ENIAM_LCGrules.ml
25.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
(*
* ENIAM_LCGparser, a parser for Logical Categorial Grammar formalism
* Copyright (C) 2016-2017 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
* Copyright (C) 2016-2017 Institute of Computer Science Polish Academy of Sciences
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*)
open Xstd
open ENIAM_LCGtypes
(* let references = ref [0,Ref 0]
let next_reference = ref 0
let make_reference sem =
let r = !next_reference in
references := (r,sem) :: !references;
incr next_reference;
r *)
let new_variable_ref = ref 0
let get_new_variable () =
incr new_variable_ref;
"x" ^ (string_of_int (!new_variable_ref))
let rec unify v1 v2 = function
AVar a,Atom t -> if v2=a then Atom t else failwith ("unify AVar: " ^ v1 ^ "=" ^ (ENIAM_LCGstringOf.internal_grammar_symbol 0 (AVar a)) ^ " " ^ v2 ^ "=" ^ (ENIAM_LCGstringOf.internal_grammar_symbol 0 (Atom t)))
| Atom s,AVar a -> if v1=a then Atom s else failwith ("unify AVar: " ^ v1 ^ "=" ^ (ENIAM_LCGstringOf.internal_grammar_symbol 0 (Atom s)) ^ " " ^ v2 ^ "=" ^ (ENIAM_LCGstringOf.internal_grammar_symbol 0 (AVar a)))
| AVar a,With lt -> if v2=a then With lt else failwith ("unify AVar: " ^ v1 ^ "=" ^ (ENIAM_LCGstringOf.internal_grammar_symbol 0 (AVar a)) ^ " " ^ v2 ^ "=" ^ (ENIAM_LCGstringOf.internal_grammar_symbol 0 (With lt)))
| With ls,AVar a -> if v1=a then With ls else failwith ("unify AVar: " ^ v1 ^ "=" ^ (ENIAM_LCGstringOf.internal_grammar_symbol 0 (With ls)) ^ " " ^ v2 ^ "=" ^ (ENIAM_LCGstringOf.internal_grammar_symbol 0 (AVar a)))
| AVar a,t -> failwith ("unify AVar: " ^ v1 ^ "=" ^ (ENIAM_LCGstringOf.internal_grammar_symbol 0 (AVar a)) ^ " " ^ v2 ^ "=" ^ (ENIAM_LCGstringOf.internal_grammar_symbol 0 t))
| t,AVar a -> failwith ("unify AVar: " ^ v1 ^ "=" ^ (ENIAM_LCGstringOf.internal_grammar_symbol 0 t) ^ " " ^ v2 ^ "=" ^ (ENIAM_LCGstringOf.internal_grammar_symbol 0 (AVar a)))
| Zero, t -> t
| t, Zero -> t
| With ls, With lt ->
let ls = Xlist.map ls (function Atom s -> s | _ -> failwith "unify: With") in
let lt = Xlist.map lt (function Atom s -> s | _ -> failwith "unify: With") in
let set = StringSet.of_list lt in
let l = Xlist.fold ls [] (fun l s -> if StringSet.mem set s then s :: l else l) in
(match l with
[] -> raise Not_found
| [s] -> Atom s
| l -> With(Xlist.map l (fun s -> Atom s)))
| Atom s, t -> unify v1 v2 (With[Atom s],t)
| s, Atom t -> unify v1 v2 (s,With[Atom t])
| _,_ -> failwith "unify"
(*let unify_fv afv bfv =
StringMap.fold afv bfv (fun bfv v g ->
let g2 = try StringMap.find bfv v with Not_found -> Zero in
StringMap.add bfv v (unify v v (g,g2))) *)
let find_fv fv v = try StringMap.find fv v with Not_found -> failwith ("find_fv: "^ v)
let add_fv = StringMap.add
let mem_fv = StringMap.mem
let remove_fv = StringMap.remove
let is_empty_fv = StringMap.is_empty
let empty_fv = StringMap.empty
let fold_fv = StringMap.fold
let string_of_fv fv =
let l = StringMap.fold fv [] (fun l v (t,e) -> (e ^ ": " ^ v ^ ":=" ^ ENIAM_LCGstringOf.internal_grammar_symbol 0 t) :: l) in
String.concat "," (List.sort compare l)
let rec infer s = function
Zero -> true
| Atom t -> t = s
| With l -> Xlist.fold l false (fun b t -> b || (infer s t))
| AVar _ -> failwith "infer"
| Top -> failwith "infer"
let make_variant = function
[] -> failwith "make_variant"
| [t] -> t
| l ->
(* let e = get_variant_label () in *)
let l,_ = Xlist.fold l ([],1) (fun (l,i) -> function
t -> (string_of_int i,t) :: l, i+1) in
Variant("",l)
let make_subst e = function
Zero -> Dot
| Atom t -> Val t
| With l ->
(* let e = get_variant_label () in *)
let l,_ = Xlist.fold l ([],1) (fun (l,i) -> function
Atom t -> (string_of_int i,Val t) :: l, i+1
| _ -> failwith "make_subst 1") in
Variant(e,List.rev l)
| AVar a -> SubstVar a
| _ -> failwith "make_subst 2"
let internal_deduce_matching afv bfv sem = function (* maczowany term * argument funktora *)
Atom s, Atom t -> if s = t then [afv,bfv,sem] else []
| Atom s, Top -> [afv,bfv,sem]
| Zero, Atom t -> [afv,bfv,sem]
| Zero, Top -> [afv,bfv,sem]
| AVar a, Atom t ->
let g,e = find_fv afv a in
let l = if infer t g then [add_fv afv a (Atom t,e),bfv,sem] else [] in
(* Printf.printf "AVar,Atom: [%s] '%s' [%s] '%s' -> %d\n%!" (string_of_fv afv) (ENIAM_LCGstringOf.internal_grammar_symbol 1 (AVar a)) (string_of_fv bfv) (ENIAM_LCGstringOf.internal_grammar_symbol 1 (Atom t)) (Xlist.size l); *)
l
| AVar a, Top -> [afv,bfv,sem]
| Zero, AVar b -> (*print_endline "idm";*)[afv,bfv,sem]
| Atom s, AVar b ->
let g,e = find_fv bfv b in
if infer s g then [afv, add_fv bfv b (Atom s,e),sem] else []
| AVar a, AVar b ->
let ga,ea = find_fv afv a in
let gb,eb = find_fv bfv b in
(try let subst = (*print_endline "internal_deduce_matching";*)unify a b (ga,gb) in [add_fv afv a (AVar b,eb), add_fv bfv b (subst,eb),sem] with Not_found -> [])
| Top, Top -> [afv,bfv,sem]
| Top, _ -> []
| s,t -> failwith ("internal_deduce_matching pattern: " ^ ENIAM_LCGstringOf.internal_grammar_symbol 1 s ^ " " ^ ENIAM_LCGstringOf.internal_grammar_symbol 1 t)
let rec imp_selector s dir fv in_sem d = function
Maybe t ->
if d = Both || d = dir then
let x = get_new_variable () in
let y = get_new_variable () in
[fv,Imp(s,dir,Maybe t),t,Lambda(x,Lambda(y,App(in_sem,Insert(Apply(Var x),Var y))))] else []
| t -> if d = Both || d = dir then [fv,s,t,in_sem] else []
let rec impset_selector s dir fv in_sem rev = function
[],_ -> []
| (d,Maybe t) :: l,i ->
(* print_endline "impset_selector Maybe"; *)
(if d = Both || d = dir then
let x = get_new_variable () in
let y = get_new_variable () in
let s = if rev = [] && l = [] then s else ImpSet(s,List.rev rev @ l) in
[fv,Imp(s,dir,Maybe t),t,Lambda(x,Lambda(y,App(LambdaRot(i,in_sem),Insert(Apply(Var x),Var y))))]
else []) @
(impset_selector s dir fv in_sem ((d,Maybe t) :: rev) (l,i+1))
| (d,t) :: l,i ->
(* print_endline "impset_selector"; *)
(if d = Both || d = dir then
let s = if rev = [] && l = [] then s else ImpSet(s,List.rev rev @ l) in
[fv,s,t,LambdaRot(i,in_sem)]
else []) @
(impset_selector s dir fv in_sem ((d,t) :: rev) (l,i+1))
let rec deduce_tensor afv bfv rev_sems = function
[] -> [afv,bfv,List.rev rev_sems]
| (s,(t,v)) :: tensor_elems ->
let l = internal_deduce_matching afv bfv v (s,t) in
(* Printf.printf "deduce_tensor: [%s] '%s' [%s] '%s' -> %d\n%!" (string_of_fv afv) (ENIAM_LCGstringOf.internal_grammar_symbol_prime s) (string_of_fv bfv) (ENIAM_LCGstringOf.internal_grammar_symbol_prime t) (Xlist.size l); *)
Xlist.fold l [] (fun found (afv,bfv,sem) ->
(deduce_tensor afv bfv (sem :: rev_sems) tensor_elems) @ found)
let rec deduce_matching afv bfv in_sem = function (* maczowany term * argument funktora *)
(* | Plus l, t -> (* zakładam, że afv jest pusty *)
let x = get_new_variable () in
let found = Xlist.multiply_list (Xlist.map l (fun s ->
Xlist.map (deduce_matching afv bfv (Var x) (s,t)) (fun (afv,bfv,sem) ->
if not (is_empty_fv afv) then failwith "deduce_matching: is_empty_fv afv" else
bfv,sem))) in
Xlist.fold found [] (fun found l ->
try
let bfv = Xlist.fold (List.tl l) (fst (List.hd l)) (fun bfv (frame_bfv,_) -> unify_fv bfv frame_bfv) in
let sem = Case(in_sem,(Xlist.map l (fun (_,sem) -> x,sem))) in
(empty_fv,bfv,sem) :: found
with Not_found -> found)*)
| s, Plus l -> (* istotne jest by prawy plus byl po lewym *)
fst (Xlist.fold l ([],1) (fun (found,i) t -> Xlist.map (deduce_matching afv bfv in_sem (s,t)) (fun (afv,bfv,sem) -> afv,bfv,Inj(i,sem)) @ found, i+1))
(* | Star s, Star t ->
let x = get_new_variable () in
Xlist.map (deduce_matching afv bfv (Var x) (s,t)) (fun (afv,bfv,sem) -> afv,bfv,Map(in_sem,Lambda(x,sem)))*)
| Star _, _ -> []
| _, Star _ -> []
| WithVar(v,g,e,s),t ->
Xlist.map (deduce_matching (add_fv afv v (g,e)) bfv (ProjVar(v,in_sem)) (s,t)) (fun (afv,bfv,sem) ->
let g,e = find_fv afv v in
remove_fv afv v,bfv,Subst(sem,v,make_subst e g))
| One, Maybe _ -> [afv,bfv,Empty in_sem]
| One, One -> [afv,bfv,in_sem]
| One, _ -> []
| _, One -> []
| _, Maybe _ -> []
| Imp(psi,d,phi), Imp(tau,dir,sigma) ->
(List.flatten (Xlist.map (deduce_optarg in_sem phi) (fun sem -> deduce_matching afv bfv sem (psi,Imp(tau,dir,sigma))))) @
let l = imp_selector psi dir afv in_sem d phi in
List.flatten (Xlist.map l (fun (afv,psi,phi,sem) ->
let x = get_new_variable () in
let l = List.flatten (Xlist.map (deduce_matching bfv afv (Var x) (sigma,phi)) (fun (bfv,afv,p) ->
deduce_matching afv bfv (App(sem,p)) (psi,tau))) in
Xlist.map l (fun (afv,bfv,sem) -> afv,bfv,Lambda(x,sem))))
| ImpSet(psi,phi_list), Imp(tau,dir,sigma) ->
(List.flatten (Xlist.map (deduce_optargs in_sem phi_list) (fun sem -> deduce_matching afv bfv sem (psi,Imp(tau,dir,sigma))))) @
let l = impset_selector psi dir afv in_sem [] (phi_list,1) in
List.flatten (Xlist.map l (fun (afv,psi,phi,sem) ->
let x = get_new_variable () in
let l = List.flatten (Xlist.map (deduce_matching bfv afv (Var x) (sigma,phi)) (fun (bfv,afv,p) ->
deduce_matching afv bfv (App(sem,p)) (psi,tau))) in
Xlist.map l (fun (afv,bfv,sem) -> afv,bfv,Lambda(x,sem))))
| Imp(s,d,s2), t ->
List.flatten (Xlist.map (deduce_optarg in_sem s2) (fun sem -> deduce_matching afv bfv sem (s,t)))
| ImpSet(s,l), t ->
List.flatten (Xlist.map (deduce_optargs in_sem l) (fun sem -> deduce_matching afv bfv sem (s,t)))
| _, Imp(s,d,s2) -> []
| Tensor l1, Tensor l2 ->
(* Printf.printf "Tensor: [%s] '%s' [%s] '%s'\n%!" (string_of_fv afv) (ENIAM_LCGstringOf.grammar_symbol 1 (Tensor l1)) (string_of_fv bfv) (ENIAM_LCGstringOf.grammar_symbol 1 (Tensor l2)); *)
if Xlist.size l1 <> Xlist.size l2 then [] else (
let dots = Xlist.map (List.tl l1) (fun _ -> Dot) in
(* let variables = Xlist.map l2 (fun _ -> get_new_variable ()) in *)
(* let variables2 = Xlist.map variables (fun v -> Var v) in *)
let sem_substs_list = deduce_tensor afv bfv [] (List.combine l1 (List.combine l2 (in_sem :: dots)(*variables2*))) in
let l = Xlist.map sem_substs_list (fun (afv,bfv,sems) ->
let sem = List.hd sems(*LetIn(variables,in_sem,Tuple sems)*) in
afv,bfv,sem) in
l)
| Tensor _, _ -> []
| _, Tensor _ -> []
| s,t -> failwith ("deduce_matching: " ^ ENIAM_LCGstringOf.grammar_symbol 1 s ^ " " ^ ENIAM_LCGstringOf.grammar_symbol 1 t)
and deduce_optarg in_sem t =
let l = deduce_matching empty_fv empty_fv (Dot(*Triple(Dot,Dot,Dot)*)) (One,t) in
match l with
[] -> []
| [_,_,sem] -> [App(in_sem, sem)]
| l -> (*print_endline ("deduce_optarg: " ^ ENIAM_LCGstringOf.grammar_symbol 0 t ^ " " ^
String.concat " " (Xlist.map l (fun (_,_,sem) -> ENIAM_LCGstringOf.linear_term 0 sem)));*) failwith "deduce_optarg"
and deduce_optargs sem l =
(* print_endline "deduce_optargs"; *)
let b,sems = Xlist.fold (List.rev l) (true,[]) (fun (b,sems) (_,t) ->
if not b then b,[] else
let l = deduce_matching empty_fv empty_fv (Dot(*Triple(Dot,Dot,Dot)*)) (One,t) in
if l = [] then false,[] else
b,((List.hd l) :: sems)) in
if b then
[Xlist.fold sems sem (fun sem (_,_,s) -> App(LambdaRot(1,sem),s))]
else []
let make_forward sem l = (* FIXME: po co jest ta procedura? *)
(* print_endline "make_forward 1"; *)
let l,sem,_ = Xlist.fold l ([],sem,1) (fun (l,sem,i) -> function
Forward,t -> (Forward,t) :: l,sem,i+1
| Both,t -> (Forward,t) :: l,sem,i+1
| Backward,t ->
(* print_endline "make_forward 2"; *)
let res = deduce_matching empty_fv empty_fv Dot (One,t) in
(* Printf.printf "make_forward 3 |res|=%d\n%!" (Xlist.size res); *)
if res = [] then raise Not_found else
let _,_,res = List.hd res in
l, App(LambdaRot(i,sem),res), i) in
(* print_endline "make_forward 3"; *)
List.rev l, sem
let rec deduce_imp dir afv in_sem = function
Tensor _ -> []
| Star _ -> []
| Plus _ -> []
| WithVar(v,g,e,s) -> (*print_endline "deduce_imp WithVar";*) deduce_imp dir (add_fv afv v (g,e)) (ProjVar(v,in_sem)) s
| Imp(s,d,t) ->
(* print_endline "deduce_imp Imp"; *)
(List.flatten (Xlist.map (deduce_optarg in_sem t) (fun sem -> deduce_imp dir afv sem s))) @
(imp_selector s dir afv in_sem d t)
| ImpSet(s,l) ->
(* print_endline "deduce_imp ImpSet 1"; *)
let (l2,in_sem2),b =
if dir = Backward then (l,in_sem),true
else try make_forward in_sem l,true with Not_found -> ([],Dot),false in
(* print_endline "deduce_imp ImpSet 2"; *)
if b then
(List.flatten (Xlist.map (deduce_optargs in_sem l) (fun sem -> deduce_imp dir afv sem s))) @
(impset_selector s dir afv in_sem2 [] (l2,1))
else []
| s -> failwith ("deduce_imp: " ^ ENIAM_LCGstringOf.grammar_symbol 1 s)
let rec deduce_app references dir (funct,funct_sem) args =
(* Printf.printf "deduce_app 1: '%s' [%s]\n%!" (ENIAM_LCGstringOf.grammar_symbol 1 funct)
(String.concat "; " (Xlist.map args (fun (arg,_) -> "'" ^ ENIAM_LCGstringOf.grammar_symbol 1 arg ^ "'"))); *)
let x = List.flatten (Xlist.map (deduce_imp dir empty_fv funct_sem funct) (fun (fv,psi,phi,funct_sem) ->
(* print_endline "deduce_app 2"; *)
let l = Xlist.fold args [] (fun l (arg,arg_sem) ->
let res = deduce_matching empty_fv fv arg_sem (arg,phi) in
(* Printf.printf "deduce_matching: '%s' '%s' -> %d\n%!" (ENIAM_LCGstringOf.grammar_symbol 1 arg) (ENIAM_LCGstringOf.grammar_symbol 1 phi) (Xlist.size res); *)
res @ l) in
let map = Xlist.fold l StringMap.empty (fun map (afv,bfv,sem) ->
if not (is_empty_fv afv) then failwith "deduce_app" else
StringMap.add_inc map (string_of_fv bfv) (bfv,[sem]) (fun (fv,sems) -> fv, sem :: sems)) in
StringMap.fold map [] (fun l _ (bfv,sems) ->
let reference = ExtArray.add references (App(funct_sem,make_variant sems)) in
(fold_fv bfv (psi,Ref reference) (fun (t,sem) v (g,e) -> WithVar(v,g,e,t), VariantVar(v,sem))) :: l))) in
(* print_endline "deduce_app 3"; *)
x
let rec make_uniq fv n v =
if n = 1 then
if mem_fv fv v then make_uniq fv (n+1) v else v
else
if mem_fv fv (v ^ string_of_int n) then make_uniq fv (n+1) v else v ^ string_of_int n
let internal_comp_substitute afv bfv arg_sem l = function
AVar v ->
let g,e = find_fv afv v in
(match g with
Atom _ -> remove_fv afv v, bfv, Subst(arg_sem,v,make_subst e g), g :: l
| AVar _ -> remove_fv afv v, bfv, Subst(arg_sem,v,make_subst e g), g :: l
| Top -> failwith "internal_comp_substitute"
| _ ->
let w = make_uniq bfv 1 v in
remove_fv afv v, add_fv bfv w (g,e), Subst(arg_sem,v,make_subst e (AVar w)), AVar w :: l)
| t -> afv,bfv,arg_sem,t :: l
let comp_substitute afv bfv arg_sem = function
Tensor l ->
let afv,bfv,arg_sem,l = Xlist.fold l (afv,bfv,arg_sem,[]) (fun (afv,bfv,arg_sem,l) t ->
internal_comp_substitute afv bfv arg_sem l t) in
let arg_sem = fold_fv afv arg_sem (fun arg_sem v (g,e) -> Subst(arg_sem,v,make_subst e g)) in
bfv,Tensor(List.rev l),arg_sem
| t -> failwith ("comp_substitute: " ^ ENIAM_LCGstringOf.grammar_symbol 0 t)
let rec deduce_comp references dir_funct dir_arg (funct,funct_sem) args =
(* Printf.printf "deduce_app 1: '%s' [%s]\n%!" (ENIAM_LCGstringOf.grammar_symbol 1 funct)
(String.concat "; " (Xlist.map args (fun (arg,_) -> "'" ^ ENIAM_LCGstringOf.grammar_symbol 1 arg ^ "'"))); *)
let x = List.flatten (Xlist.map (deduce_imp dir_funct empty_fv funct_sem funct) (fun (fv,psi,phi,funct_sem) ->
(* print_endline "deduce_app 2"; *)
let l = Xlist.fold args [] (fun l (arg,arg_sem) ->
Xlist.fold (deduce_imp dir_arg empty_fv arg_sem arg) l (fun l (arg_fv,arg_psi,arg_phi,arg_sem) ->
(* let avars = get_avars arg_phi in *)
let x = get_new_variable () in
let res = deduce_matching arg_fv fv (App(arg_sem,Var x)) (arg_psi,phi) in
Xlist.fold res l (fun l (afv,bfv,arg_sem) ->
let bfv,arg_phi,arg_sem = comp_substitute afv bfv arg_sem arg_phi in
(bfv,Imp(psi,dir_arg,arg_phi),Lambda(x,App(funct_sem,arg_sem))) :: l))) in
Xlist.fold l [] (fun l (bfv,t,sem) ->
let reference = ExtArray.add references sem in
(fold_fv bfv (t,Ref reference) (fun (t,sem) v (g,e) -> WithVar(v,g,e,t), VariantVar(v,sem))) :: l))) in
(* print_endline "deduce_app 3"; *)
x
(*let rec forward_application = function
(Bracket(lf,false,funct),sem), (Bracket(false,rf,arg),arg_sem) -> Xlist.map (deduce_app Forward (funct,sem) (arg,arg_sem)) (fun (t,sem) -> Bracket(lf,rf,t), LCGreductions.linear_term_beta_reduction2 sem)
| (Bracket(lf,true,funct),sem), (Bracket(true,true,arg),arg_sem) -> Xlist.map (deduce_app Forward (funct,sem) (arg,arg_sem)) (fun (t,sem) -> Bracket(lf,true,t), LCGreductions.linear_term_beta_reduction2 sem)
| (BracketSet(Forward),_), (Bracket(false,rf,arg),arg_sem) -> [Bracket(true,rf,arg),arg_sem]
| ((x,_),(y,_)) -> (*Printf.printf "forward_application: '%s' '%s'\n%!" (ENIAM_LCGstringOf.grammar_symbol_prime x) (ENIAM_LCGstringOf.grammar_symbol_prime y);*) []
let rec backward_application = function
(Bracket(lf,false,arg),arg_sem), (Bracket(false,rf,funct),sem) -> Xlist.map (deduce_app Backward (funct,sem) (arg,arg_sem)) (fun (t,sem) -> Bracket(lf,rf,t), LCGreductions.linear_term_beta_reduction2 sem)
| (Bracket(true,true,arg),arg_sem), (Bracket(true,rf,funct),sem) -> Xlist.map (deduce_app Backward (funct,sem) (arg,arg_sem)) (fun (t,sem) -> Bracket(true,rf,t), LCGreductions.linear_term_beta_reduction2 sem)
| (Bracket(lf,false,arg),arg_sem), (BracketSet(Backward),_) -> [Bracket(lf,true,arg),arg_sem]
| _ -> []*)
let forward_application references functs args =
Xlist.fold functs [] (fun l -> function
Bracket(lf,false,funct),sem ->
let argst,argsf = Xlist.fold args ([],[]) (fun (argst,argsf) -> function
Bracket(false,true,arg),arg_sem -> (arg,arg_sem) :: argst, argsf
| Bracket(false,false,arg),arg_sem -> argst, (arg,arg_sem) :: argsf
| _ -> argst,argsf) in
let l = Xlist.fold (deduce_app references Forward (funct,sem) argst) l (fun l (t,sem) ->
(Bracket(lf,true,t), (*LCGreductions.linear_term_beta_reduction2*) sem) :: l) in
Xlist.fold (deduce_app references Forward (funct,sem) argsf) l (fun l (t,sem) ->
(Bracket(lf,false,t), (*LCGreductions.linear_term_beta_reduction2*) sem) :: l)
| Bracket(lf,true,funct),sem ->
let args = Xlist.fold args [] (fun args -> function Bracket(true,true,arg),arg_sem -> (arg,arg_sem) :: args | _ -> args) in
Xlist.fold (deduce_app references Forward (funct,sem) args) l (fun l (t,sem) ->
(Bracket(lf,true,t), (*LCGreductions.linear_term_beta_reduction2*) sem) :: l)
| BracketSet(Forward),_ -> Xlist.fold args l (fun l -> function Bracket(false,rf,arg),arg_sem -> (Bracket(true,rf,arg),arg_sem) :: l | _ -> l)
| _ -> l)
let forward_application_conll references functs args =
Xlist.fold functs [] (fun l -> function
Bracket(_,_,funct),sem ->
let args = Xlist.fold args [] (fun args -> function Bracket(_,_,arg),arg_sem -> (arg,arg_sem) :: args | _ -> args) in
Xlist.fold (deduce_app references Forward (funct,sem) args) l (fun l (t,sem) ->
(Bracket(false,false,t), (*LCGreductions.linear_term_beta_reduction2*) sem) :: l)
| _ -> l)
let forward_cross_composition references functs args =
Xlist.fold functs [] (fun l -> function
Bracket(lf,false,funct),sem ->
let argst,argsf = Xlist.fold args ([],[]) (fun (argst,argsf) -> function
Bracket(false,true,arg),arg_sem -> (arg,arg_sem) :: argst, argsf
| Bracket(false,false,arg),arg_sem -> argst, (arg,arg_sem) :: argsf
| _ -> argst,argsf) in
let l = Xlist.fold (deduce_comp references Forward Backward (funct,sem) argst) l (fun l (t,sem) ->
(Bracket(lf,true,t), (*LCGreductions.linear_term_beta_reduction2*) sem) :: l) in
Xlist.fold (deduce_comp references Forward Backward (funct,sem) argsf) l (fun l (t,sem) ->
(Bracket(lf,false,t), (*LCGreductions.linear_term_beta_reduction2*) sem) :: l)
| _ -> l)
let backward_application references args functs =
(* Printf.printf "backward_application: [%s] [%s]\n%!"
(String.concat "; " (Xlist.map args (fun (arg,_) -> "'" ^ ENIAM_LCGstringOf.grammar_symbol 1 arg ^ "'")))
(String.concat "; " (Xlist.map functs (fun (arg,_) -> "'" ^ ENIAM_LCGstringOf.grammar_symbol 1 arg ^ "'"))); *)
Xlist.fold functs [] (fun l -> function
Bracket(false,rf,funct),sem ->
let argst,argsf = Xlist.fold args ([],[]) (fun (argst,argsf) -> function
Bracket(true,false,arg),arg_sem -> (arg,arg_sem) :: argst, argsf
| Bracket(false,false,arg),arg_sem -> argst, (arg,arg_sem) :: argsf
| _ -> argst,argsf) in
let l = Xlist.fold (deduce_app references Backward (funct,sem) argst) l (fun l (t,sem) ->
(Bracket(true,rf,t), (*LCGreductions.linear_term_beta_reduction2*) sem) :: l) in
Xlist.fold (deduce_app references Backward (funct,sem) argsf) l (fun l (t,sem) ->
(Bracket(false,rf,t), (*LCGreductions.linear_term_beta_reduction2*) sem) :: l)
| Bracket(true,rf,funct),sem ->
let args = Xlist.fold args [] (fun args -> function Bracket(true,true,arg),arg_sem -> (arg,arg_sem) :: args | _ -> args) in
Xlist.fold (deduce_app references Backward (funct,sem) args) l (fun l (t,sem) ->
(Bracket(true,rf,t), (*LCGreductions.linear_term_beta_reduction2*) sem) :: l)
| BracketSet(Backward),_ -> (*print_endline "tt";*) Xlist.fold args l (fun l -> function Bracket(lf,false,arg),arg_sem -> (Bracket(lf,true,arg),arg_sem) :: l | _ -> l)
| _ -> l)
let backward_application_conll references args functs =
(* Printf.printf "backward_application: [%s] [%s]\n%!"
(String.concat "; " (Xlist.map args (fun (arg,_) -> "'" ^ ENIAM_LCGstringOf.grammar_symbol 1 arg ^ "'")))
(String.concat "; " (Xlist.map functs (fun (arg,_) -> "'" ^ ENIAM_LCGstringOf.grammar_symbol 1 arg ^ "'"))); *)
Xlist.fold functs [] (fun l -> function
Bracket(_,_,funct),sem ->
let args = Xlist.fold args [] (fun args -> function Bracket(_,_,arg),arg_sem -> (arg,arg_sem) :: args | _ -> args) in
Xlist.fold (deduce_app references Backward (funct,sem) args) l (fun l (t,sem) ->
(Bracket(false,false,t), (*LCGreductions.linear_term_beta_reduction2*) sem) :: l)
| _ -> l)
let backward_cross_composition references args functs =
Xlist.fold functs [] (fun l -> function
Bracket(false,rf,funct),sem ->
let argst,argsf = Xlist.fold args ([],[]) (fun (argst,argsf) -> function
Bracket(true,false,arg),arg_sem -> (arg,arg_sem) :: argst, argsf
| Bracket(false,false,arg),arg_sem -> argst, (arg,arg_sem) :: argsf
| _ -> argst,argsf) in
let l = Xlist.fold (deduce_comp references Backward Forward (funct,sem) argst) l (fun l (t,sem) ->
(Bracket(true,rf,t), (*LCGreductions.linear_term_beta_reduction2*) sem) :: l) in
Xlist.fold (deduce_comp references Backward Forward (funct,sem) argsf) l (fun l (t,sem) ->
(Bracket(false,rf,t), (*LCGreductions.linear_term_beta_reduction2*) sem) :: l)
| _ -> l)
(* FIXME: błąd przy redukcji "Jan chce iść spać" *)
let rules = [
backward_application;
forward_application;
(*backward_cross_composition;
forward_cross_composition;*)
]
let rec flatten_functor2 l seml = function
Imp(s,d,t),Lambda(v,sem) -> flatten_functor2 ((d,t) :: l) (v :: seml) (s,sem)
| ImpSet(s,l2),LambdaSet(vl,sem) -> flatten_functor2 (l2 @ l) (vl @ seml) (s,sem)
| s,sem -> if l = [] then s,sem else ImpSet(s,l),LambdaSet(seml,sem)
let rec flatten_functor = function
Bracket(lf,rf,s),t -> let s,t = flatten_functor (s,t) in Bracket(lf,rf,s),t
| WithVar(v,g,e,s), VariantVar(x,t) -> let s,t = flatten_functor (s,t) in WithVar(v,g,e,s), VariantVar(x,t)
| t -> flatten_functor2 [] [] t
let rec set_x_type = function
Bracket(lf,rf,s),t -> let s,t = set_x_type (s,t) in Bracket(lf,rf,s),t
| WithVar(v,g,e,s), t -> let s,t = set_x_type (s,t) in WithVar(v,g,e,s), t
| Imp(s,d,t),sem -> let s,sem = set_x_type (s,sem) in Imp(s,d,t),sem
| ImpSet(s,l2),sem -> let s,sem = set_x_type (s,sem) in ImpSet(s,l2),sem
| Tensor s,sem -> Tensor[Atom "X"],sem
| t,_ -> failwith ("set_x_type: " ^ ENIAM_LCGstringOf.grammar_symbol_prime t)