ENIAMsemGraph.ml 37.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
(*
 *  ENIAMexec implements ENIAM processing stream
 *  Copyright (C) 2016-2017 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
 *  Copyright (C) 2016-2017 Institute of Computer Science Polish Academy of Sciences
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *)

open ENIAMsemTypes
open Xstd
open Printf

(*let pro_id_counter = ref 100000 (* FIXME: to trzeba usunąć !!! *)

let get_pro_id () =
  incr pro_id_counter;
  !pro_id_counter*)

let empty_concept =
  {c_sense=Dot;c_name=Dot;(* c_variable: string; c_visible_var: bool;*) c_quant=Dot; c_local_quant=true; (*c_modalities: (string * type_term) list;
   c_left_input_pos: int; c_right_input_pos: int;*) c_relations=Dot; c_variable="",""; c_pos=(-1)}

let empty_context = {cx_sense=Dot; cx_contents=Dot; cx_relations=Dot; cx_variable="",""; cx_pos=(-1)}

(*let make_sem_args = function
    [] -> Dot
  | [s] -> Val s
  | l -> Variant(LCGreductions.get_variant_label (), fst (Xlist.fold l ([],1) (fun (l,i) t ->
        (string_of_int i, Val t) :: l,i+1)))*)

let rec make_args_list = function
    Tuple l -> List.flatten (Xlist.map l make_args_list)
  | t -> [t]

let symbols = StringSet.of_list [
  "symbol"; "date"; "date-interval"; "hour-minute"; "hour"; "hour-minute-interval"; "hour-interval";
  "year"; "year-interval"; "day"; "day-interval"; "day-month"; "day-month-interval"; "month-interval"; "roman"; "roman-interval";
  "match-result"; "url"; "email"; "obj-id";
  "month-lex"; "day-lex"]

let rec get_person = function
   ("PERS", Val s) :: _ -> s
 | ("PERS", _) :: _-> failwith "get_person"
 | _ :: l -> get_person l
 | [] -> ""

(* let rec get_attr pat = function
    (s,Val t) :: l -> if s = pat then t else get_attr pat l
  | (s,t) :: l -> if s = pat then failwith ("get_attr 1: " ^ s) else get_attr pat l
  | [] -> failwith ("get_attr 2: " ^ pat) *)

let make_relation t c =
  match t.gf with
    "subj" | "obj" | "arg" ->
      Relation(t.role,t.role_attr,c)
  | "adjunct" ->
      if t.arev then RevRelation(t.role,t.role_attr,c) else
      Relation(t.role,t.role_attr,c)
  | s -> failwith ("make_relation: " (*^ s*))

let create_normal_concept (*roles role_attrs*) tokens lex_sems t sem_args =
(*  let sem_args = if t.pos = "pro" then
    match get_person t.attrs with
      "pri" -> ["indexical"]
    | "sec" -> ["indexical"]
    | "ter" -> ["coreferential";"deictic"]
    | "" -> ["indexical";"coreferential";"deictic"]
    | _ -> failwith "create_normal_concept: pro"
    else sem_args in (* FIXME: przesunąć to do rozszerzania path_array *)
  if t.agf = ENIAMwalTypes.NOSEM then t.args else*)
  let c = {empty_concept with
    c_sense = if t.lemma = "<root>" then Dot else Val t.meaning;
    c_relations=t.args;
    c_quant=(*make_sem_args sem_args*)Dot;(* FIXME *)
    c_variable=string_of_int t.id,"";
    c_pos=(*if t.id >= Array.length tokens then -1 else*) (ExtArray.get tokens t.id).ENIAMtokenizerTypes.beg;
    c_local_quant=true} in
  if t.pos = "subst" || t.pos = "depr" || t.pos = "ger" || t.pos = "unk" || StringSet.mem symbols t.pos then (* FIXME: wykrywanie plurale tantum *)
    let c = {c with c_local_quant=false} in
    let c,measure,cx_flag = Xlist.fold t.attrs (c,false,false) (fun (c,measure,cx_flag) -> function
        "NSYN",Val "common" -> c,measure,cx_flag
      | "NSYN",Val "proper" -> {c with c_name=Val t.lemma; (*c_sense=if Val t.pred=c.c_sense then Dot else c.c_sense*)},measure,cx_flag (* Rozpoznawanie propoer names nieznanego typu - ryzykowne ale proste *)
      | "NSYN",Val "pronoun" -> c(*{c with c_quant=Tuple[c.c_quant;Val "indexical"]}*),measure,cx_flag
      | "NSEM",Val "count" -> c(*{c with c_quant=Tuple[c.c_quant;Val "count"]}*),measure,cx_flag
      | "NSEM",Val "mass" -> {c with c_quant=Tuple[c.c_quant;Val "mass"]},measure,cx_flag
      | "NSEM",Val "measure" -> c,true,cx_flag
      | "NSEM",Val "time" -> c,measure,cx_flag(*failwith "create_normal_concept: time"*)
      | "NUM",t -> {c with c_quant=Tuple[c.c_quant;t]},measure,cx_flag
      | "CASE",_ -> c,measure,cx_flag
      | "GEND",_ -> c,measure,cx_flag
      | "PERS",Val "ter" -> c,measure,cx_flag
      | "PERS",Val "sec" -> {c with c_relations=Tuple[c.c_relations;SingleRelation("impt")]},measure,true
      | "ASPECT",_ -> c,measure,cx_flag
      | "NEGATION",Val "aff" -> c,measure,cx_flag
      | "NEGATION",Val "neg" -> {c with c_quant=Tuple[c.c_quant;Val "nie"]},measure,cx_flag
      | "controller",_ -> c,measure,cx_flag
      (* | "INCLUSION",_ -> c,measure ,cx_flag
      | "QUOT",Val "+" -> {c with c_relations=Tuple[c.c_relations;SingleRelation("quot")]},measure,cx_flag
      | "LEX",_ -> c,measure,cx_flag (* FIXME *) *)
(*       | "TYPE",Val "int" -> {c with c_quant=Tuple[c.c_quant;Val "interrogative"]},measure *)
      (* | "TYPE",_ -> c,measure,cx_flag (* FIXME *) *)
      | e,t -> failwith ("create_normal_concept noun: " ^ e)) in
    (* let c = if t.pos = "depr" then {c with c_relations=Tuple[c.c_relations;SingleRelation "depr"]} else c in *)
    if cx_flag then
      let id = ExtArray.add tokens ENIAMtokenizerTypes.empty_token_env in
      let _ = ExtArray.add lex_sems ENIAMlexSemanticsTypes.empty_lex_sem in
      make_relation t (Context{empty_context with cx_contents=Concept c; cx_variable=string_of_int id,""; cx_pos=c.c_pos})
    else
      make_relation t (Concept c) else
  if t.pos = "fin" || t.pos = "bedzie" || t.pos = "praet" || t.pos = "winien" || t.pos = "impt" || t.pos = "imps" || t.pos = "pred" || t.lemma = "pro-komunikować" then
    let c = {c with c_local_quant=false} in
    let c = Xlist.fold t.attrs c (fun c -> function
(*         "MEANING",t -> {c with c_sense=Tuple[c.c_sense;t]} *)
      | "NUM",t -> c
      | "GEND",_ -> c
      | "PERS",_ -> c
      | "ASPECT",_ -> c
      (* | "CTYPE",_ -> c (* FIXME *) *)
      | "TENSE",Val t -> {c with c_relations=Tuple[c.c_relations;SingleRelation t]} (* FIXME to jest powód dla którego nazwy relacji były termami *)
      | "MOOD",Val "indicative" -> c
      | "MOOD",Val "conditional" -> {c with c_relations=Tuple[c.c_relations;SingleRelation("cond")]} (* FIXME *)
      | "MOOD",Val "imperative" -> {c with c_relations=Tuple[c.c_relations;SingleRelation("impt")]} (* FIXME *)
      | "NEGATION",Val "aff" -> c
      | "NEGATION",Val "neg" -> {c with c_quant=Tuple[c.c_quant;Val "nie"]}
      | e,t -> failwith ("create_normal_concept verb: " ^ e)) in
    let c = if t.lemma = "pro-komunikować" then {c with c_relations=Relation("Theme","",c.c_relations)} else c in (* FIXME: to by trzeba przesunąć na wcześniej *)
    let id = ExtArray.add tokens ENIAMtokenizerTypes.empty_token_env in
    let _ = ExtArray.add lex_sems ENIAMlexSemanticsTypes.empty_lex_sem in
    let cx = {empty_context with cx_contents=Concept c; cx_variable=string_of_int id,""; cx_pos=c.c_pos} in
    (* if t.role <> "" || t.role_attr <> "" then failwith "create_normal_concept: verb" else *)
    make_relation t (Context cx) else
  if t.pos = "inf" then
    let c = {c with c_local_quant=false} in
    let c = Xlist.fold t.attrs c (fun c -> function
      | "ASPECT",_ -> c
      | "TENSE",Val t -> {c with c_relations=Tuple[c.c_relations;SingleRelation t]}
      | "NEG",Val "+" -> {c with c_quant=Tuple[c.c_quant;Val "nie"]}
      | e,t -> failwith ("create_normal_concept verb: " ^ e)) in
    let id = ExtArray.add tokens ENIAMtokenizerTypes.empty_token_env in
    let _ = ExtArray.add lex_sems  in
    let cx = {empty_context with cx_contents=Concept c; cx_variable=string_of_int id,""; cx_pos=c.c_pos} in
    Relation(t.role,t.role_attr,Context cx) else
  if t.pos = "adj" || t.pos = "adjc" || t.pos = "adjp" || t.pos = "adja" || t.pos = "pact" || t.pos = "ppas" || t.pos = "ordnum" || t.pos = "roman-adj" then
    let c = if t.pos = "pact" || t.pos = "ppas" then {c with c_local_quant=false} else c in
    let c = Xlist.fold t.attrs c (fun c -> function
(*         "MEANING",t -> {c with c_sense=Tuple[c.c_sense;t]} *)
      | "SYN",Val "common" -> c
      | "SYN",Val "pronoun" -> c(*{c with c_quant=Tuple[c.c_quant;Val "indexical"]}*)
      | "SYN",Val "proper" -> if t.pos = "roman-adj" then c else failwith "create_normal_concept adj: SYN=proper"
      | "NSEM",Val "count" -> if t.pos = "roman-adj" then c else failwith "create_normal_concept adj: NSEM=count"
      | "NUM",_ -> c
      | "CASE",_ -> c
      | "GEND",_ -> c
      | "GRAD",_ -> c
      | "ASPECT",_ -> c
(*       | "TYPE",Val "int" -> {c with c_quant=Tuple[c.c_quant;Val "interrogative"]} *)
      | "TYPE",_ -> c (* FIXME *)
      | "PERS",_ -> c
      | "NEG",Val "+" -> {c with c_quant=Tuple[c.c_quant;Val "nie"]}
      | "LEX",_ -> c (* FIXME *)
      | e,t -> failwith ("create_normal_concept adj: " ^ e)) in
    if t.pos = "pact" || t.pos = "ppas" then
      RevRelation(t.role,t.role_attr,Concept c)
    else Relation(t.role,t.role_attr,Concept c) else
  if t.pos = "adv" || t.pos = "pcon" || t.pos = "pant" then
    let c = if t.pos = "pcon" || t.pos = "pant" then {c with c_local_quant=false} else c in
    let c = Xlist.fold t.attrs c (fun c -> function
(*         "MEANING",t -> {c with c_sense=Tuple[c.c_sense;t]} *)
      | "GRAD",_ -> c
      | "ASPECT",_ -> c
(*       | "TYPE",Val "int" -> {c with c_quant=Tuple[c.c_quant;Val "interrogative"]} *)
      | "TYPE",_ -> c
      | "NEG",Val "+" -> {c with c_quant=Tuple[c.c_quant;Val "nie"]}
      | e,t -> failwith ("create_normal_concept adv: " ^ e)) in
    Relation(t.role,t.role_attr,Concept c) else
  if t.pos = "pro" || t.pos = "ppron12" || t.pos = "ppron3" || t.pos = "siebie" then (* FIXME: indexicalność *)
    let c = {c with c_local_quant=false} in
    let c = Xlist.fold t.attrs c (fun c -> function
        "NUM",Val t -> {c with c_relations=Tuple[c.c_relations;SingleRelation t]}
      | "GEND",Val t -> {c with c_relations=Tuple[c.c_relations;SingleRelation t]}
      | "PERS",Val t2 -> if t.pos = "siebie" then c else {c with c_relations=Tuple[c.c_relations;SingleRelation t2]}
      | "CASE",_ -> c
      | "SYN",_ -> c
      | "NSEM",_ -> c
      | e,t -> failwith ("create_normal_concept pron: " ^ e)) in
    Relation(t.role,t.role_attr,Concept c) else
  if t.pos = "prep" then
    if t.arole = "NOSEM" then Relation(t.role,t.role_attr,t.args) else
    let c = Xlist.fold t.attrs c (fun c -> function
      | "CASE",_ -> c
      | e,t -> failwith ("create_normal_concept prep: " ^ e)) in
    Relation(t.role,t.role_attr,Concept c) else
  if t.pos = "num" || t.pos = "intnum" || t.pos = "realnum" || t.pos = "intnum-interval" || t.pos = "realnum-interval" then
    let c = Xlist.fold t.attrs c (fun c -> function
(*         "MEANING",t -> {c with c_sense=Tuple[c.c_sense;t]} *)
      | "ACM",_ -> c
      | "NUM",_ -> c
      | "CASE",_ -> c
      | "GEND",_ -> c
      | "PERS",_ -> c
      | "TYPE",_ -> c
      | e,t -> failwith ("create_normal_concept num: " ^ e)) in
    Relation(t.role,t.role_attr,(*Quantifier*)(Concept c)) else
  if t.pos = "qub" && t.lemma="się" then
    let c = {c with c_quant=Tuple[c.c_quant;Val "coreferential"]} in
    Relation(t.role,t.role_attr,(*Quantifier*)(Concept c)) else
  if t.pos = "qub" && (t.lemma="czy" || t.lemma="gdyby") then
    Relation(t.role,t.role_attr,SetContextName(t.meaning,t.args)) else
  if t.pos = "qub" then
    let c = Xlist.fold t.attrs c (fun c -> function
(*      | "TYPE",Val "int" -> {c with c_quant=Tuple[c.c_quant;Val "interrogative"]}
      | "TYPE",_ -> c*)
      | e,t -> failwith ("create_normal_concept qub: " ^ e)) in
    Relation(t.role,t.role_attr,Concept c) else
  if t.pos = "comp" then
    Relation(t.role,t.role_attr,SetContextName(t.meaning,t.args)) else
  if t.pos = "conj" then
    let c = {empty_context with cx_sense=Val t.meaning; cx_contents=RemoveRelation t.args; cx_variable=string_of_int t.id,""; cx_pos=c.c_pos} in
    let c = Xlist.fold t.attrs c (fun c -> function
      | "NUM",_ -> c
      | "CASE",_ -> c
      | "GEND",_ -> c
      | "PERS",_ -> c
      | e,t -> failwith ("create_normal_concept conj: " ^ e)) in
    Relation(t.role,t.role_attr,Context c) else
  if t.pos = "interj" then Node t else
  if t.pos = "sinterj" then
    let c = Xlist.fold t.attrs c (fun c -> function
      | e,t -> failwith ("create_normal_concept sinterj: " ^ e)) in
    Concept c else
  if t.pos = "interp" && t.lemma = "</sentence>" then
    let l = List.rev (make_args_list t.args) in
    Xlist.fold (List.tl l) (List.hd l) (fun t s -> AddRelation(RemoveRelation t,"Next","Clause",RemoveRelation s)) else
  if t.pos = "interp" && t.lemma = "<sentence>" then t.args else
  if t.pos = "interp" && t.lemma = "”s" then
    let l = List.rev (make_args_list t.args) in
    let x = Xlist.fold (List.tl l) (List.hd l) (fun t s -> AddRelation(RemoveRelation t,"Next","Sentence",RemoveRelation s)) in
    Relation(t.arole,t.arole_attr,x) else (* FIXME: czy na pewno tu i w następnych arole a nie position.role? *)
  if t.pos = "interp" && t.lemma = "<or>" then
    Relation(t.arole,t.arole_attr,t.args) else
  if t.pos = "interp" && t.lemma = "<speaker>" then
    Relation(t.arole,t.arole_attr,RemoveRelation t.args) else
  if t.pos = "interp" && t.lemma = "</query>" then
    let l = List.rev (make_args_list t.args) in
    let x = Xlist.fold (List.tl l) (List.hd l) (fun t s -> AddRelation(RemoveRelation t,"Next","Sentence",RemoveRelation s)) in
    if t.gf = "obj" then Relation(t.arole,t.arole_attr,x) else x else
  if t.pos = "interp" && t.lemma = "<query1>" then t.args else
  if t.pos = "interp" && t.lemma = "<query2>" then t.args else
  if t.pos = "interp" && t.lemma = "<query4>" then t.args else
  if t.pos = "interp" && t.lemma = "<query5>" then
    let l = List.rev (make_args_list t.args) in
    Xlist.fold (List.tl l) (List.hd l) (fun t s -> AddRelation(RemoveRelation t,"Next","Sentence",RemoveRelation s)) else
  if t.pos = "interp" && t.lemma = "<query6>" then
    let l = List.rev (make_args_list t.args) in
    Xlist.fold (List.tl l) (List.hd l) (fun t s -> AddRelation(RemoveRelation t,"Next","Sentence",RemoveRelation s)) else
  if t.pos = "interp" && t.lemma = "?" then SingleRelation("int") else
  if t.pos = "interp" && t.lemma = "„" then
    Relation(t.role,t.role_attr,RemoveRelation t.args) else
  if t.pos = "interp" || t.lemma = "</or-sentence>" then Relation(t.role,t.role_attr,t.args) else (
  if t.pos = "interp" then Node t else
  if t.pos = "" then Relation(t.role,t.role_attr,t.args) else
  (* print_endline t.lemma; *)
  Node t)

let rec translate_node tokens lex_sems t =
  let attrs = Xlist.map t.ENIAM_LCGtypes.attrs (fun (k,t) -> k, create_concepts tokens lex_sems t) in
  let t = {
    orth=t.ENIAM_LCGtypes.orth; lemma=t.ENIAM_LCGtypes.lemma; pos=t.ENIAM_LCGtypes.pos; weight=t.ENIAM_LCGtypes.weight;
    id=t.ENIAM_LCGtypes.id; symbol=create_concepts tokens lex_sems t.ENIAM_LCGtypes.symbol; arg_symbol=create_concepts tokens lex_sems t.ENIAM_LCGtypes.arg_symbol;
    arg_dir=t.ENIAM_LCGtypes.arg_dir;
    attrs=[];
    args=create_concepts tokens lex_sems t.ENIAM_LCGtypes.args;
    gf=""; role=""; role_attr=""; selprefs=Dot; meaning=""; arole=""; arole_attr=""; arev=false; sem_args=Dot} in
  let t,attrs = Xlist.fold attrs (t,[]) (fun (t,attrs) -> function
      "gf",Val s -> {t with gf=s},attrs
    | "role",Val s -> {t with role=s},attrs
    | "role-attr",Val s -> {t with role_attr=s},attrs
    | "selprefs",s -> {t with selprefs=s},attrs
    | "meaning",Val s -> {t with meaning=s},attrs
    | "hipero",_ -> t,attrs
    | "arole",Val s -> {t with arole=s},attrs
    | "arole-attr",Val s -> {t with arole_attr=s},attrs
    | "arev",Val "-" -> {t with arev=false},attrs
    | "arev",Val "+" -> {t with arev=true},attrs
    | "sem-args",s -> {t with sem_args=s},attrs
    | "fopinion",_ -> t,attrs
    | "sopinion",_ -> t,attrs
(*    | "",s -> t,("",s) :: attrs
    | "",s -> t,("",s) :: attrs
    | "",s -> t,("",s) :: attrs
    | "",s -> t,("",s) :: attrs
    | "",s -> t,("",s) :: attrs
    | "",s -> t,("",s) :: attrs
    | "",s -> t,("",s) :: attrs*)
    | "ACM",s -> t,("ACM",s) :: attrs
    | "ASPECT",s -> t,("ASPECT",s) :: attrs
    | "NEGATION",s -> t,("NEGATION",s) :: attrs
    | "MOOD",s -> t,("MOOD",s) :: attrs
    | "TENSE",s -> t,("TENSE",s) :: attrs
    | "controller",s -> t,("controller",s) :: attrs
    | "CAT",_ -> t,attrs
    | "NUM",s -> t,("NUM",s) :: attrs
    | "CASE",s -> t,("CASE",s) :: attrs
    | "GEND",s -> t,("GEND",s) :: attrs
    | "PERS",s -> t,("PERS",s) :: attrs
    | "NSYN",s -> t,("NSYN",s) :: attrs
    | "NSEM",s -> t,("NSEM",s) :: attrs
(*    | "",Val s -> {t with =s},attrs
    | "",Val s -> {t with =s},attrs
    | "",Val s -> {t with =s},attrs
    | "",Val s -> {t with =s},attrs
    | "",Val s -> {t with =s},attrs
    | "",Val s -> {t with =s},attrs
    | "",Val s -> {t with =s},attrs*)
    | k,v -> printf "translate_node: %s %s\n%!" k (ENIAMsemStringOf.linear_term 0 v); t, (k,v) :: attrs) in
  {t with attrs=attrs}

and create_concepts tokens lex_sems = function
    ENIAM_LCGtypes.Node t ->
      let t = translate_node tokens lex_sems t in
      create_normal_concept tokens lex_sems t []
  | ENIAM_LCGtypes.Tuple l -> Tuple(Xlist.map l (create_concepts tokens lex_sems))
  | ENIAM_LCGtypes.Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i, create_concepts tokens lex_sems t))
  | ENIAM_LCGtypes.Dot -> Dot
  | ENIAM_LCGtypes.Val s -> Val s
  | ENIAM_LCGtypes.Ref i -> Ref i
  (* | Choice choices -> Choice(StringMap.map choices (create_concepts tokens lex_sems)) *)
  | t -> failwith ("create_concepts: " ^ ENIAM_LCGstringOf.linear_term 0 t)


let translate tokens lex_sems term =
  let sem = Array.make (Array.length term) Dot in
  Int.iter 0 (Array.length sem - 1) (fun i ->
    sem.(i) <- create_concepts tokens lex_sems term.(i));
  sem

(***************************************************************************************)

let rec make_tree_rec references = function
    Node t -> Node{t with args=make_tree_rec references t.args}
  | Concept c -> Concept{c with c_relations=make_tree_rec references c.c_relations}
  | Context c -> Context{c with cx_contents=make_tree_rec references c.cx_contents; cx_relations=make_tree_rec references c.cx_relations}
  | Relation(r,a,t) -> Relation(r,a,make_tree_rec references t)
  | RevRelation(r,a,t) -> RevRelation(r,a,make_tree_rec references t)
  | SingleRelation r  -> SingleRelation r
  | AddRelation(t,r,a,s) -> AddRelation(make_tree_rec references t,r,a,make_tree_rec references s)
  | RemoveRelation t -> RemoveRelation(make_tree_rec references t)
  | SetContextName(s,t) -> SetContextName(s,make_tree_rec references t)
  | Tuple l -> Tuple(Xlist.map l (make_tree_rec references))
  | Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i, make_tree_rec references t))
  | Dot -> Dot
  | Val s -> Val s
  | Ref i -> make_tree_rec references references.(i)
  (* | t -> failwith ("make_tree_rec: " ^ LCGstringOf.linear_term 0 t) *)

let make_tree references =
  RemoveRelation(make_tree_rec references references.(0))
(*
let rec simplify_tree_add_relation r a s = function
    Concept c -> Concept{c with c_relations=Tuple[Relation(Val r,Val a,s);c.c_relations]}
  | Context c -> Context{c with cx_relations=Tuple[Relation(Val r,Val a,s);c.cx_relations]}
  | Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i, simplify_tree_add_relation r a s t))
  | t -> AddRelation(t,r,a,s)

let rec transpose_tuple_variant e ll =
  match List.hd ll with
    _,[] -> []
  | _ ->
     let hd,tl = Xlist.fold ll ([],[]) (fun (hd,tl) (i,l) ->
       (i,List.hd l) :: hd, (i,List.tl l) :: tl) in
     (Variant (e,List.rev hd)) :: (transpose_tuple_variant e (List.rev tl))

(* FIXME TODO:
Bryka chmara wieczorów: problem z wyborem relacji
uzgadnianie preferencji i role tematyczne przy num, measure i prep:nosem
Witold bryka.: dezambiguacja
Niearanżowany szpak bryka.: lematyzacja 'Niearanżowany'

dobre:
Bryka na chmarze strusi.
Pięć strusi bryka.
*)

let rec simplify_tree = function
    Node t -> Node{t with args=simplify_tree t.args}
  | Concept c -> Concept{c with c_relations=simplify_tree c.c_relations}
  | Context c -> Context{c with cx_contents=simplify_tree c.cx_contents; cx_relations=simplify_tree c.cx_relations}
  | Relation(r,a,t) -> Relation(r,a,simplify_tree t)
  | RevRelation(r,a,t) -> RevRelation(r,a,simplify_tree t)
  | SingleRelation r  -> SingleRelation r
(*  | AddRelation(Concept c,r,a,s) -> simplify_tree (Concept{c with c_relations=Tuple[Relation(Val r,Val a,s);c.c_relations]})
  | AddRelation(Context c,r,a,s) -> simplify_tree (Context{c with cx_relations=Tuple[Relation(Val r,Val a,s);c.cx_relations]})*)
  | AddRelation(t,r,a,s) -> simplify_tree_add_relation r a (simplify_tree s) (simplify_tree t)
(*      let t = simplify_tree t in
      let s = simplify_tree s in
      (match t with
        Concept c -> Concept{c with c_relations=Tuple[Relation(Val r,Val a,s);c.c_relations]}
      | Context c -> Context{c with cx_relations=Tuple[Relation(Val r,Val a,s);c.cx_relations]}
      | _ -> AddRelation(t,r,a,s))*)
  | RemoveRelation t ->
      (match simplify_tree t with
        Relation (_,_,t) -> t
      | Dot -> Dot
      | Variant(e,l) -> simplify_tree (Variant(e,Xlist.map l (fun (i,t) -> i,RemoveRelation t)))
      | Tuple l -> simplify_tree (Tuple(Xlist.map l (fun t -> RemoveRelation t)))
      | Context t -> Context t
      | Concept t -> Concept t
      | t -> RemoveRelation t)
  | SetContextName(s,t) ->
      (match simplify_tree t with
        Context t -> Context{t with cx_sense=Val s}
      | t ->  SetContextName(s,t))
  | Tuple l ->
      let l = Xlist.fold l [] (fun l t ->
        match simplify_tree t with
          Dot -> l
        | t -> t :: l) in
      (match l with
        [] -> Dot
      | [t] -> t
      | l -> Tuple(List.rev l))
  | Variant(_,[_,t]) -> simplify_tree t
  | Variant(e,l) ->
      let l = Xlist.map l (fun (i,t) -> i, simplify_tree t) in
      let _,t = List.hd l in
      let b = Xlist.fold (List.tl l) true (fun b (_,s) -> if s = t then b else false) in
      if b then t else
      (try
        (match t with
           Concept c ->
             let lt = Xlist.fold l [] (fun lt -> function
                 i,Concept c2 -> if c.c_sense = c2.c_sense && c.c_quant = c2.c_quant then (i,c2.c_relations) :: lt else raise Not_found
               | _ -> raise Not_found) in
             Concept{c with c_relations = simplify_tree (Variant(e,lt))}
         | Context c ->
             let lt1,lt2 = Xlist.fold l ([],[]) (fun (lt1,lt2) -> function
                 i,Context c2 -> (i,c2.cx_contents) :: lt1, (i,c2.cx_relations) :: lt2
               | _ -> raise Not_found) in
             Context{c with cx_contents= simplify_tree (Variant(e,lt1)); cx_relations = simplify_tree (Variant(e,lt2))}
        | Tuple tl ->
(*             print_endline ("V3: " ^ LCGstringOf.linear_term 0 (Variant l));  *)
            let n = Xlist.size tl in
            let lt = Xlist.fold l [] (fun lt -> function
              i,Tuple tl -> if n = Xlist.size tl then (i,tl) :: lt else raise Not_found
            | _ -> raise Not_found) in
            let t = Tuple(transpose_tuple_variant e lt) in
(*             print_endline ("V4: " ^ LCGstringOf.linear_term 0 t); *)
            simplify_tree t
         | Dot -> if Xlist.fold l true (fun b -> function
              _,Dot -> b
            | _ -> false) then Dot else raise Not_found
         | _ -> raise Not_found)
      with Not_found -> Variant(e,l))
(*   Variant(e,Xlist.map l (fun (i,t) -> i, simplify_tree t)) *)
  | Dot -> Dot
  | Val s -> Val s
  | t -> failwith ("simplify_tree: " ^ LCGstringOf.linear_term 0 t)

let rec manage_quantification2 (quants,quant) = function
    Tuple l -> Xlist.fold l (quants,quant) manage_quantification2
  | Dot -> quants,quant
  | Val s -> quants,Tuple[Val s;quant]
  | t -> (Relation(Val "Quantifier",Val "",t)) :: quants,quant

let rec manage_quantification = function
    Node t -> Node{t with args=manage_quantification t.args}
  | Concept c ->
       let quants,quant = manage_quantification2 ([],Dot) c.c_quant in
       Concept{c with c_quant=quant; c_relations=manage_quantification (Tuple(c.c_relations :: quants))}
  | Context c -> Context{c with cx_contents=manage_quantification c.cx_contents; cx_relations=manage_quantification c.cx_relations}
  | Relation(r,a,t) -> Relation(r,a,manage_quantification t)
  | RevRelation(r,a,t) -> RevRelation(r,a,manage_quantification t)
  | SingleRelation r  -> SingleRelation r
  | AddRelation(t,r,a,s) -> AddRelation(manage_quantification t,r,a,manage_quantification s)
  | RemoveRelation t -> RemoveRelation(manage_quantification t)
  | Tuple l -> Tuple(Xlist.map l manage_quantification)
  | Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i, manage_quantification t))
  | Dot -> Dot
  | Val s -> Val s
  | t -> failwith ("manage_quantification: " ^ LCGstringOf.linear_term 0 t)

let simplify_gender2 = function
    Variant(e,l) ->
      (try
        let l2 = List.sort compare (Xlist.rev_map l (function (_,Val s) -> s | _ -> raise Not_found)) in
        match l2 with
          ["f"; "m1"; "m2"; "m3"; "n1"; "n2"; "p1"; "p2"; "p3"] -> Dot
        | ["m1"; "m2"; "m3"] -> Val "m"
        | ["n1"; "n2"] -> Val "n"
        | ["f"; "m2"; "m3"; "n1"; "n2"; "p2"; "p3"] -> Val "nmo"
        | ["m1"; "p1"] -> Val "mo"
        | ["f"; "m1"; "m2"; "m3"; "n1"; "n2"] -> Dot
        | ["pl"; "sg"] -> Dot
(*        |  -> Val ""
        |  -> Val ""*)
        | _ -> (*print_endline ("[\"" ^ String.concat "\"; \"" l2 ^ "\"]");*) Variant(e,l)
      with Not_found -> Variant(e,l))
  | t -> t

let rec simplify_gender = function
    Node t -> Node{t with args=simplify_gender t.args}
  | Concept c -> Concept{c with c_relations=simplify_gender c.c_relations}
  | Context c -> Context{c with cx_contents=simplify_gender c.cx_contents; cx_relations=simplify_gender c.cx_relations}
  | Relation(r,a,t) -> Relation(r,a,simplify_gender t)
  | RevRelation(r,a,t) -> RevRelation(r,a,simplify_gender t)
  | SingleRelation r  ->
      let t = simplify_gender2 r in
      if t = Dot then Dot else SingleRelation t
  | AddRelation(t,r,a,s) -> AddRelation(simplify_gender t,r,a,simplify_gender s)
  | RemoveRelation t -> RemoveRelation(simplify_gender t)
  | Tuple l -> Tuple(Xlist.map l simplify_gender)
  | Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i, simplify_gender t))
  | Dot -> Dot
  | Val s -> Val s
  | t -> failwith ("simplify_gender: " ^ LCGstringOf.linear_term 0 t)

(***************************************************************************************)

let rec validate_semantics_quant = function
    Val _ -> true
  | Variant(e,l) -> Xlist.fold l true (fun b (_,t) -> b && validate_semantics_quant t)
  | Tuple l -> Xlist.fold l true (fun b t -> b && validate_semantics_quant t)
  | Dot -> true
  | t -> (*print_endline ("validate_semantics_quant: " ^ LCGstringOf.linear_term 0 t);*) false

let rec validate_semantics_sense = function
    Val _ -> true
  | Dot -> true
  | t -> (*print_endline ("validate_semantics_sense: " ^ LCGstringOf.linear_term 0 t);*) false

let rec validate_semantics_rel_name = function
    Val _ -> true
  | t -> (*print_endline ("validate_semantics_rel_name: " ^ LCGstringOf.linear_term 0 t);*) false

let rec validate_semantics = function
    Context c -> validate_semantics_sense c.cx_sense && validate_semantics_contents c.cx_contents && validate_semantics_relations c.cx_relations
  | Variant(e,l) -> Xlist.fold l true (fun b (_,t) -> b && validate_semantics t)
  | t -> (*print_endline ("validate_semantics: " ^ LCGstringOf.linear_term 0 t);*) false

and validate_semantics_relations = function
    SingleRelation r -> validate_semantics_rel_name r
  | Relation(r,a,t) -> validate_semantics_rel_name r && validate_semantics_rel_name a && validate_semantics_concept t
  | RevRelation(r,a,t) -> validate_semantics_rel_name r && validate_semantics_rel_name a && validate_semantics_concept t
  | Variant(e,l) -> Xlist.fold l true (fun b (_,t) -> b && validate_semantics_relations t)
  | Tuple l -> Xlist.fold l true (fun b t -> b && validate_semantics_relations t)
  | Dot -> true
  | t -> (*print_endline ("validate_semantics_relations: " ^ LCGstringOf.linear_term 0 t);*) false

and validate_semantics_concept = function
    Concept c -> validate_semantics_sense c.c_sense && validate_semantics_sense c.c_name && validate_semantics_quant c.c_quant && validate_semantics_relations c.c_relations
  | Context c -> validate_semantics_sense c.cx_sense && validate_semantics_contents c.cx_contents && validate_semantics_relations c.cx_relations
  | Variant(e,l) -> Xlist.fold l true (fun b (_,t) -> b && validate_semantics_concept t)
  | t -> (*print_endline ("validate_semantics_concept: " ^ LCGstringOf.linear_term 0 t);*) false

and validate_semantics_contents = function
    Concept c -> validate_semantics_concept (Concept c)
  | Context c -> validate_semantics_concept (Context c)
  | Variant(e,l) -> Xlist.fold l true (fun b (_,t) -> b && validate_semantics_contents t)
  | Tuple l -> Xlist.fold l true (fun b t -> b && validate_semantics_contents t)
  | t -> (*print_endline ("validate_semantics_contents: " ^ LCGstringOf.linear_term 0 t);*) false

(***************************************************************************************)

let rec find_multiple_variants v m = function
    Concept c ->
      let v,m = find_multiple_variants v m c.c_quant in
      let v,m = find_multiple_variants v m c.c_relations in
      v,m
  | Context c ->
      let v,m = find_multiple_variants v m c.cx_contents in
      let v,m = find_multiple_variants v m c.cx_relations in
      v,m
  | Relation(r,a,t) -> find_multiple_variants v m t
  | RevRelation(r,a,t) -> find_multiple_variants v m t
  | SingleRelation r  -> v,m
  | Tuple l ->
      Xlist.fold l (v,m) (fun (v,m) t ->
        find_multiple_variants v m t)
  | Variant(e,l) ->
      let m = if StringSet.mem v e then StringMap.add m e (Xlist.map l fst) else m in
      let v = StringSet.add v e in
      let vl,m = Xlist.fold l ([],m) (fun (vl,m) (i,t) ->
        let v2,m = find_multiple_variants v m t in
        v2 :: vl,m) in
      Xlist.fold vl v StringSet.union, m
  | Dot -> v,m
  | Val s -> v,m
  | t -> failwith ("find_multiple_variants: " ^ LCGstringOf.linear_term 0 t)

type variant_structure =
    C of variant_structure * variant_structure
  | E
  | T of variant_structure list
  | V of string * int * (string * int * variant_structure) list

let rec string_of_variant_structure = function
    C(s,t) -> sprintf "C(%s,%s)" (string_of_variant_structure s) (string_of_variant_structure t)
  | E -> "E"
  | T l -> sprintf "T[%s]" (String.concat ";" (Xlist.map l string_of_variant_structure))
  | V(e,n,l) ->
      sprintf "V(%s,%d,[%s])" e n (String.concat ";" (Xlist.map l (fun (i,n,t) ->
        sprintf "%s,%d,%s" i n (string_of_variant_structure t))))

let rec create_variant_structure = function
    Concept c -> (*create_variant_structure c.c_relations*)
      let n,s = create_variant_structure c.c_quant in
      let m,t = create_variant_structure c.c_relations in
      m*n,C(s,t)
  | Context c ->
      let n,s = create_variant_structure c.cx_contents in
      let m,t = create_variant_structure c.cx_relations in
      m*n,C(s,t)
  | Relation(r,a,t) -> create_variant_structure t
  | RevRelation(r,a,t) -> create_variant_structure t
  | SingleRelation r  -> 1,E
  | Tuple l ->
      let n,l = Xlist.fold l (1,[]) (fun (n,l) t ->
        let m,v = create_variant_structure t in
        n*m,v :: l) in
      n,T(List.rev l)
  | Variant(e,l) ->
      let n,l = Xlist.fold l (0,[]) (fun (n,l) (i,t) ->
        let m,v = create_variant_structure t in
        n+m,(i,m,v) :: l) in
      n,V(e,n,List.rev l)
  | Dot -> 1,E
  | Val s -> 1,E
  | t -> failwith ("create_variant_structure: " ^ LCGstringOf.linear_term 0 t)

let rec get_all_variants = function
    Concept c ->
(*      let l = get_all_variants c.c_relations in
      Xlist.map l (fun t -> Concept{c with c_relations=t})*)
      let lq = get_all_variants c.c_quant in
      let lr = get_all_variants c.c_relations in
      List.flatten (Xlist.map lq (fun q ->
        Xlist.map lr (fun r ->
          Concept{c with c_relations=r; c_quant=q})))
  | Context cx ->
      let lc = get_all_variants cx.cx_contents in
      let lr = get_all_variants cx.cx_relations in
      List.flatten (Xlist.map lc (fun c ->
        Xlist.map lr (fun r ->
          Context{cx with cx_contents=c; cx_relations=r})))
  | Relation(r,a,t) ->
      let l = get_all_variants t in
      Xlist.map l (fun t -> Relation(r,a,t))
  | RevRelation(r,a,t) ->
      let l = get_all_variants t in
      Xlist.map l (fun t -> RevRelation(r,a,t))
  | SingleRelation r  -> [SingleRelation r]
  | Tuple l ->
      let ll = Xlist.multiply_list (Xlist.map l get_all_variants) in
      Xlist.map ll (fun l -> Tuple l)
  | Variant(e,l) ->
      List.rev (Xlist.fold l [] (fun l (_,t) -> get_all_variants t @ l))
  | Dot -> [Dot]
  | Val s -> [Val s]
  | t -> failwith ("get_all_variants: " ^ LCGstringOf.linear_term 0 t)

let _ = Random.self_init ()

let rec draw_variant2 k = function
    (i2,m,v) :: lv, (i,t) :: l ->
      if i2 <> i then failwith "draw_variant2" else
      if k < m then v,t else
      draw_variant2 (k - m) (lv,l)
  | _ -> failwith "draw_variant2"

let rec draw_variant = function
(*     s,Concept c -> Concept{c with c_relations=draw_variant (s,c.c_relations)} *)
    C(s,t),Concept c -> Concept{c with c_quant=draw_variant (s,c.c_quant); c_relations=draw_variant (t,c.c_relations)}
  | C(s,t),Context c -> Context{c with cx_contents=draw_variant (s,c.cx_contents); cx_relations=draw_variant (t,c.cx_relations)}
  | s,Relation(r,a,t) -> Relation(r,a,draw_variant (s,t))
  | s,RevRelation(r,a,t) -> RevRelation(r,a,draw_variant (s,t))
  | E,SingleRelation r  -> SingleRelation r
  | T lv,Tuple l -> Tuple(List.rev (Xlist.fold2 lv l [] (fun l s t -> (draw_variant (s,t)) :: l)))
  | V(e2,n,lv),Variant(e,l) ->
      if e <> e2 then failwith "draw_variant" else
      let k = Random.int n in
      let s,t = draw_variant2 k (lv,l) in
      draw_variant (s,t)
  | E,Dot -> Dot
  | E,Val s -> Val s
  | s,t -> (*print_endline ("draw_variant: " ^ LCGstringOf.linear_term 0 t);*) failwith ("draw_variant: " ^ string_of_variant_structure s)

let rec get_some_variants chosen = function
    Concept c -> (* FIXME: czy pozostałe atrybuty można pominąć? *)
      let q = get_some_variants chosen c.c_quant in
      let r = get_some_variants chosen c.c_relations in
      Concept{c with c_relations=r; c_quant=q}
  | Context cx ->
      let c = get_some_variants chosen cx.cx_contents in
      let r = get_some_variants chosen cx.cx_relations in
      Context{cx with cx_contents=c; cx_relations=r}
  | Relation(r,a,t) -> Relation(r,a,get_some_variants chosen t)
  | RevRelation(r,a,t) -> RevRelation(r,a,get_some_variants chosen t)
  | SingleRelation r  -> SingleRelation r
  | Tuple l -> Tuple(Xlist.map l (get_some_variants chosen))
  | Variant(e,l) ->
      if StringMap.mem chosen e then
        let t = try Xlist.assoc l (StringMap.find chosen e) with Not_found -> failwith "get_some_variants" in
        get_some_variants chosen t
      else Variant(e,Xlist.map l (fun (i,t) -> i,get_some_variants chosen t))
  | Dot -> Dot
  | Val s -> Val s
  | t -> failwith ("get_some_variants: " ^ LCGstringOf.linear_term 0 t)

let get_all_multiple_variants t mv =
  let ll = StringMap.fold mv [] (fun ll e l ->
    (Xlist.map l (fun i -> e,i)) :: ll) in
  if ll = [] then [t] else
  Xlist.fold (Xlist.multiply_list ll) [] (fun variants l ->
    let chosen = Xlist.fold l StringMap.empty (fun chosen (e,i) -> StringMap.add chosen e i) in
    get_some_variants chosen t :: variants)

(*let rec merge_multiple_variant l = function
    [] -> l
  | x :: rev -> merge_multiple_variant (x :: l) rev

let rec select_multiple_variant rev k = function
    [] -> failwith "select_multiple_variant"
  | x :: l -> if k=0 then x, merge_multiple_variant rev l else select_multiple_variant (x :: rev) (k-1) l*)

let rec select_multiple_variant k = function
    [] -> failwith "select_multiple_variant"
  | x :: l -> if k=0 then x else select_multiple_variant (k-1) l

let draw_multiple_variant k t mv =
  let ll = StringMap.fold mv [] (fun ll e l ->
    (Xlist.map l (fun i -> e,i)) :: ll) in
  let mv = Int.fold 1 k [] (fun mv _ ->
    let variants = Xlist.fold ll [] (fun variants l ->
      let k = Random.int (Xlist.size l) in
      select_multiple_variant k l :: variants) in
    variants :: mv) in
  Xlist.fold mv [] (fun variants l ->
    let chosen = Xlist.fold l StringMap.empty (fun chosen (e,i) -> StringMap.add chosen e i) in
    get_some_variants chosen t :: variants)

let rec draw_multiple_variant2_rec k = function
    [] -> failwith "draw_multiple_variant2_rec"
  | (n,s,t) :: l -> if k < n then s,t else draw_multiple_variant2_rec (k-n) l

let draw_multiple_variant2 sum_n mv =
  let k = Random.int sum_n in
  draw_multiple_variant2_rec k mv

let draw_trees max_n t =
  let _,multiple_variants = find_multiple_variants StringSet.empty StringMap.empty t in
  let mo = StringMap.fold multiple_variants 1 (fun mo _ l -> mo * Xlist.size l) in
(*   printf "|multiple_variants|=%d |mo|=%d\n%!" (StringMap.size multiple_variants) mo; *)
  let multiple_variants =
    if mo <= 100 then get_all_multiple_variants t multiple_variants else
      draw_multiple_variant 100 t multiple_variants in
(*   printf "|multiple_variants|=%d |mo|=%d\n%!" (Xlist.size multiple_variants) mo; *)
  let multiple_variants = Xlist.map multiple_variants (fun t ->
    let n,s = create_variant_structure t in
    n,s,t) in
  let sum_n = Xlist.fold multiple_variants 0 (fun sum_n (n,_,_) -> sum_n + n) in
(*  print_endline (LCGstringOf.linear_term 0 t);
  print_endline (string_of_variant_structure s);*)
  if sum_n <= max_n then
    List.flatten (Xlist.rev_map multiple_variants (fun (n,s,t) ->
      get_all_variants t)) else
  Int.fold 1 max_n [] (fun l _ ->
    let s,t = draw_multiple_variant2 sum_n multiple_variants in
    (draw_variant (s,t)) :: l)

(* FIXME!: założenie o jednokrotnym występowaniu wagi nie jest prawdziwe np. dla zdania: "Łódź wyprzedza statek." *)
*)