LCGlexicon2.ml
57.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
open Xstd
open ENIAMlexSemanticsTypes
(* open ENIAMwalTypes *)
type cat =
Lemma | (*NewLemma |*) Pos | Pos2 | Number | Case | Gender | Person | Grad | Praep |
Acm | Aspect | Negation | Mood | Tense | Nsyn | Nsem | Ctype |
Inumber | Igender | Iperson | Nperson | Plemma |
Unumber | Ucase | Ugender | Uperson
let string_of_cat = function
Lemma -> "lemma"
(* | NewLemma -> "newlemma" *)
| Pos -> "pos"
| Pos2 -> "pos2"
| Number -> "number"
| Case -> "case"
| Gender -> "gender"
| Person -> "person"
| Grad -> "grad"
| Praep -> "praep"
| Acm -> "acm"
| Aspect -> "aspect"
| Negation -> "negation"
| Mood -> "mood"
| Tense -> "tense"
| Nsyn -> "nsyn"
| Nsem -> "nsem"
| Ctype -> "ctype"
| Inumber -> "inumber"
| Igender -> "igender"
| Iperson -> "iperson"
| Nperson -> "nperson"
| Plemma -> "plemma"
| Unumber -> "unumber"
| Ucase -> "ucase"
| Ugender -> "ugender"
| Uperson -> "uperson"
type rule =
Basic of string
| Quant of (cat * string) list * string
| Raised of (cat * string) list * string * cat list
| Quot of (cat * string) list * string
| Inclusion of string
| Conj of (cat * string) list * string
| Bracket of string
type rule_sem =
BasicSem of cat list
| RaisedSem of cat list * cat list
| QuotSem of cat list
| InclusionSem of cat list
| ConjSem of cat list
(* FIXME: "Moลผna byลo" - brakuje uzgodnienia rodzaju przymiotnika w przypadku predykatywnym, i ogรณlnie kontroli skลadniowej *)
(* x="s" oznacza, ลผe ลผeby reguลa zostaลa uลผyta token musi mieฤ "s" jako jednฤ
z wartoลci atrybutu x, reguลa zostanie wykonana dla x z usuniฤtymi pozostaลymi wartoลciami *)
(* x!="s" oznacza, ลผe ลผeby reguลa zostaลa uลผyta token musi mieฤ jako jednฤ
z wartoลci atrybutu x symbol inny od "s", reguลa zostanie wykonana dla x z usuniฤtฤ
wartoลciฤ
"s" *)
(* x=="s" oznacza, ลผe ลผeby reguลa zostaลa uลผyta token musi mieฤ "s" jako jednynฤ
z wartoลฤ atrybutu x *)
(* wzajemne zaleลผnoลci miฤdzy kategoriami (np miฤdzy case i person w subst) sฤ
rozstrzygane w ENIAMcategories *)
let symbol_weight = 1.
let measure_weight = 0.5
(* Basic oznacza ลผe kwantyfikacja i term sฤ
generowane zgodnie ze standardowymi reguลami:
- kwantyfikacja przebiega po wszystkich zdefiniowanych kategoriariach i wartoลciach wziฤtych z cats
- typ jest zadany bezpoลrednio
- term tworzy wierzchoลek w strukturze zaleลผnoลciowej etykietowany wszystkimi zdefiniowanymi kategoriami
Quant oznacza ลผe typ i term sฤ
generowane zgodnie ze standardowymi reguลami:
- kwantyfikacja jest zadana bezpoลrednio
- typ jest zadany bezpoลrednio
- term tworzy wierzchoลek w strukturze zaleลผnoลciowej etykietowany wszystkimi zdefiniowanymi kategoriami
*)
let grammar = [
(* symbole wystฤpujฤ
ce w tekลcie - daty itp. i sลowa okreลlajฤ
ce ich typy *)
"lemma=dzieล,pos=subst,number=sg,case=gen", Basic "day-lex/(date+day+day-month)",symbol_weight;
"lemma=dzieล,pos=subst,number=sg", Basic "np*number*case*gender*person/(date+day+day-month)",symbol_weight;
"lemma=dzieล,pos=subst,number=pl", Basic "np*number*case*gender*person/(date-interval+day-interval+day-month-interval)",symbol_weight;
"pos=date", Basic "date{schema}",symbol_weight;
"pos=date-interval", Basic "date-interval",symbol_weight;
"pos=day", Basic "day/month-lex",symbol_weight;
"pos=day-interval", Basic "day-interval/month-lex",symbol_weight;
"pos=day-month", Basic "day-month{schema}",symbol_weight;
"pos=day-month-interval", Basic "day-month-interval",symbol_weight;
"lemma=styczeล|luty|marzec|kwiecieล|maj|czerwiec|lipiec|sierpieล|wrzesieล|paลบdziernik|litopad|grudzieล,pos=subst,number=sg,case=gen", Basic "month-lex/(1+year+np*T*gen*T*T)",symbol_weight;
"lemma=styczeล|luty|marzec|kwiecieล|maj|czerwiec|lipiec|sierpieล|wrzesieล|paลบdziernik|litopad|grudzieล,pos=subst,number=sg", Basic "np*number*case*gender*person/year",symbol_weight;
"pos=month-interval", Basic "month-interval",symbol_weight;
"lemma=rok,pos=subst,number=sg",Basic "np*number*case*gender*person|year",symbol_weight;
"lemma=rok,pos=subst,number=pl",Basic "np*number*case*gender*person/year-interval",symbol_weight;
"pos=year", Basic "year",symbol_weight;
"pos=year-interval", Basic "year-interval",symbol_weight;
"lemma=wiek,pos=subst,number=sg",Basic "np*number*case*gender*person|roman",symbol_weight;
"lemma=wiek,pos=subst,number=pl",Basic "np*number*case*gender*person/roman-interval",symbol_weight;
"pos=roman", Basic "roman",symbol_weight;
"pos=roman-interval", Basic "roman-interval",symbol_weight;
"lemma=godzina,pos=subst,number=sg",Basic "np*number*case*gender*person/(hour+hour-minute)",symbol_weight;
"lemma=godzina,pos=subst,number=pl",Basic "np*number*case*gender*person/(hour-interval+hour-minute-interval)",symbol_weight;
"pos=hour-minute", Basic "hour-minute{schema}",symbol_weight;
"pos=hour", Basic "hour{schema}",symbol_weight;
"pos=hour-minute-interval", Basic "hour-minute-interval",symbol_weight;
"pos=hour-interval", Basic "hour-interval",symbol_weight;
"lemma=rysunek,pos=subst,number=sg",Basic "np*number*case*gender*person/obj-id",symbol_weight; (* objids *)
"pos=obj-id", Basic "obj-id",symbol_weight;
"pos=match-result", Basic "match-result",symbol_weight;
"pos=url", Basic "url",symbol_weight;
"pos=email", Basic "email",symbol_weight;
"pos=symbol", Basic "np*number*case*gender*person{\\(1+qub),/(1+inclusion)}",0.;
(* FIXME: uslaliฤ kiedy schema jest pusta i wyciฤ
ฤ jฤ
w takich przypadkach *)
(* frazy rzeczownikowe *)
"pos=subst|depr,nsyn!=pronoun,nsem!=measure",
Basic "np*number*case*gender*person{\\(1+num*number*case*gender*person*congr)}{schema}{\\(1+qub),/(1+inclusion)}",0.;
"pos=subst,case=gen,nsyn!=pronoun,nsem!=measure",
Quant([Number,"numbers";Case,"all_cases";Gender,"genders";Person,"persons"],
"np*sg*case*n2*person{\\num*number*case*gender*person*rec}{schema}{\\(1+qub),/(1+inclusion)}"), (* UWAGA: number "sg" i gender "n2", ลผeby uzgadniaฤ z podmiotem czasownika *)0.;
"pos=subst,case=gen,nsyn!=pronoun,nsem!=measure",
Quant([Unumber,"all_numbers";Ucase,"all_cases";Ugender,"all_genders"; Uperson,"all_persons";Number,"numbers";Case,"all_cases";Gender,"genders";Person,"ter"],(* FIXME: "all_cases" *)
"np*unumber*ucase*ugender*uperson{\\measure*unumber*ucase*ugender*uperson}{schema}{\\(1+qub),/(1+inclusion)}"),0.;
"pos=subst|depr,nsyn=pronoun,nsem!=measure",
Basic "np*number*case*gender*person{\\(1+num*number*case*gender*person*congr)}{\\(1+qub),/(1+inclusion)}",0.;
"pos=subst,case=gen,nsyn=pronoun,nsem!=measure",
Quant([Number,"numbers";Case,"all_cases";Gender,"genders";Person,"persons"],
"np*sg*case*n2*person{\\num*number*case*gender*person*rec}{\\(1+qub),/(1+inclusion)}"), (* UWAGA: number "sg" i gender "n2", ลผeby uzgadniaฤ z podmiotem czasownika *)0.;
"pos=subst,case=gen,nsyn=pronoun,nsem!=measure",
Quant([Unumber,"all_numbers";Ucase,"all_cases";Ugender,"all_genders"; Uperson,"all_persons";Number,"numbers";Case,"all_cases";Gender,"genders";Person,"ter"],
"np*unumber*ucase*ugender*uperson{\\measure*unumber*ucase*ugender*uperson}{\\(1+qub),/(1+inclusion)}"),0.;
"pos=ppron12",
Basic "np*number*case*gender*person{\\(1+qub),/(1+inclusion)}",0.;
"pos=ppron3,praep=npraep|praep-npraep",
Basic "np*number*case*gender*person{\\(1+qub),/(1+inclusion)}",0.;
"pos=siebie",
Basic "np*number*case*gender*person{\\(1+qub),/(1+inclusion)}",0.;
"lemma=jakiล|ten|taki,pos=apron",
Quant([Number,"numbers";Case,"cases";Gender,"genders";Person,"ter"],
"np*number*case*gender*person{\\(1+qub),/(1+inclusion)}"),0.;
(* liczebniki *)
(* FIXME: liczba po rzeczowniku *) (* FIXME: zbadaฤ jak liczebniki wspรณลdziaลฤ
jฤ
z jako COMPAR *)
"pos=num|intnum|realnum|intnum-interval|realnum-interval",
Basic "num*number*case*gender*person*acm{\\(1+qub),/(1+inclusion)}", (* FIXME: jak usuniฤcie Phrase ProNG wpลywa na pokrycie? *)0.;
(* pojemniki *)
"pos=subst,nsem=measure",
Basic "measure*number*case*gender*person{\\(1+num*number*case*gender*person*congr)}{schema}{\\(1+qub),/(1+inclusion)}",measure_weight;
"pos=subst,case=gen,nsem=measure",
Quant([Number,"numbers";Case,"all_cases";Gender,"genders";Person,"ter"],
"measure*sg*case*n2*person{\\num*number*case*gender*person*rec}{schema}{\\(1+qub),/(1+inclusion)}"),measure_weight;(* UWAGA: number "sg" i gender "n2", ลผeby uzgadniaฤ z podmiotem czasownika *)
(* frazy przyimkowe *)
"pos=prep", Basic "prepnp*lemma*case{\\(1+advp),/np*T*case*T*T}{\\(1+qub),/(1+inclusion)}",0.;
"pos=prep", Basic "prepadjp*lemma*case{\\(1+advp),/adjp*T*case*T}{\\(1+qub),/(1+inclusion)}",0.;
"lemma=po,pos=prep", Quant([Case,"postp"],"prepadjp*lemma*case{\\(1+advp),/(adjp*sg*dat*m1+adjp*T*postp*T)}{\\(1+qub),/(1+inclusion)}"),0.;(* po polsku, po kreciemu *)
"lemma=z,pos=prep", Quant([Case,"postp"],"prepadjp*lemma*case{\\(1+advp),/adjp*sg*nom*f}{\\(1+qub),/(1+inclusion)}"),0.;(* z bliska *)
"lemma=na,pos=prep", Quant([Case,"postp"],"prepadjp*lemma*case{\\(1+advp),/advp}{\\(1+qub),/(1+inclusion)}"),0.;(* na lewo *)
(* przimkowe okreลlenia czasu *)
"lemma=z,pos=prep,case=gen", Basic "prepnp*lemma*case{\\(1+advp),/(day-month+day+year+date+hour+hour-minute)}{\\(1+qub),/(1+inclusion)}",0.;
"lemma=do,pos=prep,case=gen", Basic "prepnp*lemma*case{\\(1+advp),/(day-month+day+year+date+hour+hour-minute)}{\\(1+qub),/(1+inclusion)}",0.;
"lemma=na,pos=prep,case=acc", Basic "prepnp*lemma*case{\\(1+advp),/(day-month+day+date+hour+hour-minute)}{\\(1+qub),/(1+inclusion)}",0.;
"lemma=o,pos=prep,case=loc", Basic "prepnp*lemma*case{\\(1+advp),/(hour+hour-minute)}{\\(1+qub),/(1+inclusion)}",0.;
"lemma=od,pos=prep,case=gen", Basic "prepnp*lemma*case{\\(1+advp),/(day-month+day+year+date+hour+hour-minute)}{\\(1+qub),/(1+inclusion)}",0.;
"lemma=okoลo,pos=prep,case=gen", Basic "prepnp*lemma*case{\\(1+advp),/(day-month+day+year+date+hour+hour-minute)}{\\(1+qub),/(1+inclusion)}",0.;
"lemma=po,pos=prep,case=loc", Basic "prepnp*lemma*case{\\(1+advp),/(day-month+day+year+date+hour+hour-minute)}{\\(1+qub),/(1+inclusion)}",0.;
"lemma=przed,pos=prep,case=inst", Basic "prepnp*lemma*case{\\(1+advp),/(day-month+day+year+date+hour+hour-minute)}{\\(1+qub),/(1+inclusion)}",0.;
"lemma=w,pos=prep,case=loc", Basic "prepnp*lemma*case{\\(1+advp),/(day-month+day+year+date+hour+hour-minute)}{\\(1+qub),/(1+inclusion)}",0.;
(* komparatywy *) (* FIXME: trzeba poprawiฤ comparnp i comparpp w walencji *)
"pos=compar", Quant([Case,"nom&gen&dat&acc&inst"],"compar*lemma*case{\\(1+advp),/np*T*case*T*T}{\\(1+qub),/(1+inclusion)}"),0.;
"pos=compar", Quant([Case,"postp"],"compar*lemma*case{\\(1+advp),/(prepnp*T*T+prepadjp*T*T)}{\\(1+qub),/(1+inclusion)}"),0.;
(* frazy przymiotnikowe *)
(* FIXME: check_frame_case - pamiฤtaฤ o sprawdzaniu zgodnoลci kategorii przy szukaniu schema *)
(* FIXME: let grad = match grads with [grad] -> grad | _ -> failwith "make_adjp: grad" in*)
"pos=adj|adjc|adjp", Basic "adjp*number*case*gender{schema}{\\(1+qub),/(1+inclusion)}{\\(1+adja)}",0.;
"lemma=jakiล|ten|taki,pos=apron", Basic "adjp*number*case*gender{\\(1+qub),/(1+inclusion)}",0.;
"pos=ordnum|roman-ordnum", Basic "adjp*number*case*gender{\\(1+qub),/(1+inclusion)}{\\(1+adja)}",0.;
"pos=adja|intnum|realnum|intnum-interval|realnum-interval|roman|roman-interval",Basic "adja/hyphen",0.;
(* przysลรณwki *)
(* FIXME let grad = match grads with [grad] -> grad | _ -> failwith "make_advp: grad" in*)
"pos=adv",Basic "advp{schema}{\\(1+qub),/(1+inclusion)}{\\(1+adja)}",0.;
(* relatory *)
(* FIXME: dwa znaczenia jak: pytanie o cechฤ lub spรณjnik *)
"lemma=jak|skฤ
d|dokฤ
d|gdzie|ktรณrฤdy|kiedy,pos=adv",
Raised([Inumber,"";Igender,"";Iperson,"";Ctype,"int&rel"],
"cp*ctype*lemma{\\(1+advp),/(ip*inumber*igender*iperson/advp)}",[Ctype]),0.; (*["CTYPE",SubstVar "ctype"]*)
"lemma=odkฤ
d|dlaczego|czemu,pos=adv",
Raised([Inumber,"";Igender,"";Iperson,"";Ctype,"int"],
"cp*ctype*lemma{\\(1+advp),/(ip*inumber*igender*iperson/advp)}",[Ctype]),0.; (*["CTYPE",SubstVar "ctype"]*)
"lemma=gdy,pos=adv",
Raised([Inumber,"";Igender,"";Iperson,"";Ctype,"sub"],
"cp*ctype*lemma{\\(1+advp),/(ip*inumber*igender*iperson/advp)}",[Ctype]),0.; (*["CTYPE",SubstVar "ctype"]*)
(* czasowniki *)
"pos=ger", Basic "np*number*case*gender*person{schema}{\\(1+qub),/(1+inclusion)}",0.;
"pos=pact", Basic "adjp*number*case*gender{schema}{\\(1+qub),/(1+inclusion)}",0.;
"pos=ppas", Basic "adjp*number*case*gender{schema}{\\(1+qub),/(1+inclusion)}",0.;
"pos=fin|bedzie,negation=aff,mood=indicative", Basic "ip*number*gender*person{/(1+int)}{schema}{\\(1+qub),/(1+inclusion)}",0.;
"pos=fin|bedzie,negation=neg,mood=indicative", Basic "ip*number*gender*person{/(1+int)}{schema}{\\(1+qub),/(1+inclusion)}{\\nie}",0.;
"pos=fin,negation=aff,mood=imperative", Basic "ip*number*gender*person{/(1+int)}{schema,|aux-imp}{\\(1+qub),/(1+inclusion)}",0.;
"pos=fin,negation=neg,mood=imperative", Basic "ip*number*gender*person{/(1+int)}{schema,|aux-imp}{\\(1+qub),/(1+inclusion)}{\\nie}",0.;
"pos=impt|imps,negation=aff", Basic "ip*number*gender*person{/(1+int)}{schema}{\\(1+qub),/(1+inclusion)}",0.;
"pos=impt|imps,negation=neg", Basic "ip*number*gender*person{/(1+int)}{schema}{\\(1+qub),/(1+inclusion)}{\\nie}",0.;
"pos=pred,negation=aff,tense=pres", Basic "ip*number*gender*person{/(1+int)}{schema}{\\(1+qub),/(1+inclusion)}",0.;
"pos=pred,negation=neg,tense=pres", Basic "ip*number*gender*person{/(1+int)}{schema}{\\(1+qub),/(1+inclusion)}{\\nie}",0.;
"pos=pred,negation=aff,tense=fut", Basic "ip*number*gender*person{/(1+int)}{schema,|aux-fut*number*gender*person}{\\(1+qub),/(1+inclusion)}",0.;
"pos=pred,negation=neg,tense=fut", Basic "ip*number*gender*person{/(1+int)}{schema,|aux-fut*number*gender*person}{\\(1+qub),/(1+inclusion)}{\\nie}",0.;
"pos=pred,negation=aff,tense=past", Basic "ip*number*gender*person{/(1+int)}{schema,|aux-past*number*gender*person}{\\(1+qub),/(1+inclusion)}",0.; (* FIXME: tense *)
"pos=pred,negation=neg,tense=past", Basic "ip*number*gender*person{/(1+int)}{schema,|aux-past*number*gender*person}{\\(1+qub),/(1+inclusion)}{\\nie}",0.; (* FIXME: tense *)
"pos=praet|winien,person=ter,negation=aff,mood=indicative", Basic "ip*number*gender*person{/(1+int)}{schema}{\\(1+qub),/(1+inclusion)}",0.;
"pos=praet|winien,person=ter,negation=neg,mood=indicative", Basic "ip*number*gender*person{/(1+int)}{schema}{\\(1+qub),/(1+inclusion)}{\\nie}",0.;
"pos=praet|winien,person!=ter,negation=aff,mood=indicative", Basic "ip*number*gender*person{/(1+int)}{schema,|aglt*number*person}{\\(1+qub),/(1+inclusion)}",0.;
"pos=praet|winien,person!=ter,negation=neg,mood=indicative", Basic "ip*number*gender*person{/(1+int)}{schema,|aglt*number*person}{\\(1+qub),/(1+inclusion)}{\\nie}",0.;
"pos=praet|winien,person=ter,negation=aff,mood=conditional", Basic "ip*number*gender*person{/(1+int)}{schema,|by}{\\(1+qub),/(1+inclusion)}",0.;
"pos=praet|winien,person=ter,negation=neg,mood=conditional", Basic "ip*number*gender*person{/(1+int)}{schema,|by}{\\(1+qub),/(1+inclusion)}{\\nie}",0.;
"pos=praet|winien,person!=ter,negation=aff,mood=conditional", Basic "ip*number*gender*person{/(1+int)}{schema,|aglt*number*person,|by}{\\(1+qub),/(1+inclusion)}",0.;
"pos=praet|winien,person!=ter,negation=neg,mood=conditional", Basic "ip*number*gender*person{/(1+int)}{schema,|aglt*number*person,|by}{\\(1+qub),/(1+inclusion)}{\\nie}",0.;
"pos=praet|winien,negation=aff,tense=fut", Basic "ip*number*gender*person{/(1+int)}{schema,|aux-fut*number*gender*person}{\\(1+qub),/(1+inclusion)}",0.;
"pos=winien,person=ter,negation=aff,tense=past", Basic "ip*number*gender*person{/(1+int)}{schema,|aux-past*number*gender*person}{\\(1+qub),/(1+inclusion)}",0.;
"pos=winien,person=ter,negation=neg,tense=past", Basic "ip*number*gender*person{/(1+int)}{schema,|aux-past*number*gender*person}{\\(1+qub),/(1+inclusion)}{\\nie}",0.;
"pos=winien,person!=ter,negation=aff,tense=past", Basic "ip*number*gender*person{/(1+int)}{schema,|aglt*number*person,|aux-past*number*gender*person}{\\(1+qub),/(1+inclusion)}",0.;
"pos=winien,person!=ter,negation=neg,tense=past", Basic "ip*number*gender*person{/(1+int)}{schema,|aglt*number*person,|aux-past*number*gender*person}{\\(1+qub),/(1+inclusion)}{\\nie}",0.;
"pos=bedzie", Basic "aux-fut*number*gender*person",0.;
"lemma=byฤ,pos=praet", Basic "aux-past*number*gender*person",0.;
"pos=aglt", Basic "aglt*number*person",0.;
"pos=inf,negation=aff", Basic "infp{schema}{\\(1+qub),/(1+inclusion)}",0.;
"pos=inf,negation=neg", Basic "infp{schema}{\\(1+qub),/(1+inclusion)}{\\nie}",0.;
"pos=pcon,negation=aff", Basic "padvp{schema}{\\(1+qub),/(1+inclusion)}",0.;
"pos=pcon,negation=neg", Basic "padvp{schema}{\\(1+qub),/(1+inclusion)}{\\nie}",0.;
"pos=pant,negation=aff", Basic "padvp{schema}{\\(1+qub),/(1+inclusion)}",0.;
"pos=pant,negation=neg", Basic "padvp{schema}{\\(1+qub),/(1+inclusion)}{\\nie}",0.;
"pos=comp", Quant([Ctype,"sub"],"cp*ctype*lemma/ip*T*T*T"),0.;
"pos=conj", Quant([Ctype,"coord"],"cp*ctype*lemma/ip*T*T*T"),0.;
"lemma=i|lub|czy|bฤ
dลบ,pos=conj", Conj([Number,"all_numbers";Gender,"all_genders";Person,"all_persons"],"(ip*number*gender*person/ip*T*T*T)\\ip*T*T*T"),0.;
"lemma=,|i|lub|czy|bฤ
dลบ,pos=conj", Conj([],"(advp/prepnp*T*T)\\prepnp*T*T"),0.;
"lemma=,|i|lub|czy|bฤ
dลบ,pos=conj", Conj([],"(advp/advp)\\prepnp*T*T"),0.;
"lemma=,|i|lub|czy|bฤ
dลบ,pos=conj", Conj([],"(advp/prepnp*T*T)\\advp"),0.;
"lemma=,|i|lub|czy|bฤ
dลบ,pos=conj", Conj([],"(advp/advp)\\advp"),0.;
"lemma=,|i|lub|czy|bฤ
dลบ,pos=conj", Conj([Plemma,"";Case,"all_cases"],"(prepnp*plemma*case/prepnp*plemma*case)\\prepnp*plemma*case"),0.;
"lemma=,|i|lub|czy|bฤ
dลบ,pos=conj", Conj([Number,"all_numbers";Case,"all_cases";Gender,"all_genders";Person,"all_persons"],"(np*number*case*gender*person/np*T*case*T*T)\\np*T*case*T*T"),0.;
"lemma=,|i|lub|czy|bฤ
dลบ,pos=conj", Conj([Number,"all_numbers";Case,"all_cases";Gender,"all_genders"],"(adjp*number*case*gender/adjp*number*case*gender)\\adjp*number*case*gender"),0.;
"lemma=co|kto,pos=subst",
Raised([Inumber,"";Igender,"";Iperson,"";Ctype,"int&rel";Number,"numbers";Case,"cases";Gender,"genders";Person,"ter"],
"cp*ctype*lemma/(ip*inumber*igender*iperson/np*number*case*gender*person)",[Ctype]),0.; (*["CTYPE",SubstVar "ctype"]*)
"lemma=co|kto,pos=subst",
Raised([Inumber,"";Igender,"";Iperson,"";Plemma,"";Ctype,"int&rel";Number,"numbers";Case,"cases";Gender,"genders";Person,"ter"],
"cp*ctype*lemma{/(ip*inumber*igender*iperson/prepnp*plemma*case),/(prepnp*plemma*case/np*number*case*gender*person)}",[Ctype]),0.; (*["CTYPE",SubstVar "ctype"]*)
"lemma=to,pos=subst",
Quant([Ctype,"";Plemma,"";Number,"numbers";Case,"cases";Gender,"genders";Person,"ter"],
"ncp*number*case*gender*person*ctype*plemma{\\(1+qub),/(1+inclusion)}{/cp*ctype*plemma}"),0.;
"pos=ppron3,praep=praep",
Raised([Plemma,"";Number,"numbers";Case,"cases";Gender,"genders";Person,"persons"],
"prepnp*plemma*case\\(prepnp*plemma*case/np*number*case*gender*person)",[]), (*inclusion*)0. (*[Number;Case;Gender;Person]*);
"lemma=ile,pos=num", (* FIXME: iloma ma bezpoลredni podrzฤdnik rzeczownikowy, a ile nie *) (* FIXME: mwe "o ile, na ile" *)
Quant([Inumber,"";Igender,"";Iperson,"";Ctype,"int&rel";Number,"numbers";Case,"cases";Gender,"genders";Person,"ter"],
"cp*ctype*lemma/ip*inumber*igender*iperson"), (* FIXME: zaลlepka, bo podrzฤdnik ile nie musi z nim sฤ
ciadowaฤ *)0.; (*["CTYPE",SubstVar "ctype"]*) (* FIXME: trzeba dodaฤ przypadki, bezpoลredniego podrzฤdnika rzeczownikowego i przyimka nad "ile" *)
"lemma=czyj|jaki|ktรณry,pos=apron",
Raised([Inumber,"";Igender,"";Iperson,"";Nperson,"";Ctype,"int";Number,"numbers";Case,"cases";Gender,"genders"],
"cp*ctype*lemma{/(ip*inumber*igender*iperson/np*number*case*gender*nperson)}{/(np*number*case*gender*nperson/adjp*number*case*gender)}",[Ctype]),0.; (*["CTYPE",SubstVar "ctype"]*)
"lemma=czyj|jaki|ktรณry,pos=apron",
Raised([Inumber,"";Igender,"";Iperson,"";Nperson,"";Plemma,"";Ctype,"int";Number,"numbers";Case,"cases";Gender,"genders"],
"cp*ctype*lemma{/(ip*inumber*igender*iperson/prepnp*plemma*case)}{/(prepnp*plemma*case/np*number*case*gender*nperson)}{/(np*number*case*gender*nperson/adjp*number*case*gender)}",[Ctype]),0.; (*["CTYPE",SubstVar "ctype"]*)
"lemma=czyj|jaki,pos=apron",
Raised([Inumber,"";Igender,"";Iperson,"";Ctype,"rel";Number,"numbers";Case,"cases";Gender,"genders";Person,"ter"],
"cp*ctype*lemma/(ip*inumber*igender*iperson/np*number*case*gender*person)",[Ctype]),0.; (*["CTYPE",SubstVar "ctype"]*)
"lemma=jaki|ktรณry,pos=apron",
Raised([Inumber,"";Igender,"";Iperson,"";Plemma,"";Ctype,"rel";Number,"numbers";Case,"cases";Gender,"genders";Person,"ter"],
"cp*ctype*lemma{/(ip*inumber*igender*iperson/prepnp*plemma*case)}{/(prepnp*plemma*case/np*number*case*gender*person)}",[Ctype]),0.; (*["CTYPE",SubstVar "ctype"]*)
"lemma=siฤ,pos=qub", Basic "siฤ",0.; (* FIXME: dodaฤ make_np *)
"lemma=nie,pos=qub", Basic "nie",0.;
"lemma=by,pos=qub", Basic "by",0.;
"lemma=niech,pos=qub", Basic "aux-imp",0.;
"lemma=niechaj,pos=qub", Basic "aux-imp",0.;
"lemma=niechลผe,pos=qub", Basic "aux-imp",0.;
"lemma=niechajลผe,pos=qub", Basic "aux-imp",0.;
"lemma=czy,pos=qub", Quant([Ctype,"int"],"cp*ctype*lemma/ip*T*T*T"),0.;
"lemma=gdyby,pos=qub", Quant([Ctype,"rel"],"cp*ctype*lemma/ip*T*T*T"),0.;
"pos=qub", Basic "qub",0.;
"pos=interj", Basic "interj",0.;
"lemma=-,pos=interp", Basic "hyphen",0.;
"lemma=?,pos=interp", Basic "int",0.;
"lemma=โ,pos=interp", Quot([Number,"";Case,"";Gender,"";Person,""],"(np*number*case*gender*person/rquot)/np*number*case*gender*person"),0.;
"lemma=ยซ,pos=interp", Quot([Number,"";Case,"";Gender,"";Person,""],"(np*number*case*gender*person/rquot2)/np*number*case*gender*person"),0.;
"lemma=ยป,pos=interp", Quot([Number,"";Case,"";Gender,"";Person,""],"(np*number*case*gender*person/rquot3)/np*number*case*gender*person"),0.;
"lemma=โ,pos=interp", Basic "rquot",0.;
"lemma=ยป,pos=interp", Basic "rquot2",0.;
"lemma=ยซ,pos=interp", Basic "rquot3",0.;
"lemma=(,pos=interp", Inclusion "(inclusion/rparen)/(np*T*T*T*T+ip*T*T*T+adjp*T*T*T+prepnp*T*T)",0.;
"lemma=[,pos=interp", Inclusion "(inclusion/rparen2)/(np*T*T*T*T+ip*T*T*T+adjp*T*T*T+prepnp*T*T)",0.;
"lemma=),pos=interp", Basic "rparen",0.;
"lemma=],pos=interp", Basic "rparen2",0.;
"pos=unk", Basic "np*number*case*gender*person",0.;
(* | ".","interp",[] -> [LCGrenderer.make_frame_simple [] ["dot"] c (make_node "." "interp" c.weight 0 [])] (* FIXME: to jest potrzebne przy CONLL *)
| "<conll_root>","interp",[] ->
let batrs = (make_node "<conll_root>" "interp" c.weight 0 []) in
let schema_list = [[schema_field CLAUSE "Clause" Forward [Phrase IP;Phrase (CP(Int,CompUndef));Phrase (NP(Case "voc"));Phrase (Lex "interj")]]] in
[LCGrenderer.make_frame false tokens lex_sems [] schema_list ["<conll_root>"] d batrs]
| lemma,c,l -> failwith ("process_interp: " ^ lemma ^ ":" ^ c ^ ":" ^ (String.concat ":" (Xlist.map l (String.concat ".")))) in*)
"pos=sinterj", Bracket "interj",0.;
"lemma=</sentence>,pos=interp", Bracket "s\\?(ip*T*T*T+cp*int*T+np*sg*voc*T*T+interj)",0.;
"lemma=<sentence>,pos=interp", Bracket "<root>/s",0.;
"lemma=:,pos=interp", Bracket "or",0.;
"lemma=:s,pos=interp", Bracket "<colon>\\<speaker>",0.;
"lemma=:s,pos=interp", Bracket "(<colon>\\<speaker>)/<squery>",0.;
"lemma=<or-sentence>,pos=interp", Bracket "<root>/s",0.;
"lemma=<or-sentence>,pos=interp", Bracket "((<root>/<speaker-end>)/(ip*T*T*T/or))/or2",0.;
"lemma=</or-sentence>,pos=interp", Bracket "or2\\?(ip*T*T*T+cp*int*T+np*sg*voc*T*T+interj)",0.;
"lemma=<sentence>,pos=interp", Bracket "(<speaker>/<speaker-end>)/np*T*nom*T*T",0.;
"lemma=</sentence>,pos=interp", Bracket "<speaker-end>",0.;
]
let rec split_comma found rev = function
"lemma" :: "=" :: "," :: l -> split_comma found ("," :: "=" :: "lemma" :: rev) l
| "," :: l -> split_comma (List.rev rev :: found) [] l
| s :: l -> split_comma found (s :: rev) l
| [] -> if rev = [] then found else List.rev rev :: found
let match_selectors = function
"lemma" :: l -> Lemma,l
| "pos" :: l -> Pos,l
| "pos2" :: l -> Pos2,l
| "number" :: l -> Number,l
| "case" :: l -> Case,l
| "gender" :: l -> Gender,l
| "person" :: l -> Person,l
| "grad" :: l -> Grad,l
| "praep" :: l -> Praep,l
| "acm" :: l -> Acm,l
| "aspect" :: l -> Aspect,l
| "negation" :: l -> Negation,l
| "mood" :: l -> Mood,l
| "tense" :: l -> Tense,l
| "nsem" :: l -> Nsem,l
| "nsyn" :: l -> Nsyn,l
| s :: l -> failwith ("match_selectors: " ^ s)
| [] -> failwith "match_selectors: empty"
type selector_relation = Eq | Neq (*| StrictEq*)
let match_relation = function
(* cat,"=" :: "=" :: l -> cat,StrictEq,l *)
| cat,"!" :: "=" :: l -> cat,Neq,l
| cat,"=" :: l -> cat,Eq,l
| cat,s :: l -> failwith ("match_relation: " ^ (String.concat " " (s :: l)))
| cat,[] -> failwith "match_relation: empty"
let rec split_mid rev = function
[s] -> List.rev (s :: rev)
| s :: "|" :: l -> split_mid (s :: rev) l
| [] -> failwith "split_mid: empty"
| l -> failwith ("split_mid: " ^ (String.concat " " l))
let match_value = function
cat,rel,[s] -> cat,rel,[s]
| cat,rel,[] -> failwith "match_value: empty"
| cat,rel,l -> cat,rel, split_mid [] l
let parse_selectors s =
(* print_endline s; *)
let l = Xlist.map (Str.full_split (Str.regexp "|\\|,\\|=\\|!") s) (function
Str.Text s -> s
| Str.Delim s -> s) in
let ll = split_comma [] [] l in
let l = Xlist.rev_map ll match_selectors in
let l = Xlist.rev_map l match_relation in
let l = Xlist.rev_map l match_value in
l
let rec find_seletor s = function
(t,Eq,x :: _) :: l -> if t = s then x else find_seletor s l
| (t,_,_) :: l -> if t = s then failwith "find_seletor 1" else find_seletor s l
| [] -> failwith "find_seletor 2"
open LCGtypes
type syntax =
A of string
| B of internal_grammar_symbol
| C of grammar_symbol
| D of direction * grammar_symbol
| E of (direction * grammar_symbol) list
let avars = StringSet.of_list [
"number"; "case"; "gender"; "person"; "ctype"; "lemma"; "acm";
"plemma"; "nperson"; "inumber"; "igender"; "iperson";
"unumber"; "ucase"; "ugender"; "uperson"]
let atoms = StringSet.of_list [
"gen"; "congr"; "sg"; "n2"; "rec"; "dat"; "voc"; "m1"; "postp"; "nom"; "f";
"infp"; "np"; "prepnp"; "adjp"; "ip"; "cp"; "ncp"; "advp"; "padvp";
"adja"; "prepadjp"; "compar"; "measure"; "num"; "aglt"; "aux-fut";
"aux-past"; "aux-imp"; "qub"; "interj"; "hyphen"; "int";
"rparen"; "rparen2"; "rquot"; "rquot2"; "rquot3"; "inclusion";
"day-interval"; "day-lex"; "day-month-interval"; "date-interval";
"month-lex"; "month-interval"; "year-interval"; "roman"; "roman-interval";
"hour-minute-interval"; "hour-interval"; "obj-id"; "match-result";
"url"; "email"; "day-month"; "day"; "year"; "date"; "hour"; "hour-minute";
"siฤ"; "nie"; "by"; "s"; "<root>"; "or"; "or2"; "<colon>"; "<speaker>"; "<speaker-end>"; "<squery>"]
let operators = StringSet.of_list [
"*"; "+"; "/"; "|"; "\\"; "("; ")"; ","; "{"; "}"; "?"]
let find_internal_grammar_symbols = function
| "T" -> B Top
| "1" -> C One
| "schema" -> D(Both,Tensor[AVar "schema"])
(* | "qub_inclusion" -> D(Both,Tensor[AVar "qub_inclusion"]) *)
| s -> if StringSet.mem avars s then B (AVar s) else
if StringSet.mem atoms s then B (Atom s) else
if StringSet.mem operators s then A s else
failwith ("find_internal_grammar_symbols: " ^ s)
let rec find_tensor = function
B s1 :: A "*" :: B s2 :: A "*" :: B s3 :: A "*" :: B s4 :: A "*" :: B s5 :: A "*" :: B s6 :: A "*" :: B s7 :: A "*" :: B s8 :: l -> failwith "find_tensor 1"
| B s1 :: A "*" :: B s2 :: A "*" :: B s3 :: A "*" :: B s4 :: A "*" :: B s5 :: A "*" :: B s6 :: A "*" :: B s7 :: l -> C (Tensor[s1;s2;s3;s4;s5;s6;s7]) :: find_tensor l
| B s1 :: A "*" :: B s2 :: A "*" :: B s3 :: A "*" :: B s4 :: A "*" :: B s5 :: A "*" :: B s6 :: l -> C (Tensor[s1;s2;s3;s4;s5;s6]) :: find_tensor l
| B s1 :: A "*" :: B s2 :: A "*" :: B s3 :: A "*" :: B s4 :: A "*" :: B s5 :: l -> C (Tensor[s1;s2;s3;s4;s5]) :: find_tensor l
| B s1 :: A "*" :: B s2 :: A "*" :: B s3 :: A "*" :: B s4 :: l -> C (Tensor[s1;s2;s3;s4]) :: find_tensor l
| B s1 :: A "*" :: B s2 :: A "*" :: B s3 :: l -> C (Tensor[s1;s2;s3]) :: find_tensor l
| B s1 :: A "*" :: B s2 :: l -> C (Tensor[s1;s2]) :: find_tensor l
| B s1 :: l -> C (Tensor[s1]) :: find_tensor l
| A "*" :: _ -> failwith "find_tensor 2"
| t :: l -> t :: find_tensor l
| [] -> []
let rec find_plus = function
C s1 :: A "+" :: C s2 :: A "+" :: C s3 :: A "+" :: C s4 :: A "+" :: C s5 :: A "+" :: C s6 :: A "+" :: C s7 :: l -> failwith "find_plus 1"
| C s1 :: A "+" :: C s2 :: A "+" :: C s3 :: A "+" :: C s4 :: A "+" :: C s5 :: A "+" :: C s6 :: l -> C (Plus[s1;s2;s3;s4;s5;s6]) :: find_plus l
| C s1 :: A "+" :: C s2 :: A "+" :: C s3 :: A "+" :: C s4 :: A "+" :: C s5 :: l -> C (Plus[s1;s2;s3;s4;s5]) :: find_plus l
| C s1 :: A "+" :: C s2 :: A "+" :: C s3 :: A "+" :: C s4 :: l -> C (Plus[s1;s2;s3;s4]) :: find_plus l
| C s1 :: A "+" :: C s2 :: A "+" :: C s3 :: l -> C (Plus[s1;s2;s3]) :: find_plus l
| C s1 :: A "+" :: C s2 :: l -> C (Plus[s1;s2]) :: find_plus l
| A "+" :: _ -> failwith "find_plus 2"
| t :: l -> t :: find_plus l
| [] -> []
let rec find_paren = function
A "(" :: C s :: A ")" :: l -> C s :: find_paren l
| s :: l -> s :: find_paren l
| [] -> []
let rec find_imp = function
| C s1 :: A "/" :: C s2 :: l -> C (Imp(s1,Forward,s2)) :: find_imp l
| C s1 :: A "|" :: C s2 :: l -> C (Imp(s1,Both,s2)) :: find_imp l
| C s1 :: A "\\" :: C s2 :: l -> C (Imp(s1,Backward,s2)) :: find_imp l
| s :: l -> s :: find_imp l
| [] -> []
let rec find_maybe = function
| A "?" :: C s2 :: l -> C (Maybe s2) :: find_maybe l
| A "?" :: _ -> failwith "find_maybe 1"
| s :: l -> s :: find_maybe l
| [] -> []
let rec find_mult_imp = function
| A "{" :: A "/" :: C s2 :: l -> A "{" :: D (Forward,s2) :: find_mult_imp l
| A "{" :: A "|" :: C s2 :: l -> A "{" :: D (Both,s2) :: find_mult_imp l
| A "{" :: A "\\" :: C s2 :: l -> A "{" :: D (Backward,s2) :: find_mult_imp l
| A "," :: A "/" :: C s2 :: l -> A "," :: D (Forward,s2) :: find_mult_imp l
| A "," :: A "|" :: C s2 :: l -> A "," :: D (Both,s2) :: find_mult_imp l
| A "," :: A "\\" :: C s2 :: l -> A "," :: D (Backward,s2) :: find_mult_imp l
| A "/" :: _ -> failwith "find_mult_imp 1"
| A "|" :: _ -> failwith "find_mult_imp 2"
| A "\\" :: _ -> failwith "find_mult_imp 3"
| A "(" :: _ -> failwith "find_mult_imp 4"
| A ")" :: _ -> failwith "find_mult_imp 5"
| s :: l -> s :: find_mult_imp l
| [] -> []
let rec find_mult = function
A "{" :: D(s1,t1) :: A "," :: D(s2,t2) :: A "," :: D(s3,t3) :: A "," :: D(s4,t4) :: A "," :: D(s5,t5) :: A "," :: D(s6,t6) :: A "," :: D(s7,t7) :: A "," :: D(s8,t8) :: l -> failwith "find_mult 1"
| A "{" :: D(s1,t1) :: A "," :: D(s2,t2) :: A "," :: D(s3,t3) :: A "," :: D(s4,t4) :: A "," :: D(s5,t5) :: A "," :: D(s6,t6) :: A "," :: D(s7,t7) :: A "}" :: l -> E[s1,t1;s2,t2;s3,t3;s4,t4;s5,t5;s6,t6;s7,t7] :: find_mult l
| A "{" :: D(s1,t1) :: A "," :: D(s2,t2) :: A "," :: D(s3,t3) :: A "," :: D(s4,t4) :: A "," :: D(s5,t5) :: A "," :: D(s6,t6) :: A "}" :: l -> E[s1,t1;s2,t2;s3,t3;s4,t4;s5,t5;s6,t6] :: find_mult l
| A "{" :: D(s1,t1) :: A "," :: D(s2,t2) :: A "," :: D(s3,t3) :: A "," :: D(s4,t4) :: A "," :: D(s5,t5) :: A "}" :: l -> E[s1,t1;s2,t2;s3,t3;s4,t4;s5,t5] :: find_mult l
| A "{" :: D(s1,t1) :: A "," :: D(s2,t2) :: A "," :: D(s3,t3) :: A "," :: D(s4,t4) :: A "}" :: l -> E[s1,t1;s2,t2;s3,t3;s4,t4] :: find_mult l
| A "{" :: D(s1,t1) :: A "," :: D(s2,t2) :: A "," :: D(s3,t3) :: A "}" :: l -> E[s1,t1;s2,t2;s3,t3] :: find_mult l
| A "{" :: D(s1,t1) :: A "," :: D(s2,t2) :: A "}" :: l -> E[s1,t1;s2,t2] :: find_mult l
| A "{" :: D(s1,t1) :: A "}" :: l -> E[s1,t1] :: find_mult l
| A "{" :: _ -> failwith "find_mult 2"
| A "}" :: _ -> failwith "find_mult 3"
| A "," :: _ -> failwith "find_mult 4"
| t :: l -> t :: find_mult l
| [] -> []
let rec apply_mult = function
C s :: E t :: l -> apply_mult (C (ImpSet(s,t)) :: l)
| [C s] -> C s
| _ -> failwith "apply_mult"
let parse_syntax s =
(* print_endline s; *)
let l = Xlist.map (Str.full_split (Str.regexp "?\\|}\\|{\\|,\\|*\\|/\\|+\\|)\\|(\\||\\|\\") s) (function
Str.Text s -> s
| Str.Delim s -> s) in
let l = List.rev (Xlist.rev_map l find_internal_grammar_symbols) in
let l = find_tensor l in
let l = find_plus l in
let l = find_paren l in
let l = find_maybe l in
let l = find_imp l in
let l = find_paren l in
let l = find_imp l in
let l = find_paren l in
let l = find_imp l in
let l = find_paren l in
let l = find_mult_imp l in
let l = find_mult l in
match apply_mult l with
C s -> s
| _ -> failwith "parse_syntax"
let pos_categories = Xlist.fold [
"subst",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Person,"persons";Nsyn,"nsyn";Nsem,"nsem";];
"depr",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Person,"persons";Nsyn,"nsyn";Nsem,"nsem";];
"ppron12",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Person,"persons";];
"ppron3",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Person,"persons";Praep,"praeps";];
"siebie",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Person,"persons";];
"prep",[Lemma,"lemma";Case,"cases";];
"compar",[Lemma,"lemma";Case,"cases";];
"num",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Person,"persons";Acm,"acms";];
"intnum",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Person,"persons";Acm,"acms";];
"realnum",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Person,"persons";Acm,"acms";];
"intnum-interval",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Person,"persons";Acm,"acms";];
"realnum-interval",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Person,"persons";Acm,"acms";];
"symbol",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Person,"persons";];
"ordnum",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Grad,"grads";];
"date",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"date-interval",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"hour-minute",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"hour",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"hour-minute-interval",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"hour-interval",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"year",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"year-interval",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"day",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"day-interval",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"day-month",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"day-month-interval",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"month-interval",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"roman-ordnum",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Grad,"grads";];
"roman",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"roman-interval",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"match-result",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"url",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"email",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"obj-id",[Lemma,"lemma";Nsyn,"nsyn";Nsem,"nsem";];
"adj",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Grad,"grads";];
"adjc",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Grad,"grads";];
"adjp",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Grad,"grads";];
"apron",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Grad,"grads";];
"adja",[Lemma,"lemma";];
"adv",[Lemma,"lemma";Grad,"grads";];(* ctype *)
"ger",[Lemma,"lemma";(*NewLemma,"newlemma";*)Number,"numbers";Case,"cases";Gender,"genders";Person,"persons";Aspect,"aspects";Negation,"negations";];
"pact",[Lemma,"lemma";(*NewLemma,"newlemma";*)Number,"numbers";Case,"cases";Gender,"genders";Aspect,"aspects";Negation,"negations";];
"ppas",[Lemma,"lemma";(*NewLemma,"newlemma";*)Number,"numbers";Case,"cases";Gender,"genders";Aspect,"aspects";Negation,"negations";];
"fin",[Lemma,"lemma";(*NewLemma,"newlemma";*)Number,"numbers";Gender,"genders";Person,"persons";Aspect,"aspects";Negation,"negations";Mood,"moods";Tense,"tenses";];
"bedzie",[Lemma,"lemma";(*NewLemma,"newlemma";*)Number,"numbers";Gender,"genders";Person,"persons";Aspect,"aspects";Negation,"negations";Mood,"moods";Tense,"tenses";];
"praet",[Lemma,"lemma";(*NewLemma,"newlemma";*)Number,"numbers";Gender,"genders";Person,"persons";Aspect,"aspects";Negation,"negations";Mood,"moods";Tense,"tenses";];
"winien",[Lemma,"lemma";(*NewLemma,"newlemma";*)Number,"numbers";Gender,"genders";Person,"persons";Aspect,"aspects";Negation,"negations";Mood,"moods";Tense,"tenses";];
"impt",[Lemma,"lemma";(*NewLemma,"newlemma";*)Number,"numbers";Gender,"genders";Person,"persons";Aspect,"aspects";Negation,"negations";Mood,"moods";Tense,"tenses";];
"imps",[Lemma,"lemma";(*NewLemma,"newlemma";*)Number,"numbers";Gender,"genders";Person,"persons";Aspect,"aspects";Negation,"negations";Mood,"moods";Tense,"tenses";];
"pred",[Lemma,"lemma";(*NewLemma,"newlemma";*)Number,"numbers";Gender,"genders";Person,"persons";Aspect,"aspects";Negation,"negations";Mood,"moods";Tense,"tenses";];
"aglt",[Lemma,"lemma";Number,"numbers";Person,"persons";Aspect,"aspects";];
"inf",[Lemma,"lemma";(*NewLemma,"newlemma";*)Aspect,"aspects";];
"pcon",[Lemma,"lemma";(*NewLemma,"newlemma";*)Aspect,"aspects";];
"pant",[Lemma,"lemma";(*NewLemma,"newlemma";*)Aspect,"aspects";];
"qub",[Lemma,"lemma";];
"comp",[Lemma,"lemma";];(* ctype *)
"conj",[Lemma,"lemma";];(* ctype *)
"interj",[Lemma,"lemma";];
"sinterj",[Lemma,"lemma";];
"burk",[Lemma,"lemma";];
"interp",[Lemma,"lemma";];
"unk",[Lemma,"lemma";Number,"numbers";Case,"cases";Gender,"genders";Person,"persons";];
] StringMap.empty (fun map (k,v) -> StringMap.add map k v)
module OrderedCat = struct
type t = cat
let compare = compare
end
module CatMap=Xmap.Make(OrderedCat)
let merge_quant pos_quants quants =
let map = Xlist.fold quants CatMap.empty (fun map (k,v) -> CatMap.add map k v) in
let l,map = Xlist.fold pos_quants ([],map) (fun (l,map) (cat,v) ->
if CatMap.mem map cat then (cat,CatMap.find map cat) :: l, CatMap.remove map cat
else (cat,v) :: l, map) in
List.rev (CatMap.fold map l (fun l cat v -> (cat,v) :: l))
(* FIXME: kopia z ENIAMcategories *)
let all_genders = ["m1";"m2";"m3";"f";"n1";"n2";"p1";"p2";"p3"]
let all_cases = ["nom";"gen";"dat";"acc";"inst";"loc";"voc"]
let all_persons = ["pri";"sec";"ter"]
let all_numbers = ["sg";"pl"]
let make_symbol = function
[] -> Zero
| [s] -> Atom s
| l -> With(Xlist.map l (fun s -> Atom s))
let parse_quant_range = function
Lemma,"lemma" -> Top
(* | NewLemma,"newlemma" -> Top *)
| Number,"" -> Zero
| Number,"numbers" -> Top
| Number,"all_numbers" -> make_symbol all_numbers
| Case,"" -> Zero
| Case,"cases" -> Top
| Case,"all_cases" -> make_symbol all_cases
| Case,"postp" -> Atom "postp"
| Case,"nom&gen&dat&acc&inst" -> make_symbol (Xstring.split "&" "nom&gen&dat&acc&inst")
| Gender,"" -> Zero
| Gender,"genders" -> Top
| Gender,"all_genders" -> make_symbol all_genders
| Person,"" -> Zero
| Person,"persons" -> Top
| Person,"all_persons" -> make_symbol all_persons
| Person,"ter" -> Atom "ter"
| Grad,"grads" -> Top
| Praep,"praeps" -> Top
| Acm,"acms" -> Top
| Aspect,"aspects" -> Top
| Negation,"negations" -> Top
| Mood,"moods" -> Top
| Tense,"tenses" -> Top
| Nsyn,"nsyn" -> Top
| Nsem,"nsem" -> Top
| Ctype,"" -> Zero
| Ctype,"sub" -> Atom "sub"
| Ctype,"coord" -> Atom "coord"
| Ctype,"int&rel" -> make_symbol ["int";"rel"]
| Ctype,"int" -> Atom "int"
| Ctype,"rel" -> Atom "rel"
| Inumber,"" -> Zero
| Igender,"" -> Zero
| Iperson,"" -> Zero
| Nperson,"" -> Zero
| Plemma,"" -> Zero
| Unumber,"all_numbers" -> make_symbol all_numbers
| Ucase,"all_cases" -> make_symbol all_cases
| Ugender,"all_genders" -> make_symbol all_genders
| Uperson,"all_persons" -> make_symbol all_persons
| cat,v -> print_endline ("parse_quant_range: " ^ string_of_cat cat ^ "=" ^ v); Atom v
let parse_quants_range quant =
Xlist.map quant (fun (cats,v) -> cats, parse_quant_range (cats,v))
let parse_rule pos = function
Basic syntax ->
let quant = parse_quants_range (StringMap.find pos_categories pos) in
false, quant, parse_syntax syntax, BasicSem(Xlist.map quant fst)
| Quant(quant,syntax) ->
let quant = parse_quants_range (merge_quant (StringMap.find pos_categories pos) quant) in
false, quant, parse_syntax syntax, BasicSem(Xlist.map quant fst)
| Raised(quant,syntax,semantics) ->
let quant = parse_quants_range (merge_quant (StringMap.find pos_categories pos) quant) in
false, quant, parse_syntax syntax, RaisedSem(Xlist.map quant fst,semantics)
| Quot(quant,syntax) ->
let quant = parse_quants_range (merge_quant (StringMap.find pos_categories pos) quant) in
false, quant, parse_syntax syntax, QuotSem(Xlist.map quant fst)
| Inclusion syntax ->
let quant = parse_quants_range (StringMap.find pos_categories pos) in
false, quant, parse_syntax syntax, InclusionSem(Xlist.map quant fst)
| Conj(quant,syntax) ->
let quant = parse_quants_range (merge_quant (StringMap.find pos_categories pos) quant) in
false, quant, parse_syntax syntax, ConjSem(Xlist.map quant fst)
| Bracket syntax ->
let quant = parse_quants_range (StringMap.find pos_categories pos) in
true, quant, parse_syntax syntax, BasicSem(Xlist.map quant fst)
let parse_grammar grammar =
List.rev (Xlist.fold grammar [] (fun grammar (selectors,rule,weight) ->
let selectors = parse_selectors selectors in
let pos = find_seletor Pos selectors in
let rule = try parse_rule pos rule with Not_found -> failwith ("parse_grammar: " ^ pos) in
(selectors,rule,weight) :: grammar))
let rec add_quantifiers t = function
[] -> t
| (cat,s) :: l -> add_quantifiers (WithVar(string_of_cat cat,s,"",t)) l
let rec add_quantifiers_simple t = function
[] -> t
| (cat,s) :: l ->
if LCGrenderer.count_avar (string_of_cat cat) t = 0 then add_quantifiers_simple t l
else add_quantifiers_simple (WithVar(string_of_cat cat,s,"",t)) l
(* FIXME: kopia z LCGlatexOf *)
let direction = function
Forward -> "/"
| Backward -> "\\backslash"
| Both -> "|"
let atom = function
"m1" -> "\\text{m}_1"
| "m2" -> "\\text{m}_2"
| "m3" -> "\\text{m}_3"
| "n1" -> "\\text{n}_1"
| "n2" -> "\\text{n}_2"
| "f" -> "\\text{f}"
| "p1" -> "\\text{p}_1"
| "p2" -> "\\text{p}_2"
| "p3" -> "\\text{p}_3"
| s -> "\\text{" ^ LatexMain.escape_string s ^ "}"
let rec latex_of_internal_grammar_symbol c = function
Atom x -> atom x
| AVar x -> " " ^ x
| With l ->
let s = String.concat "\\with" (Xlist.map l (latex_of_internal_grammar_symbol 2)) in
if c > 1 then "(" ^ s ^ ")" else s
| Zero -> "0"
| Top -> "\\top"
(* argument schema oznacza schemat walencyjny dodawany do reguลy dla danego leksemu na podstawie
schematu walenycjnego tego leksemu *)
(* "..." jako restrykcja kwantyfikatora oznacza, ลผe dozwolone wartoลci zmiennej sฤ
wyznaczone
przez interpretacjฤ morfosyntaktycznฤ
formy, przykลadowo dla formy "zielonemu" bฤdฤ
miaลy postaฤ ..... *)
(* tensor wiฤ
ลผe silniej niลผ plus i imp *)
let quant_newline = function
WithVar _ -> ""
| _ -> "\\\\ \\hspace{1cm}"
let rec latex_of_grammar_symbol c = function
Tensor l ->
let s = String.concat "\\bullet" (Xlist.map l (latex_of_internal_grammar_symbol 2)) in
(*if c > 1 then "(" ^ s ^ ")" else*) s
| Plus l ->
let s = String.concat "\\oplus" (Xlist.map l (latex_of_grammar_symbol 2)) in
if c > 1 then "(" ^ s ^ ")" else s
| Imp(s,d,t) -> "(" ^ (latex_of_grammar_symbol 2 s) ^ direction d ^ (latex_of_grammar_symbol 2 t) ^ ")"
| One -> "1"
| ImpSet(s,l) ->
let s = (latex_of_grammar_symbol 1 s) ^ "\\{" ^ String.concat "\n," (Xlist.map l (fun (d,a) ->
if a = Tensor[AVar "schema"] then "schema" else direction d ^ latex_of_grammar_symbol 1 a)) ^ "\\}" in
if c > 0 then "(" ^ s ^ ")" else s
| WithVar(v,Top,e,t) -> "\\bigwith_{" ^ v ^ ":=\\dots} " ^ (quant_newline t) ^ (latex_of_grammar_symbol 2 t)
| WithVar(v,s,e,t) -> "\\bigwith_{" ^ v ^ ":=" ^ (latex_of_internal_grammar_symbol 2 s) ^ "} " ^ (quant_newline t) ^ (latex_of_grammar_symbol 2 t)
| Star s -> latex_of_grammar_symbol 2 s ^ "^\\star"
| Bracket(lf,rf,s) -> "\\langle " ^ (if lf then "\\langle " else "") ^ (latex_of_grammar_symbol 0 s) ^ "\\rangle" ^ (if rf then "\\rangle " else "")
| BracketSet d -> "{\\bf BracketSet}(" ^ direction d ^ ")"
| Maybe s -> "?" ^ latex_of_grammar_symbol 2 s
let latex_of_selectors selectors =
String.concat ", " (Xlist.map selectors (fun (cat,rel,l) ->
let rel = if rel = Eq then "=" else "!=" in
string_of_cat cat ^ rel ^ (String.concat "|" l)))
let print_latex_grammar grammar =
Printf.printf "grammar size: %d\n" (Xlist.size grammar);
LatexMain.latex_file_out "results/" "grammar" "a0" false (fun file ->
Xlist.iter grammar (fun (selectors,(bracket,quant,syntax,semantics),weight) ->
let syntax = add_quantifiers_simple syntax (List.rev quant) in
Printf.fprintf file "%s\\\\\n$\\begin{array}{l}%s\\end{array}$\\\\\\;\\\\\\;\\\\\n" (latex_of_selectors selectors) (latex_of_grammar_symbol 0 syntax)));
LatexMain.latex_compile_and_clean "results/" "grammar"
let grammar = parse_grammar grammar
(* let _ = print_latex_grammar grammar *)
let rec extract_category pat rev = function
(cat,rel,v) :: l -> if cat = pat then rel,v,(List.rev rev @ l) else extract_category pat ((cat,rel,v) :: rev) l
| [] -> raise Not_found
let dict_of_grammar grammar =
print_endline "dict_of_grammar";
Xlist.fold grammar StringMap.empty (fun dict (selectors,(bracket,quant,syntax,semantics),weight) ->
let pos_rel,poss,selectors = try extract_category Pos [] selectors with Not_found -> failwith "dict_of_grammar 1" in
let lemma_rel,lemmas,selectors = try extract_category Lemma [] selectors with Not_found -> Eq,[],selectors in
if pos_rel <> Eq || lemma_rel <> Eq then failwith "dict_of_grammar 2" else
let rule = selectors,(bracket,quant,syntax,semantics),weight in
Xlist.fold poss dict (fun dict pos ->
let dict2,l = try StringMap.find dict pos with Not_found -> StringMap.empty,[] in
let dict2,l =
if lemmas = [] then dict2,rule :: l else
Xlist.fold lemmas dict2 (fun dict2 lemma ->
StringMap.add_inc dict2 lemma [rule] (fun l -> rule :: l)),l in
StringMap.add dict pos (dict2,l)))
let rules = dict_of_grammar grammar
let match_selector cats = function
Lemma -> [cats.lemma]
(* | NewLemma -> [] *)
| Number -> cats.numbers
| Case -> cats.cases
| Gender -> cats.genders
| Person -> cats.persons
| Grad -> cats.grads
| Praep -> cats.praeps
| Acm -> cats.acms
| Aspect -> cats.aspects
| Negation -> cats.negations
| Mood -> cats.moods
| Tense -> cats.tenses
| Nsyn -> cats.nsyn
| Nsem -> cats.nsem
| c -> failwith ("match_selector: " ^ string_of_cat c)
let set_selector cats vals = function
Number -> {cats with numbers=vals}
| Case -> {cats with cases=vals}
| Gender -> {cats with genders=vals}
| Person -> {cats with persons=vals}
| Grad -> {cats with grads=vals}
| Praep -> {cats with praeps=vals}
| Acm -> {cats with acms=vals}
| Aspect -> {cats with aspects=vals}
| Negation -> {cats with negations=vals}
| Mood -> {cats with moods=vals}
| Tense -> {cats with tenses=vals}
| Nsyn -> {cats with nsyn=vals}
| Nsem -> {cats with nsem=vals}
| c -> failwith ("set_selector: " ^ string_of_cat c)
let rec apply_selectors cats = function
[] -> cats
| (sel,Eq,vals) :: l ->
let vals = StringSet.intersection (StringSet.of_list (match_selector cats sel)) (StringSet.of_list vals) in
if StringSet.is_empty vals then raise Not_found else
apply_selectors (set_selector cats (StringSet.to_list vals) sel) l
| (sel,Neq,vals) :: l ->
let vals = StringSet.difference (StringSet.of_list (match_selector cats sel)) (StringSet.of_list vals) in
if StringSet.is_empty vals then raise Not_found else
apply_selectors (set_selector cats (StringSet.to_list vals) sel) l
(* let translate_negation = function
(Negation:negation) -> ["neg"]
| Aff -> ["aff"]
| NegationUndef -> ["aff";"neg"]
| NegationNA -> []
let translate_aspect = function
(Aspect s:aspect) -> [s]
| AspectUndef -> ["imperf";"perf"]
| AspectNA -> []
let translate_case = function
(Case s:case) -> [s]
| CaseUndef -> all_cases
| _ -> failwith "translate_case"
let translate_nsem = function
Common s -> [s]
| Time -> ["time"]
let define_valence_selectors = function
DefaultAtrs(m,r,o,neg,p,a) -> failwith "apply_valence_selectors"
| EmptyAtrs m -> []
| NounAtrs(m,nsyn,nsem) -> [Nsyn,Eq,[nsyn];Nsem,Eq,translate_nsem nsem]
| AdjAtrs(m,c,adjsyn(*,adjsem,typ*)) -> [Case,Eq,translate_case c]
| PersAtrs(m,le,neg,mo,t,au,a) -> [Negation,Eq,translate_negation neg;Mood,Eq,[mo];Tense,Eq,[t];Aspect,Eq,translate_aspect a]
| GerAtrs(m,le,neg,a) -> [Negation,Eq,translate_negation neg;Aspect,Eq,translate_aspect a]
| NonPersAtrs(m,le,role,role_attr,neg,a) -> [Negation,Eq,translate_negation neg;Aspect,Eq,translate_aspect a]
| ComprepAtrs _ -> failwith "apply_valence_selectors" *)
let find_rules rules cats =
let lex_rules,rules = try StringMap.find rules cats.pos with Not_found -> failwith "find_rules 1" in
let rules = try StringMap.find lex_rules cats.lemma @ rules with Not_found -> rules in
Xlist.fold rules [] (fun rules (selectors,(bracket,quant,syntax,semantics),weight) ->
try
let cats = apply_selectors cats selectors in
(cats,(bracket,quant,syntax,semantics),weight) :: rules
with Not_found -> rules)
let rec substitute_schema var_name t = function
| Tensor l -> Tensor l
| Plus l -> Plus (Xlist.map l (substitute_schema var_name t))
| Imp(s,d,t2) -> Imp(substitute_schema var_name t s,d,substitute_schema var_name t t2)
| One -> One
| ImpSet(s,l) -> ImpSet(substitute_schema var_name t s, List.flatten (Xlist.map l (function
Both,Tensor[AVar var_name] -> t
| d,s -> [d, substitute_schema var_name t s])))
| WithVar(v,g,e,s) -> WithVar(v,g,e,substitute_schema var_name t s)
| Star s -> Star (substitute_schema var_name t s)
| Bracket(lf,rf,s) -> Bracket(lf,rf,substitute_schema var_name t s)
| BracketSet d -> BracketSet d
| Maybe s -> Maybe (substitute_schema var_name t s)
(* let render_schema schema =
Xlist.map schema (function
{morfs=[Multi args]} as s -> LCGrenderer.dir_of_dir s.dir, Maybe(Plus(Xlist.map args LCGrenderer.make_arg_phrase))
| s -> LCGrenderer.dir_of_dir s.dir, Plus(Xlist.map s.morfs (LCGrenderer.make_arg []))) *)
(* FIXME: pomijam NewLemma *)
(* let assign_valence valence rules =
Xlist.fold rules [] (fun l (cats,(bracket,quant,syntax,semantics),weight) ->
Printf.printf "%s |valence|=%d\n" cats.lemma (Xlist.size valence);
if LCGrenderer.count_avar "schema" syntax > 0 then
Xlist.fold valence l (fun l -> function
Frame(attr,schema) ->
(try
let selectors = define_valence_selectors attr in
let cats = apply_selectors cats selectors in
(cats,(bracket,quant,substitute_schema "schema" (render_schema schema) syntax,semantics),weight) :: l
with Not_found -> l)
| _ -> l)
else (cats,(bracket,quant,syntax,semantics),weight) :: l) *)
let assign_valence valence rules =
Xlist.fold rules [] (fun l (cats,(bracket,quant,syntax,semantics),weight) ->
(* Printf.printf "%s |valence|=%d\n" cats.lemma (Xlist.size valence); *)
if LCGrenderer.count_avar "schema" syntax > 0 then
Xlist.fold valence l (fun l (selectors,schema) ->
try
let cats = apply_selectors cats selectors in
(cats,(bracket,quant,substitute_schema "schema" schema syntax,semantics),weight) :: l
with Not_found -> l
else (cats,(bracket,quant,syntax,semantics),weight) :: l)
let make_node id lemma cat weight cat_list =
let attrs = Xlist.fold cat_list(*Xlist.rev_map quant fst*) [] (fun attrs -> function
| Lemma -> attrs
| Number -> ("NUM",SubstVar "number") :: attrs
| Case -> ("CASE",SubstVar "case") :: attrs
| Gender -> ("GEND",SubstVar "gender") :: attrs
| Person -> ("PERS",SubstVar "person") :: attrs
| Grad -> ("GRAD",SubstVar "grad") :: attrs
| Praep -> attrs
| Acm -> ("ACM",SubstVar "acm") :: attrs
| Aspect -> ("ASPECT", SubstVar "aspect") :: attrs
| Negation -> ("NEGATION",SubstVar "negation") :: attrs
| Mood -> ("MOOD", SubstVar "mood") :: attrs
| Tense -> ("TENSE", SubstVar "tense") :: attrs
| Nsyn -> ("NSYN", SubstVar "nsyn") :: attrs
| Nsem -> ("NSEM", SubstVar "nsem") :: attrs
| Ctype -> ("CTYPE", SubstVar "ctype") :: attrs
(* | "lex" -> ("LEX",Val "+") :: attrs *)
| s -> failwith ("make_node: " ^ (string_of_cat s))) in
{LCGrenderer.empty_node with pred=lemma; cat=cat; weight=weight; id=id; attrs=List.rev attrs; args=Dot}
let variable_name_ref = ref []
let rec add_variable_name = function
[] -> ["A"]
| "Z" :: l -> "A" :: add_variable_name l
| s :: l -> String.make 1 (Char.chr (Char.code (String.get s 0) + 1)) :: l
let get_variable_name () =
variable_name_ref := add_variable_name (!variable_name_ref);
String.concat "" (List.rev (!variable_name_ref))
let rec make_term_arg = function
Tensor l -> let v = get_variable_name () in v, Cut(Var v)
| Plus l -> let v = get_variable_name () in v, Case(Var v,Xlist.map l make_term_arg)
(* | Imp(s,d,t2) -> *)
| One -> get_variable_name (), Dot
| Maybe s ->
let v,arg = make_term_arg s in
let w = get_variable_name () in
w, Fix(Var w,Lambda(v,arg))
| _ -> failwith "make_term_arg"
let add_args node args =
{node with args=Tuple(node.args :: args)}
let rec make_term_imp node = function
| Imp(s,d,t2) ->
let v,arg = make_term_arg t2 in
Lambda(v,make_term_imp (add_args node [arg]) s)
| ImpSet(s,l) ->
let vars,args = List.split (Xlist.map l (fun (_,t) -> make_term_arg t)) in
LambdaSet(vars,make_term_imp (add_args node args) s)
| Tensor l -> Node node
| _ -> failwith "make_term_imp"
let make_term id token rules =
Xlist.map rules (fun (cats,(bracket,quant,syntax,semantics),weight) ->
match semantics with
BasicSem cat_list ->
let node = make_node id cats.lemma cats.pos (weight+.token.ENIAMtokenizerTypes.weight) cat_list in
cats,bracket,quant,syntax,make_term_imp node syntax
| _ -> failwith "make_term: ni")
(*cats,bracket,quant,syntax,Dot*)
let get_label e = function
Number -> e.number
| Case -> e.case
| Gender -> e.gender
| Person -> e.person
| Aspect -> e.aspect
| _ -> LCGreductions.get_variant_label ()
let get_labels () = {
number=LCGreductions.get_variant_label ();
case=LCGreductions.get_variant_label ();
gender=LCGreductions.get_variant_label ();
person=LCGreductions.get_variant_label ();
aspect=LCGreductions.get_variant_label ();
}
let make_quantification e rules =
Xlist.map rules (fun (cats,bracket,quant,syntax,semantics) ->
let syntax,semantics = Xlist.fold (List.rev quant) (syntax,semantics) (fun (syntax,semantics) (cat,t) ->
let t = if t = Top then make_symbol (match_selector cats cat) else t in
let category = string_of_cat cat in
LCGrenderer.simplify_withvar (WithVar(category,t,get_label e cat,syntax), VariantVar(category,semantics))) in
if bracket then Bracket(true,true,syntax),semantics else Bracket(false,false,syntax),semantics)
let create_entries id token lex_sem =
Xlist.fold lex_sem.cats [] (fun l cats ->
if cats.pos="interp" && cats.lemma="<clause>" then (BracketSet(Forward),Dot) :: l else
if cats.pos="interp" && cats.lemma="</clause>" then (BracketSet(Backward),Dot) :: l else
let e = get_labels () in
(* print_endline "create_entries 1"; *)
let rules = find_rules rules cats in
(* print_endline "create_entries 2"; *)
let rules = assign_valence lex_sem.very_simple_valence rules in
(* print_endline "create_entries 3"; *)
let rules = make_term id token rules in
(* print_endline "create_entries 4"; *)
let rules = make_quantification e rules in
(* print_endline "create_entries 5"; *)
rules @ l)
module OrderedIntInt = struct
type t = int * int
let compare = compare
end
module IntIntSet = Xset.Make(OrderedIntInt)
let create (paths,last) tokens lex_sems =
(* uni_weight := 0.; *)
let chart = LCGchart.make last in
let chart = Xlist.fold paths chart (fun chart (id,lnode,rnode) ->
let token = ExtArray.get tokens id in
let lex_sem = ExtArray.get lex_sems id in
(* if t.weight < -0.9 || Xlist.mem t.attrs "notvalidated proper" || Xlist.mem t.attrs "lemmatized as lowercase" then chart else *)
let chart = LCGchart.add_inc chart lnode rnode (Tensor[Atom ("[" ^ token.ENIAMtokenizerTypes.orth ^ "]")], Dot) 0 in
LCGchart.add_inc_list chart lnode rnode (create_entries (*tokens lex_sems*) id (token:ENIAMtokenizerTypes.token_record) lex_sem (*false*)) 0) in
let set = Xlist.fold paths IntIntSet.empty (fun set (_,lnode,rnode) -> IntIntSet.add set (lnode,rnode)) in
let chart = IntIntSet.fold set chart (fun chart (i,j) -> LCGchart.make_unique chart i j) in
chart