reduction subst s with
| Tuple l -> Tuple(Xlist.map l (fun s -> linear_term_beta_reduction subst (Subst(s,v,t))))
| Variant(e,l) -> Variant(e,Xlist.map l (fun (i,s) -> i,linear_term_beta_reduction subst (Subst(s,v,t))))
| Lambda(v2,s) -> Lambda(v2, linear_term_beta_reduction subst (Subst(s,v,t)))
| Dot -> Dot
| SetAttr(e,s1,s2) -> SetAttr(e,linear_term_beta_reduction subst (Subst(s1,v,t)),linear_term_beta_reduction subst (Subst(s2,v,t)))
| Val s -> Val s
| Var w -> if w = v then t else Subst(Var w,v,t)
| SubstVar w -> if w = v then t else SubstVar w
| Node s -> Node{s with attrs=Xlist.map s.attrs (fun (e,s) -> e, linear_term_beta_reduction subst (Subst(s,v,t)));
gs=linear_term_beta_reduction subst (Subst(s.gs,v,t));
args=linear_term_beta_reduction subst (Subst(s.args,v,t))}
| Morf m -> Morf m
| Gf s -> Gf s
| Cut(Ref i) -> Cut(Ref i)
| Cut s -> Cut(Subst(s,v,t))
| s2 -> Subst(s2,v,t))
| Inj(n,t) -> Inj(n,linear_term_beta_reduction subst t)
| Case(t,l) ->
(match linear_term_beta_reduction subst t with
Inj(n,t) ->
if Xlist.size l < n then Case(Inj(n,t),l) else
let v, r = List.nth l (n-1) in
let subst = StringMap.add subst v t in
linear_term_beta_reduction subst r
| Variant(e,l2) -> linear_term_beta_reduction subst (Variant(e,Xlist.map l2 (fun (i,t2) -> i,Case(t2,l))))
| t2 -> Case(t2,Xlist.map l (fun (v,t) -> v, linear_term_beta_reduction subst t))) (* FIXME alfa-konwersja i przykrywanie *)
| Lambda(v,t) -> Lambda(v, linear_term_beta_reduction subst t)
| LambdaSet(l,t) -> LambdaSet(l, linear_term_beta_reduction subst t)
| LambdaRot(n,t) ->
(match linear_term_beta_reduction subst t with
Lambda(v,t) -> if n = 1 then Lambda(v,t) else LambdaRot(n,Lambda(v,t))
| LambdaSet([v],t) -> if n = 1 then Lambda(v,t) else LambdaRot(n,LambdaSet([v],t))
| LambdaSet(l,t) ->
if Xlist.size l < n then LambdaRot(n,LambdaSet(l,t)) else
let s,l = extract_nth n [] l in
Lambda(s,LambdaSet(l,t))
| Variant(e,l) -> Variant(e,Xlist.map l (fun (i,s) -> i,linear_term_beta_reduction subst (LambdaRot(n,s))))
| t2 -> LambdaRot(n,t2))
| App(s,t) ->
let t = linear_term_beta_reduction subst t in
(match linear_term_beta_reduction subst s, t with
Lambda(v,s),_ ->
let subst = StringMap.add subst v t in
linear_term_beta_reduction subst s
| LambdaSet([v],s),_ -> (* FIXME ten przypadek nie powinien miec miejsca, jego wystepowanie wskazuje na brak rotacji przy maczowaniu *)
let subst = StringMap.add subst v t in
linear_term_beta_reduction subst s
| Variant(e,l),_ -> linear_term_beta_reduction subst (Variant(e,Xlist.map l (fun (i,s) -> i,App(s,t))))
| t2,_ -> App(t2,t))
| Dot -> Dot
| Fix(f,t) ->
(match linear_term_beta_reduction subst f with
Empty s -> linear_term_beta_reduction subst s
| Apply s -> linear_term_beta_reduction subst (App(t,s))
| Insert(s1,s2) -> Tuple[Fix(s1,t);Fix(s2,t)]
| f -> Fix(f,linear_term_beta_reduction subst t))
| Empty t -> Empty(linear_term_beta_reduction subst t)
| Apply t -> Apply(linear_term_beta_reduction subst t)
| Insert(s,t) -> Insert(linear_term_beta_reduction subst s,linear_term_beta_reduction subst t)
| Val s -> Val s
| SetAttr(e,s,t) ->
(match linear_term_beta_reduction subst t with
Dot -> Dot
| Tuple l -> linear_term_beta_reduction subst (Tuple(Xlist.map l (fun t -> SetAttr(e,s,t))))
| Node t -> (match e,s with
"GF",Gf gf -> Node{t with agf=gf}
| "MORF",Morf morf -> Node{t with amorf=morf}
| "AROLE",Val arole -> Node{t with arole=arole}
| _ -> Node{t with attrs=(e,linear_term_beta_reduction subst s) :: t.attrs})
| Variant(e2,l) -> Variant(e2,Xlist.map l (fun (i,t) -> i,linear_term_beta_reduction subst (SetAttr(e,s,t))))
| t -> SetAttr(e,s,t))
| Node t ->
if !size > Paths.lcg_no_nodes then raise SemTooBig;
incr size;
Node{t with attrs=Xlist.map t.attrs (fun (e,t) -> e, linear_term_beta_reduction subst t);
gs=linear_term_beta_reduction subst t.gs;
args=linear_term_beta_reduction subst t.args}
| Morf m -> Morf m
| Gf s -> Gf s
| Choice _ -> failwith "linear_term_beta_reduction"
| Concept _ -> failwith "linear_term_beta_reduction"
| Context _ -> failwith "linear_term_beta_reduction"
| Relation _ -> failwith "linear_term_beta_reduction"
| RevRelation _ -> failwith "linear_term_beta_reduction"
| SingleRelation _ -> failwith "linear_term_beta_reduction"
| AddRelation _ -> failwith "linear_term_beta_reduction"
| RemoveRelation _ -> failwith "linear_term_beta_reduction"
| SetContextName _ -> failwith "linear_term_beta_reduction"
| Ref i -> (* nie ma problemu przy wywoływaniu z różnymi podstawieniami, bo termy w poszczególnych referencjach nie mają zmiennych wolnych
reduced zawiera termy bez zmiennych *)
if reduced.(i) = Dot then (
let t = linear_term_beta_reduction subst references.(i) in
if is_reduced t then reduced.(i) <- t else references.(i) <- t;
t)
else reduced.(i)
| Cut(Ref i) -> Cut(Ref i)
| Cut t ->
let t = linear_term_beta_reduction subst t in
if is_reduced t then create_cut_refs t else Cut t
in
linear_term_beta_reduction StringMap.empty references.(0), !refs, !next_ref
(* dodać usuwanie jednorazowych etykiet i
zastąpić Cut(Ref i) przez coś innego *)
let reduce t references next_reference =
let references = prepare_references t references next_reference in
(* print_references "references1" references; *)
let t,references,next_reference = linear_term_beta_reduction4 references in
let references = prepare_references2 t references next_reference in
(* print_references "references2" references; *)
references