ParallelExtract.java 5.35 KB
package is2.parser;

import is2.data.Cluster;
import is2.data.DataFES;
import is2.data.F2SF;
import is2.data.FV;
import is2.data.Instances;
import is2.data.Long2IntInterface;
import is2.util.DB;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.concurrent.Callable;





/**
 * @author Bernd Bohnet, 30.08.2009
 * 
 * This class implements a parallel feature extractor.
 */
final public class ParallelExtract implements Callable<Object> 
{
	// the data space of the weights for a dependency tree  
	final DataFES d;

	// the data extractor does the actual work
	final Extractor extractor;

	private Instances is;
	private int i;

	private F2SF para;

	private Cluster cluster;


	public ParallelExtract(Extractor e, Instances is, int i, DataFES d,  F2SF para,Cluster cluster) {

		this.is =is;
		extractor=e;
		this.d =d;
		this.i=i;
		this.para=para;
		this.cluster = cluster;
	}


	public static class DSet {
		int w1,w2;
	}

	public Object call() {

		try {

			F2SF f= para;


			short[] pos=is.pposs[i];
			int length = pos.length;

			long[] gvs = new long[50]; 
			long[] svs = new long[220]; 

			while (true) {

				DSet set = get();
				if (set ==null) break;

				int w1=set.w1;
				int w2=set.w2;


				f.clear();
				extractor.basic(pos, w1, w2, f);
				d.pl[w1][w2]=f.getScoreF();
				
				
				f.clear();

				extractor.basic(pos, w2, w1, f);
				d.pl[w2][w1]=f.getScoreF();

				short[] labels = Edges.get(pos[w1], pos[w2]);
				float[] lab = d.lab[w1][w2];

				final Long2IntInterface li = extractor.li;

				int c = extractor.firstm(is, i, w1, w2, 0, cluster, svs);

				for (int l = 0; l <lab.length ; l++)  lab[l]=-100 ;

				for (int l = 0; l <labels.length ; l++) {
					short label = labels[l];

					f.clear();
					int lv = extractor.d0.computeLabeValue(label,Extractor.s_type);
					for(int k=0;k<c;k++)if (svs[k]>0) f.add(li.l2i(svs[k]+lv));


					lab[label]=f.getScoreF();
				}

				labels = Edges.get(pos[w2], pos[w1]);
				lab = d.lab[w2][w1];

				for (int l = 0; l <lab.length ; l++)  lab[l]=-100 ;

				
				for (int l = 0; l <labels.length ; l++) {
					int label = labels[l];

					f.clear();
					int lv = extractor.d0.computeLabeValue(label + Extractor.s_rel1 ,Extractor.s_type);
					for(int k=0;k<c;k++)if (svs[k]>0) f.add(li.l2i(svs[k]+lv));

					lab[label]=f.getScoreF();
				}

				int s = w1<w2 ? w1 : w2;
				int e = w1<w2 ? w2 : w1;


				for(int m=0;m<length;m++) {

					int g = (m==s||e==m) ? -1 : m;
				
					int cn =extractor.second(is, i, w1,w2,g, 0, cluster, svs);
					int cc = extractor.addClusterFeatures(is,i, w1, w2, g, cluster, 0, gvs,0);
					//for(int k=0;k<c;k++) dl1.map(f,svs[k]);
					

					if(m>=w1) {
						labels = Edges.get(pos[w1], pos[w2]);
						float[] lab2 = new float[labels.length];
						for (int l = 0; l <labels.length ; l++) {

							short label = labels[l];

							int lx =label+Extractor.s_rel1*(   g < w2?0:2   );

							f.clear();
							int lv = extractor.d0.computeLabeValue(lx,Extractor.s_type);
							for(int k=0;k<cn;k++)if (svs[k]>0) f.add(li.l2i(svs[k]+lv));
							for(int k=0;k<cc;k++)if (gvs[k]>0) f.add(li.l2i(gvs[k]+lv));

							lab2[l] = f.getScoreF();
						}
						d.gra[w1][w2][m] =lab2;
					}


					if (m<=w2) {
						labels = Edges.get(pos[w2], pos[w1]);
						float lab2[];
						d.gra[w2][w1][m] = lab2 = new float[labels.length];
						for (int l = 0; l <labels.length ; l++) {

							int label =  labels[l] ;
							int lx =label+Extractor.s_rel1*(1 +  (g < w1?0:2) );

							f.clear();
							int lv = extractor.d0.computeLabeValue(lx,Extractor.s_type);
							for(int k=0;k<cn;k++)if (svs[k]>0) f.add(li.l2i(svs[k]+lv));
							for(int k=0;k<cc;k++)if (gvs[k]>0) f.add(li.l2i(gvs[k]+lv));
							
							lab2[l] = f.getScoreF();
							
						}
					}


					g = (m==s||e==m) ? -1 : m;

					//	int cn = extractor.second(is,i,w1,w2,g,0, cluster, svs,Extractor._SIB);
					if (m >=w1 && m<=w2) {
						labels = Edges.get(pos[w1], pos[w2]);
						float lab2[]= new float[labels.length];
						d.sib[w1][w2][m] = lab2;

						for (int l = 0; l <labels.length ; l++) {

							short label = labels[l];

							int lx =label+Extractor.s_rel1*( 8);
							f.clear();
							int lv = extractor.d0.computeLabeValue(lx,Extractor.s_type);
							for(int k=0;k<cn;k++) if (svs[k]>0) f.add(li.l2i(svs[k]+lv));
							for(int k=0;k<cc;k++) if (gvs[k]>0) f.add(li.l2i(gvs[k]+lv));

										
							lab2[l] = (float)f.score;//f.getScoreF();
						}
					}
					if (m >=w1 && m <=w2) {
						labels = Edges.get(pos[w2], pos[w1]);
							float[] lab2 = new float[labels.length];
							d.sib[w2][w1][m]=lab2;
						 for (int l = 0; l <labels.length ; l++) {

							int label =  labels[l] ;

							int lx =label+Extractor.s_rel1*(9);

							f.clear();
							int lv = extractor.d0.computeLabeValue(lx,Extractor.s_type);
							for(int k=0;k<cn;k++)  if (svs[k]>0)  	f.add(li.l2i(svs[k]+lv));
							for(int k=0;k<cc;k++)  if (gvs[k]>0)  	f.add(li.l2i(gvs[k]+lv));
											
							lab2[l] = f.score;//f.getScoreF();
						}
					}
				}
			}

		} catch(Exception e ) {
			e.printStackTrace();
		}
		return null;
	}


	static ArrayList<DSet> sets = new ArrayList<DSet>();

	private DSet  get() {

		synchronized (sets) {
			if (sets.size()==0) return null;		
			return sets.remove(sets.size()-1);
		}
	}
	static public void add(int w1, int w2){
		DSet ds =new DSet();
		ds.w1=w1;
		ds.w2=w2;
		sets.add(ds);
	}




}