ENIAMsemValence.ml
17.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
(*
* ENIAMexec implements ENIAM processing stream
* Copyright (C) 2016-2017 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
* Copyright (C) 2016-2017 Institute of Computer Science Polish Academy of Sciences
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*)
open ENIAMexecTypes
open ENIAM_LCGtypes
open ENIAM_LCGlexiconTypes
open ENIAMlexSemanticsTypes
open Xstd
type pos = {role: linear_term; role_attr: linear_term; selprefs: linear_term; gf: ENIAMwalTypes.gf;
cr: string list; ce: string list;
is_necessary: bool; is_pro: bool; is_prong: bool; is_multi: bool; dir: string; morfs: StringSet.t}
let match_value v2 = function
Val v -> if v = v2 then Val v else raise Not_found
| _ -> failwith "match_value"
let match_neg_value vals = function
Val v -> if Xlist.mem vals v then raise Not_found else Val v
| _ -> failwith "match_neg_value"
let rec apply_selector v2 = function
(sel,[]) -> failwith ("apply_selector: " ^ ENIAMcategoriesPL.string_of_selector sel)
| Negation,("NEGATION",v) :: l -> ("NEGATION",match_value v2 v) :: l
| Aspect,("ASPECT",v) :: l -> ("ASPECT",match_value v2 v) :: l
| Mood,("MOOD",v) :: l -> ("MOOD",match_value v2 v) :: l
| Nsyn,("NSYN",v) :: l -> ("NSYN",match_value v2 v) :: l
| Nsem,("NSEM",v) :: l -> ("NSEM",match_value v2 v) :: l
| Case,("CASE",v) :: l -> ("CASE",match_value v2 v) :: l
| Mode,("MODE",v) :: l -> ("MODE",match_value v2 v) :: l
| sel,(attr,v) :: l -> (*print_endline ("apply_selector: " ^ ENIAMcategoriesPL.string_of_selector sel ^ " " ^ attr);*) (attr,v) :: (apply_selector v2 (sel,l))
let rec apply_neg_selector vals = function
(sel,[]) -> failwith ("apply_neg_selector: " ^ ENIAMcategoriesPL.string_of_selector sel)
| Nsem,("NSEM",v) :: l -> ("NSEM",match_neg_value vals v) :: l
| Case,("CASE",v) :: l -> ("CASE",match_neg_value vals v) :: l
| sel,(attr,v) :: l -> (*print_endline ("apply_neg_selector: " ^ ENIAMcategoriesPL.string_of_selector sel ^ " " ^ attr);*) (attr,v) :: (apply_neg_selector vals (sel,l))
let rec apply_selectors attrs = function
[] -> attrs
| (sel,Eq,[v]) :: l -> apply_selectors (apply_selector v (sel,attrs)) l
| (sel,Neq,vals) :: l -> apply_selectors (apply_neg_selector vals (sel,attrs)) l
| _ -> failwith "apply_selectors"
module OrderedStringDir =
struct
type t = string * string
let compare = compare
end
module StringDirMap = Xmap.Make(OrderedStringDir)
let rec get_arg_symbols_variant arg_symbols = function
Ref i ->
let l,dir = arg_symbols.(i) in
Xlist.map l (fun s -> (s,dir),Ref i)
| Variant(e,l) ->
let map = Xlist.fold l StringDirMap.empty (fun map (i,t) ->
Xlist.fold (get_arg_symbols_variant arg_symbols t) map (fun map (arg_symbol,t) ->
StringDirMap.add_inc map arg_symbol [i,t] (fun l -> (i,t) :: l))) in
StringDirMap.fold map [] (fun found arg_symbol l -> (arg_symbol,Variant(e,l)) :: found)
| t -> failwith ("get_arg_symbols_variant: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec get_arg_symbols_tuple arg_symbols rev = function
Dot -> rev
| Tuple l -> Xlist.fold l rev (get_arg_symbols_tuple arg_symbols)
| t -> (get_arg_symbols_variant arg_symbols t) :: rev
let string_of_argdir = function
"forward" -> "/"
| "backward" -> "\\"
| "both" -> "|"
| _ -> failwith "string_of_argdir"
let string_of_arg arg =
String.concat ", " (Xlist.map arg (fun ((arg_symbol,dir),t) -> (string_of_argdir dir) ^ arg_symbol ^ ":" ^ ENIAM_LCGstringOf.linear_term 0 t))
let string_of_position p =
(string_of_argdir p.dir) ^ String.concat "+" (StringSet.to_list p.morfs)
let rec match_arg_positions arg rev = function
p :: positions ->
(* Printf.printf "match_arg_positions: arg=%s rev=[%s] positions=%s :: [%s]\n%!" (string_of_arg arg) (String.concat "; " (Xlist.map rev string_of_position)) (string_of_position p) (String.concat "; " (Xlist.map positions string_of_position)); *)
let l = Xlist.fold arg [] (fun l ((arg_symbol,dir),t) ->
if StringSet.mem p.morfs arg_symbol && p.dir = dir then t :: l else l) in
(match l with
[] -> (*print_endline "match_arg_positions: not matched";*) match_arg_positions arg (p :: rev) positions
| [t] ->
let t = if p.gf = ENIAMwalTypes.SUBJ || p.gf = ENIAMwalTypes.OBJ || p.gf = ENIAMwalTypes.ARG then
SetAttr("role",p.role,SetAttr("role-attr",p.role_attr,SetAttr("selprefs",p.selprefs,t)))
else if p.gf = ENIAMwalTypes.ADJUNCT then t else failwith "match_arg_positions: ni 2" in
let t = SetAttr("gf",Val (ENIAMwalStringOf.gf p.gf),t) in
let t = Xlist.fold p.cr t (fun t cr -> SetAttr("controller",Val cr,t)) in
let t = Xlist.fold p.ce t (fun t ce -> SetAttr("controllee",Val ce,t)) in
if p.is_multi then (t, rev @ (p :: positions)) :: (match_arg_positions arg (p :: rev) positions)
else (t, rev @ positions) :: (match_arg_positions arg (p :: rev) positions)
| _ -> failwith "match_arg_positions: ni")
| [] -> (*Printf.printf "match_arg_positions: arg=%s rev=[%s] positions=[]\n%!" (string_of_arg arg) (String.concat "; " (Xlist.map rev string_of_position));*) []
(* Jeśli ta funkcja zwróci pustą listę, oznacza to, że argumentów nie dało się dopasować do pozycji *)
let rec match_args_positions_rec positions = function
arg :: args ->
(* Printf.printf "match_args_positions_rec: args=%s :: [%s] positions=[%s]\n%!" (string_of_arg arg) (String.concat "; " (Xlist.map args string_of_arg)) (String.concat "; " (Xlist.map positions string_of_position)); *)
Xlist.fold (match_arg_positions arg [] positions) [] (fun found (arg_pos,positions) ->
Xlist.fold (match_args_positions_rec positions args) found (fun found l -> (arg_pos :: l) :: found))
| [] ->
(* Printf.printf "match_args_positions_rec: args=[] positions=[%s]\n%!" (String.concat "; " (Xlist.map positions string_of_position)); *)
let b = Xlist.fold positions false (fun b p -> p.is_necessary || b) in
(* if b then print_endline "match_args_positions: not matched"; *)
if b then [] else
[Xlist.fold positions [] (fun found p ->
if not p.is_pro then found else
let attrs = ["role",p.role; "role-attr",p.role_attr; "selprefs",p.selprefs; "gf",Val (ENIAMwalStringOf.gf p.gf)] in
let attrs = if p.is_prong then attrs else attrs in (* FIXME: dodać number, gender *)
let attrs = Xlist.fold p.cr attrs (fun attrs cr -> ("controller",Val cr) :: attrs) in
let attrs = Xlist.fold p.ce attrs (fun attrs ce -> ("controllee",Val ce) :: attrs) in
Node{ENIAM_LCGrenderer.empty_node with lemma="pro"; pos="pro"; attrs=attrs} :: found)]
(* FIXME: opcjonalność podrzędników argumentów zleksykalizowanych *)
(* Jeśli ta funkcja zwróci pustą listę, oznacza to, że argumentów nie dało się dopasować do pozycji *)
let match_args_positions args positions =
(* Printf.printf "match_args_positions: args=[%s] positions=[%s]\n%!" (String.concat "; " (Xlist.map args string_of_arg)) (String.concat "; " (Xlist.map positions string_of_position)); *)
Xlist.rev_map (match_args_positions_rec positions args) (function
[] -> Dot
| [t] -> t
| l -> Tuple l)
let translate_selprefs = function
ENIAMwalTypes.SynsetId _ -> failwith "translate_selprefs"
| ENIAMwalTypes.Predef _ -> failwith "translate_selprefs"
| ENIAMwalTypes.SynsetName s -> s
| ENIAMwalTypes.RelationRole _ -> "ALL"
let string_of_internal_morf = function
Atom s -> s
| AVar s -> s
| Top -> "T"
| t -> failwith ("string_of_internal_morf: " ^ ENIAM_LCGstringOf.internal_grammar_symbol_prime t)
let string_of_morf = function
ENIAMwalTypes.LCG Tensor l -> String.concat "*" (Xlist.map l string_of_internal_morf)
| ENIAMwalTypes.LCG t -> failwith ("string_of_morf: " ^ ENIAM_LCGstringOf.grammar_symbol_prime t)
| _ -> failwith "string_of_morf"
let rec string_of_arg_symbol = function
Dot -> ""
| Val s -> s
| Tuple l -> String.concat "*" (Xlist.map l string_of_arg_symbol)
| t -> failwith ("string_of_arg_symbol: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let translate_dir = function
ENIAMwalTypes.Both_ -> "both"
| ENIAMwalTypes.Forward_ -> "forward"
| ENIAMwalTypes.Backward_ -> "backward"
let translate_position id p =
{role = Val p.ENIAMwalTypes.role;
role_attr = Val p.ENIAMwalTypes.role_attr;
selprefs = (match Xlist.map p.ENIAMwalTypes.sel_prefs translate_selprefs with
[] -> Dot
| [s] -> Val s
| l -> Tuple(Xlist.rev_map l (fun s -> Val s)));
gf=p.ENIAMwalTypes.gf;
cr=Xlist.map p.ENIAMwalTypes.cr (fun cr -> id ^ "-" ^ cr);
ce=Xlist.map p.ENIAMwalTypes.ce (fun ce -> id ^ "-" ^ ce);
is_necessary = p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.Req(*Xlist.fold p.ENIAMwalTypes.morfs true (fun b -> function ENIAMwalTypes.LCG One -> false | _ -> b)*);
is_pro = p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.Pro || p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.ProNG;
is_prong = p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.ProNG;
is_multi = p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.Multi;
dir= translate_dir p.ENIAMwalTypes.dir;
morfs = Xlist.fold p.ENIAMwalTypes.morfs StringSet.empty (fun morfs morf ->
if morf = ENIAMwalTypes.LCG One then (Printf.printf "translate_position: One%!"; morfs) else
StringSet.add morfs (string_of_morf morf))}
let get_phrase_symbol = function
Tuple[Val "lex";Val "się";Val "qub"] -> "lex-się-qub"
| Tuple(Val s :: _) -> s
| Val s -> s
(* | Dot -> "dot" *)
| t -> failwith ("get_phrase_symbol: " ^ ENIAM_LCGstringOf.linear_term 0 t)
(* let extend_frame symbol = function *)
exception NoFrame of string * string
let rec assign_frames_rec tokens lex_sems tree arg_symbols visited = function
Ref i ->
if IntSet.mem visited i then Ref i,visited else
let t,visited = assign_frames_rec tokens lex_sems tree arg_symbols (IntSet.add visited i) tree.(i) in
tree.(i) <- t;
Ref i,visited
| Node t ->
let args,visited = assign_frames_rec tokens lex_sems tree arg_symbols visited t.args in
let t = {t with args=args} in
if t.symbol = Dot then Node t,visited else
let args = get_arg_symbols_tuple arg_symbols [] args in
let s = ExtArray.get lex_sems t.id in
let symbol = get_phrase_symbol t.symbol in
let frames = Xlist.fold s.ENIAMlexSemanticsTypes.frames [] (fun frames frame ->
(* print_endline ("selectors: " ^ ENIAMcategoriesPL.string_of_selectors frame.selectors); *)
try
let attrs = apply_selectors t.attrs frame.selectors in
let frame = ENIAMsemLexicon.extend_frame symbol frame in
(* print_endline "passed"; *)
(attrs,frame,Xlist.rev_map frame.positions (translate_position (string_of_int t.id))) :: frames
with Not_found -> (*print_endline "rejected";*) frames) in
if frames = [] then failwith "assign_frames_rec: no frame" else
let e = ENIAM_LCGreductions.get_variant_label () in
let l,_ = Xlist.fold frames ([],1) (fun (l,n) (attrs,frame,positions) ->
(* Printf.printf "assign_frames_rec: lemma=%s args=[%s] positions=[%s]\n%!" t.lemma (String.concat "; " (Xlist.map args string_of_arg)) (String.concat "; " (Xlist.map positions string_of_position)); *)
if frame.meanings = [] then failwith ("assign_frames_rec: no meanings '" ^ t.lemma ^ "'") else
Xlist.fold (match_args_positions args positions) (l,n) (fun (l,n) args ->
Xlist.fold frame.meanings (l,n) (fun (l,n) (meaning,hipero,weight) ->
(string_of_int n, Node{t with attrs=
("meaning",Val meaning) ::
("hipero",ENIAM_LCGrules.make_variant (Xlist.map hipero (fun (h,n) -> Tuple[Val h;Val(string_of_int n)]))) ::
("arole",Val frame.arole) ::
("arole-attr",Val frame.arole_attr) ::
("arev",Val (if frame.arev then "+" else "-")) ::
("sem-args",if frame.sem_args = [] then Dot else ENIAM_LCGrules.make_variant (Xlist.map frame.sem_args (fun s -> Val s))) ::
("fopinion",Val (ENIAMwalStringOf.opinion frame.fopinion)) ::
("sopinion",Val (ENIAMwalStringOf.opinion frame.sopinion)) :: t.attrs; args=args}) ::
l,n+1))) in
if l = [] then (print_endline ("assign_frames_rec: no frame assingment found for " ^ t.lemma ^ " " ^ ENIAM_LCGstringOf.linear_term 0 t.symbol);raise (NoFrame(t.lemma,ENIAM_LCGstringOf.linear_term 0 t.symbol))) else
Variant(e,l),visited
| Variant(e,l) ->
let a = ref "" in
let b = ref "" in
let l,visited = Xlist.fold l ([],visited) (fun (l,visited) (i,t) ->
try
let t,visited = assign_frames_rec tokens lex_sems tree arg_symbols visited t in
(i,t) :: l, visited
with NoFrame(x,y) -> a:=x; b:=y; l, visited) in
if l = [] then raise (NoFrame(!a,!b)) else
Variant(e,List.rev l),visited
| Tuple l ->
let l,visited = Xlist.fold l ([],visited) (fun (l,visited) t ->
let t,visited = assign_frames_rec tokens lex_sems tree arg_symbols visited t in
t :: l, visited) in
Tuple(List.rev l),visited
| Dot -> Dot,visited
| t -> failwith ("assign_frames_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec get_arg_symbols = function
Node{arg_symbol=Tuple([Val "cp"; Val "T"; Val "T"]);
symbol=Tuple([Val "cp"; ctype; comp]); arg_dir=dir} ->
[string_of_arg_symbol (Tuple([Val "cp"; Val "T"; Val "T"]));
string_of_arg_symbol (Tuple([Val "cp"; ctype; comp]))],dir
| Node{arg_symbol=Tuple([Val "ncp"; Val "T"; Val arg_case; Val "T"; Val "T"; Val "T"; Val "T"]);
symbol=Tuple([Val "ncp"; number; case; gender; person; ctype; comp]); arg_dir=dir} ->
[string_of_arg_symbol (Tuple([Val "ncp"; Val "T"; Val arg_case; Val "T"; Val "T"; Val "T"; Val "T"]));
string_of_arg_symbol (Tuple([Val "ncp"; Val "T"; Val arg_case; Val "T"; Val "T"; ctype; comp]))],dir
| Node{arg_symbol=Tuple([Val "prepncp"; Val arg_prep; Val arg_case; Val "T"; Val "T"]);
symbol=Tuple([Val "prepncp"; prep; case; ctype; comp]); arg_dir=dir} ->
[string_of_arg_symbol (Tuple([Val "prepncp"; Val arg_prep; Val arg_case; Val "T"; Val "T"]));
string_of_arg_symbol (Tuple([Val "prepncp"; prep; case; ctype; comp]))],dir
| Node t -> [string_of_arg_symbol t.arg_symbol], t.arg_dir
| t -> failwith ("get_arg_symbols: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let assign_frames tokens lex_sems tree =
(* print_endline "assign_frames"; *)
let tree = Array.copy tree in
let arg_symbols = Array.make (Array.length tree) ([],"") in
Int.iter 0 (Array.length tree - 1) (fun i ->
arg_symbols.(i) <- get_arg_symbols tree.(i));
let _ = assign_frames_rec tokens lex_sems tree arg_symbols IntSet.empty (Ref 0) in
tree
let rec cut_nodes result_tree = function
| Node t ->
let i = ExtArray.add result_tree (Node t) in
Ref i
| Variant(e,l) ->
let l = Xlist.rev_map l (fun (i,t) -> i, cut_nodes result_tree t) in
Variant(e,List.rev l)
| Tuple l ->
let l = Xlist.rev_map l (cut_nodes result_tree) in
Tuple(List.rev l)
| Dot -> Dot
| t -> failwith ("cut_nodes: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec reduce_set_attr attr v = function
Node t -> Node{t with attrs=(attr,v) :: t.attrs}
| Variant(e,l) ->
Variant(e,List.rev (Xlist.rev_map l (fun (i,t) ->
i, reduce_set_attr attr v t)))
| t -> failwith ("reduce_set_attr: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree = function
Ref i ->
if mid_tree.(i) <> Dot then mid_tree.(i) else
let t = reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree orig_tree.(i) in
mid_tree.(i) <- t;
t
| Node t ->
let args = reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree t.args in
(* print_endline ("reduce_tree_rec 1: " ^ ENIAM_LCGstringOf.linear_term 0 args); *)
let args = cut_nodes result_tree args in
(* print_endline ("reduce_tree_rec 2: " ^ ENIAM_LCGstringOf.linear_term 0 args); *)
let id =
if t.id = 0 then
let id = ExtArray.add tokens {ENIAMtokenizerTypes.empty_token_env with ENIAMtokenizerTypes.token=ENIAMtokenizerTypes.Lemma("pro","pro",[[]])} in
let _ = ExtArray.add lex_sems empty_lex_sem in
id
else t.id in
Node{t with args=args; id=id}
| Variant(e,l) ->
let l = Xlist.rev_map l (fun (i,t) -> i, reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree t) in
Variant(e,List.rev l)
| Tuple l ->
let l = Xlist.rev_map l (reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree) in
Tuple(List.rev l)
| Dot -> Dot
| SetAttr(attr,v,t) ->
let t = reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree t in
reduce_set_attr attr v t
| t -> failwith ("reduce_tree_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let reduce_tree tokens lex_sems orig_tree =
(* print_endline "reduce_tree"; *)
let mid_tree = Array.make (Array.length orig_tree) Dot in
let result_tree = ExtArray.make (Array.length orig_tree) Dot in
let _ = ExtArray.add result_tree Dot in
let t = reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree orig_tree.(0) in
ExtArray.set result_tree 0 t;
ExtArray.to_array result_tree