ENIAM_LCGlatexOf.ml
16.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
(*
* ENIAM_LCGparser, a parser for Logical Categorial Grammar formalism
* Copyright (C) 2016-2017 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
* Copyright (C) 2016-2017 Institute of Computer Science Polish Academy of Sciences
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*)
open ENIAM_LCGtypes
open Xstd
open Printf
let type_term s = "\\text{" ^ s ^ "}"
let rec first_digit_index v n i =
if i = n then n else
if String.get v i >= '0' && String.get v i <= '9' then i
else first_digit_index v n (i+1)
let variable v =
let n = String.length v in
let i = first_digit_index v n 0 in
if n = i then v else
String.sub v 0 i ^ "_{" ^ String.sub v i (n-i) ^ "}"
let pred_name = function
"name_token" -> "name\\_token"
| s -> s
let rec linear_term c = function
Var v -> variable v
| Tuple l ->
let l = Xlist.map l (linear_term 2) in
let n = Xlist.fold l 0 (fun n s -> String.length s + n) in
let s =
if n < 100 then String.concat "\\otimes " l else
let s = String.concat "\\otimes\\\\ {}" l in
"\\begin{array}{l}" ^ s ^ "\\end{array}" in
if c > 1 then "(" ^ s ^ ")" else s
(* | LetIn(l,s,t) -> "{\\bf let } " ^ String.concat "\\otimes " (Xlist.map l variable) ^ " = " ^ (linear_term 0 s) ^ " \\text{ {\\bf in }} " ^ (linear_term 0 t) *)
| Variant(e,l) -> "\\langle " ^ String.concat ","(*"$,\\\\$"*) (Xlist.map l (fun (i,t) -> e^i^": "^linear_term 0 t)) ^ "\\rangle"
| VariantVar(v,t) -> "\\langle " ^ linear_term 0 t ^ "\\rangle_\\text{" ^ v ^ "}"
(* | Proj(n,t) -> "\\pi_" ^ (string_of_int n) ^ (linear_term c t) *)
| ProjVar(v,t) -> "\\pi_{" ^ variable v ^ "}" ^ (linear_term c t)
| SubstVar v -> variable v
| Subst(s,v,t) -> "{\\bf subst}(" ^ (linear_term 0 s) ^ "," ^ variable v ^ "," ^ (linear_term 0 t) ^ ")"
| Inj(n,t) -> "{\\bf inj}_{" ^ (string_of_int n) ^ "}" ^ (linear_term c t)
| Case(t,l) -> "{\\bf case}\\; " ^ (linear_term 0 t) ^ " \\;{\\bf of}\\; " ^
(String.concat " | " (Xlist.map l (fun (v,t) -> variable v ^ " \\to " ^ (linear_term 0 t))))
| Lambda(v,t) -> "\\lambda " ^ variable v ^ "." ^ (linear_term c t)
| LambdaSet(l,t) -> "\\lambda " ^ (String.concat "," (Xlist.map l variable)) ^ "." ^ (linear_term c t)
| LambdaRot(n,t) -> "{\\bf rot}_{" ^ (string_of_int n) ^ "}" ^ (linear_term c t)
| App(s,t) -> "\\big((" ^ (linear_term 0 s) ^ ")(" ^ (linear_term 0 t) ^ ")\\big)"
| Dot -> "\\bullet"
| Val s -> "\\text{" ^ Xlatex.escape_string s ^ "}"
| SetAttr(e,s,t) -> "{\\bf setattr}(\\text{{\\sc " ^ Xlatex.escape_string e ^ "}}," ^ linear_term 0 s ^ "," ^ linear_term 0 t ^ ")"
| Fix(s,t) -> "{\\bf fix}(" ^ linear_term 0 s ^ "," ^ linear_term 0 t ^ ")"
| Empty t -> "{\\bf empty}(" ^ linear_term 0 t ^ ")"
| Apply t -> "{\\bf apply}(" ^ linear_term 0 t ^ ")"
| Insert(s,t) -> "{\\bf insert}(" ^ linear_term 0 s ^ "," ^ linear_term 0 t ^ ")"
| Node t ->
"{\\left[\\begin{array}{ll}" ^
(String.concat "\\\\ " (Xlist.map (["ORTH",Val t.orth;"LEMMA",Val t.lemma;"POS",Val t.pos;"ID",Val (string_of_int t.id);
"WEIGHT",Val (string_of_float t.weight);"SYMBOL",t.symbol;
"ARG_SYMBOL",t.arg_symbol;"ARG_DIR",Val t.arg_dir;"ARGS",t.args] @ t.attrs) (fun (e,t) ->
"\\text{" ^ (Xlatex.escape_string e) ^ "} & " ^ (linear_term 0 t)))) ^ "\\end{array}\\right]}"
(* | Morf m -> "\\text{" ^ Xlatex.escape_string (ENIAMwalStringOf.morf m) ^ "}"
| Gf s -> "\\text{" ^ Xlatex.escape_string (ENIAMwalStringOf.gf s) ^ "}" *)
| Ref i -> "{\\bf ref}\\; " ^ string_of_int i
| Cut t -> "{\\bf cut}(" ^ linear_term 0 t ^ ")"
| Choice(e,i,t) -> "{\\bf choice}(" ^ e ^ String.concat "" i ^ "," ^ linear_term 0 t ^ ")"
(* | Choice choices -> "{\\bf choice}(" ^ String.concat ";" (StringMap.fold choices [] (fun l ei t -> (sprintf "%s: %s" ei (linear_term 0 t)) :: l)) ^ ")"
| Concept c ->
"{\\left[\\begin{array}{ll}" ^
(String.concat "\\\\ " (Xlist.map ([
"SENSE",c.c_sense;"NAME",c.c_name;
"VARIABLE",Val (fst c.c_variable ^ "_" ^ snd c.c_variable);"POS",Val (string_of_int c.c_pos);
"QUANT",c.c_quant;"LOCAL-QUANT",if c.c_local_quant then Val "+" else Val "-";"RELATIONS",c.c_relations]) (fun (e,t) ->
"\\text{" ^ (Xlatex.escape_string e) ^ "} & " ^ (linear_term 0 t)))) ^ "\\end{array}\\right]}"
| Context c ->
"{\\left[\\begin{array}{ll}" ^
(String.concat "\\\\ " (Xlist.map ([
"SENSE",c.cx_sense;
"VARIABLE",Val (fst c.cx_variable ^ "_" ^ snd c.cx_variable);"POS",Val (string_of_int c.cx_pos);
"RELATIONS",c.cx_relations;"CONTENTS",c.cx_contents]) (fun (e,t) ->
"\\text{" ^ (Xlatex.escape_string e) ^ "} & " ^ (linear_term 0 t)))) ^ "\\end{array}\\right]}"
| Relation(r,a,c) -> "{\\bf relation}(" ^ linear_term 0 r ^ "," ^ linear_term 0 a ^ "," ^ linear_term 0 c ^ ")"
| RevRelation(r,a,c) -> "{\\bf revrelation}(" ^ linear_term 0 r ^ "," ^ linear_term 0 a ^ "," ^ linear_term 0 c ^ ")"
| SingleRelation r -> "{\\bf singlerelation}(" ^ linear_term 0 r ^ ")"
| AddRelation(t,r,a,s) -> "{\\bf addrelation}(" ^ linear_term 0 t ^ "," ^ r ^ "," ^ a ^ "," ^ linear_term 0 s ^ ")"
| RemoveRelation r -> "{\\bf removerelation}(" ^ linear_term 0 r ^ ")"
| SetContextName(s,t) -> "{\\bf setcontextname}(" ^ s ^ "," ^ linear_term 0 t ^ ")" *)
let rec linear_term_simple c = function
Var v -> variable v
| Tuple l ->
let s = String.concat "\\otimes " (Xlist.map l (linear_term_simple 2)) in
if c > 1 then "(" ^ s ^ ")" else s
(* | LetIn(l,s,t) -> "\\;$\\\\\n${\\bf let } " ^ String.concat "\\otimes " (Xlist.map l variable) ^ " = " ^ (linear_term_simple 0 s) ^ " \\text{ {\\bf in }} " ^ (linear_term_simple 0 t) *)
(* | Triple(t1,t2,t3) -> "\\{" ^ linear_term_simple 0 t1 ^ "," ^ linear_term_simple 0 t2 ^ "," ^ linear_term_simple 0 t3 ^ "\\}" *)
| Variant(e,l) -> "\\langle " ^ String.concat "," (Xlist.map l (fun (i,t) -> e^i^": "^linear_term_simple 0 t)) ^ "\\rangle"
| VariantVar(v,t) -> "\\langle " ^ linear_term_simple 0 t ^ "\\rangle_\\text{" ^ v ^ "}"
(* | Proj(n,t) -> "\\pi_" ^ (string_of_int n) ^ (linear_term_simple c t) *)
| ProjVar(v,t) -> "\\pi_{" ^ variable v ^ "}" ^ (linear_term_simple c t)
| SubstVar v -> variable v
| Subst(s,v,t) -> "{\\bf subst}(" ^ (linear_term_simple 0 s) ^ "," ^ variable v ^ "," ^ (linear_term_simple 0 t) ^ ")"
| Inj(n,t) -> "{\\bf inj}_" ^ (string_of_int n) ^ (linear_term_simple c t)
| Case(t,l) -> "{\\bf case}\\; " ^ (linear_term_simple 0 t) ^ " \\;{\\bf of}\\; " ^
(String.concat " | " (Xlist.map l (fun (v,t) -> variable v ^ " \\to " ^ (linear_term_simple 0 t))))
| Lambda(v,t) -> "\\lambda " ^ variable v ^ "." ^ (linear_term_simple c t)
| LambdaSet(l,t) -> "\\lambda " ^ (String.concat "," (Xlist.map l variable)) ^ "." ^ (linear_term_simple c t)
| LambdaRot(n,t) -> "{\\bf rot}_{" ^ (string_of_int n) ^ "}" ^ (linear_term_simple c t)
| App(s,t) -> "\\big((" ^ (linear_term_simple 0 s) ^ ")(" ^ (linear_term_simple 0 t) ^ ")\\big)"
| Dot -> "\\bullet"
| Val s -> "\\text{" ^ Xlatex.escape_string s ^ "}"
| SetAttr(e,s,t) -> "{\\bf setattr}(\\text{{\\sc " ^ Xlatex.escape_string e ^ "}}," ^ linear_term_simple 0 s ^ "," ^ linear_term_simple 0 t ^ ")"
| Fix(s,t) -> "{\\bf fix}(" ^ linear_term_simple 0 s ^ "," ^ linear_term_simple 0 t ^ ")"
| Empty t -> "{\\bf empty}(" ^ linear_term_simple 0 t ^ ")"
| Apply t -> "{\\bf apply}(" ^ linear_term_simple 0 t ^ ")"
| Insert(s,t) -> "{\\bf insert}(" ^ linear_term_simple 0 s ^ "," ^ linear_term_simple 0 t ^ ")"
| Node _ -> "node"
(* | Morf m -> "\\text{" ^ Xlatex.escape_string (ENIAMwalStringOf.morf m) ^ "}"
| Gf s -> "\\text{" ^ Xlatex.escape_string (ENIAMwalStringOf.gf s) ^ "}" *)
| Ref i -> "{\\bf ref}\\; " ^ string_of_int i
| Cut t -> "{\\bf cut}(" ^ linear_term_simple 0 t ^ ")"
| Choice(e,i,t) -> "{\\bf choice}(" ^ e ^ String.concat "" i ^ "," ^ linear_term_simple 0 t ^ ")"
(* | Choice choices -> "{\\bf choice}(" ^ String.concat ";" (StringMap.fold choices [] (fun l ei t -> (sprintf "%s: %s" ei (linear_term_simple 0 t)) :: l)) ^ ")"
| Concept c ->
"{\\left[\\begin{array}{ll}" ^
(String.concat "\\\\ " (Xlist.map ([
"SENSE",c.c_sense;"NAME",c.c_name;
"VARIABLE",Val (fst c.c_variable ^ "_" ^ snd c.c_variable);"POS",Val (string_of_int c.c_pos);
"QUANT",c.c_quant;"LOCAL-QUANT",if c.c_local_quant then Val "+" else Val "-";"RELATIONS",c.c_relations]) (fun (e,t) ->
"\\text{" ^ (Xlatex.escape_string e) ^ "} & " ^ (linear_term_simple 0 t)))) ^ "\\end{array}\\right]}"
| Context c ->
"{\\left[\\begin{array}{ll}" ^
(String.concat "\\\\ " (Xlist.map ([
"SENSE",c.cx_sense;
"VARIABLE",Val (fst c.cx_variable ^ "_" ^ snd c.cx_variable);"POS",Val (string_of_int c.cx_pos);
"RELATIONS",c.cx_relations;"CONTENTS",c.cx_contents]) (fun (e,t) ->
"\\text{" ^ (Xlatex.escape_string e) ^ "} & " ^ (linear_term_simple 0 t)))) ^ "\\end{array}\\right]}"
| Relation(r,a,c) -> "{\\bf relation}(" ^ linear_term_simple 0 r ^ "," ^ linear_term_simple 0 a ^ "," ^ linear_term_simple 0 c ^ ")"
| RevRelation(r,a,c) -> "{\\bf revrelation}(" ^ linear_term_simple 0 r ^ "," ^ linear_term_simple 0 a ^ "," ^ linear_term_simple 0 c ^ ")"
| SingleRelation r -> "{\\bf singlerelation}(" ^ linear_term_simple 0 r ^ ")"
| AddRelation(t,r,a,s) -> "{\\bf addrelation}(" ^ linear_term_simple 0 t ^ "," ^ r ^ "," ^ a ^ "," ^ linear_term_simple 0 s ^ ")"
| RemoveRelation r -> "{\\bf removerelation}(" ^ linear_term_simple 0 r ^ ")"
| SetContextName(s,t) -> "{\\bf setcontextname}(" ^ s ^ "," ^ linear_term_simple 0 t ^ ")" *)
let direction = function
Forward -> "/"
| Backward -> "\\backslash"
| Both -> "|"
let atom = function
"m1" -> "\\text{m}_1"
| "m2" -> "\\text{m}_2"
| "m3" -> "\\text{m}_3"
| "n1" -> "\\text{n}_1"
| "n2" -> "\\text{n}_2"
| "f" -> "\\text{f}"
| "p1" -> "\\text{p}_1"
| "p2" -> "\\text{p}_2"
| "p3" -> "\\text{p}_3"
| s -> "\\text{" ^ Xlatex.escape_string s ^ "}"
let rec internal_grammar_symbol c = function
Atom x -> atom x
| AVar x -> " " ^ x
| With l ->
let s = String.concat "\\with" (Xlist.map l (internal_grammar_symbol 2)) in
if c > 1 then "(" ^ s ^ ")" else s
| Zero -> "0"
| Top -> "\\top"
let rec grammar_symbol c = function
Tensor l ->
let s = String.concat "\\otimes" (Xlist.map l (internal_grammar_symbol 2)) in
if c > 1 then "(" ^ s ^ ")" else s
| Plus l ->
let s = String.concat "\\oplus" (Xlist.map l (grammar_symbol 2)) in
if c > 1 then "(" ^ s ^ ")" else s
| Imp(s,d,t) -> "(" ^ (grammar_symbol 2 s) ^ "\\\\ \\hspace{1cm}" ^ direction d ^ (grammar_symbol 2 t) ^ ")"
| One -> "1"
| ImpSet(s,l) ->
let s = (grammar_symbol 1 s) ^ "\\{" ^ String.concat "\n," (Xlist.map l (fun (d,a) -> "\\\\ \\hspace{1cm}" ^ direction d ^ grammar_symbol 1 a)) ^ "\\}" in
if c > 0 then "(" ^ s ^ ")" else s
| WithVar(v,s,e,t) -> "\\bigwith_{" ^ e ^ ":" ^ v ^ ":=" ^ (internal_grammar_symbol 2 s) ^ "} \\\\ " ^ (grammar_symbol 2 t)
| Star s -> grammar_symbol 2 s ^ "^\\star"
| Bracket(lf,rf,s) -> "\\langle " ^ (if lf then "\\langle " else "") ^ (grammar_symbol 0 s) ^ "\\rangle" ^ (if rf then "\\rangle " else "")
| BracketSet d -> "{\\bf BracketSet}(" ^ direction d ^ ")"
| Maybe s -> "?" ^ grammar_symbol 2 s
let chart page text_fragments g =
let layers = ENIAM_LCGchart.fold g IntMap.empty (fun layers (symbol,node1,node2,sem,layer) ->
let nodes = try IntMap.find layers layer with Not_found -> IntMap.empty in
let content = node2, grammar_symbol 0 symbol, linear_term 0 sem in
(* let nodes = IntMap.add_inc nodes node1 (node2,[content]) (fun (n,l) -> if n <> node2 then failwith "to_latex" else n, content :: l) in *)
let nodes = IntMap.add_inc nodes node1 [content] (fun l -> content :: l) in
IntMap.add layers layer nodes) in
let n = match page with "a4" -> "10" | "a1" -> "40" | _ -> "20" in
"\\begin{longtable}{|l|l|l|l|p{" ^ n ^ "cm}|}\n\\hline\n" ^
String.concat "" (List.rev (IntMap.fold layers [] (fun l layer nodes ->
IntMap.fold nodes l (fun l node1 contents ->
Xlist.fold contents l (fun l (node2,symbol,sem) ->
let s = try IntMap.find text_fragments.(node1) node2 with Not_found -> failwith (Printf.sprintf "chart: text_fragment not found %d-%d" node1 node2) in
(Printf.sprintf "%d & %d--%d & %s & $\\begin{array}{l}%s\\end{array}$ & $%s$\\\\\n\\hline\n" layer node1 node2 s symbol sem) :: l))))) ^
"\\end{longtable}"
let chart2 page text_fragments g =
let n = match page with "a4" -> "4" | "a1" -> "10" | _ -> "6" in
"\\begin{longtable}{|l|p{" ^ n ^ "cm}|l|}\n\\hline\n" ^
String.concat "" (List.rev (ENIAM_LCGchart.fold g [] (fun l (symbol,node1,node2,sem,layer) ->
let s = try IntMap.find text_fragments.(node1) node2 with Not_found -> failwith (Printf.sprintf "chart: text_fragment not found %d-%d" node1 node2) in
(Printf.sprintf "%d--%d & %s & $\\begin{array}{l}%s\\end{array}$\\\\\n\\hline\n" node1 node2 s (grammar_symbol 0 symbol)) :: l))) ^
"\\end{longtable}"
let print_chart path name page text_fragments g =
Xlatex.latex_file_out path name page false (fun file ->
Printf.fprintf file "%s\n" (chart page text_fragments g));
Xlatex.latex_compile_and_clean path name
let print_chart2 path name page text_fragments g =
Xlatex.latex_file_out path name page false (fun file ->
Printf.fprintf file "%s\n" (chart2 page text_fragments g));
Xlatex.latex_compile_and_clean path name
let table_entries_of_symbol_term_list l =
String.concat "" (Xlist.rev_map l (fun (symbol,sem) ->
let symbol = grammar_symbol 0 symbol in
let sem = linear_term 0 sem in
Printf.sprintf "$\\begin{array}{l}%s\\end{array}$ & $%s$\\\\\n\\hline\n" symbol sem))
let parsed_dep_chart l =
if l = [] then "empty" else
"\\begin{longtable}{|l|p{20cm}|}\n\\hline\n" ^
table_entries_of_symbol_term_list l ^
"\\end{longtable}"
let not_parsed_dep_chart (id,left,l,right) =
Printf.sprintf "conll\\_id=%d\\\\" id ^
"\\begin{longtable}{|l|p{20cm}|}\n\\hline\n" ^
String.concat "\\hline\n" (Xlist.map left table_entries_of_symbol_term_list) ^
"\\hline\n\\hline\n\\hline\n" ^
table_entries_of_symbol_term_list l ^
"\\hline\n\\hline\n\\hline\n" ^
String.concat "\\hline\n" (Xlist.map right table_entries_of_symbol_term_list) ^
"\\end{longtable}"
let print_not_parsed_dep_chart path name page x =
Xlatex.latex_file_out path name page false (fun file ->
Printf.fprintf file "%s\n" (not_parsed_dep_chart x));
Xlatex.latex_compile_and_clean path name
let rec dep_chart_rec (DepNode(id,left,l,right)) =
(* printf "dep_chart_rec: %d\n" id; *)
String.concat "" (Xlist.map left dep_chart_rec) ^
String.concat "" (Xlist.rev_map l (fun (symbol,sem) ->
let symbol = grammar_symbol 0 symbol in
let sem = linear_term 0 sem in
Printf.sprintf "%d & $\\begin{array}{l}%s\\end{array}$ & $%s$\\\\\n\\hline\n" id symbol sem)) ^
String.concat "" (Xlist.map right dep_chart_rec)
let dep_chart graph =
"\\begin{longtable}{|l|l|p{20cm}|}\n\\hline\n" ^
dep_chart_rec graph ^
"\\end{longtable}"
let print_dep_chart path name page g =
Xlatex.latex_file_out path name page false (fun file ->
Printf.fprintf file "%s\n" (dep_chart (*page*) g));
Xlatex.latex_compile_and_clean path name
let print_dependency_tree path name page dependency_tree =
Xlatex.latex_file_out path name page false (fun file ->
Int.iter 0 (Array.length dependency_tree - 1) (fun i ->
if dependency_tree.(i) <> Dot then Printf.fprintf file "{\\bf %d} $%s$\\\\\n" i (linear_term 0 dependency_tree.(i))));
Xlatex.latex_compile_and_clean path name
let print_references path name page references =
Xlatex.latex_file_out path name page false (fun file ->
Int.iter 0 (ExtArray.size references - 1) (fun i ->
if ExtArray.get references i <> Dot then Printf.fprintf file "{\\bf %d} $%s$\\\\\n" i (linear_term 0 (ExtArray.get references i))));
Xlatex.latex_compile_and_clean path name