ENIAM_LCGreductions.ml
24.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
(*
* ENIAM_LCGparser, a parser for Logical Categorial Grammar formalism
* Copyright (C) 2016-2017 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
* Copyright (C) 2016-2017 Institute of Computer Science Polish Academy of Sciences
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*)
open ENIAM_LCGtypes
open Xstd
let variant_label_ref = ref []
let reset_variant_label () =
variant_label_ref := []
let rec add_variant_label = function
[] -> ["A"]
| "Z" :: l -> "A" :: add_variant_label l
| s :: l -> String.make 1 (Char.chr (Char.code (String.get s 0) + 1)) :: l
let get_variant_label () =
variant_label_ref := add_variant_label (!variant_label_ref);
String.concat "" (List.rev (!variant_label_ref))
(* let prepare_references t references next_reference =
let a = Array.make next_reference Dot in
Xlist.iter references (fun (i,t) -> a.(i) <- t);
a.(0) <- t;
a *)
let prepare_dependency_tree t refs next_ref =
let a = Array.make next_ref Dot in
TermMap.iter refs (fun t i -> a.(i) <- t);
a.(0) <- t;
a
let rec extract_nth n rev = function
[] -> failwith "extract_nth"
| s :: l ->
if n = 1 then s, (List.rev rev) @ l
else extract_nth (n-1) (s :: rev) l
let rec is_reduced_rec = function
Tuple l -> Xlist.fold l true (fun b t -> b && is_reduced_rec t)
| Variant(_,l) -> Xlist.fold l true (fun b (_,t) -> b && is_reduced_rec t)
| Dot -> true
| Val s -> true
| Node t -> Xlist.fold t.attrs true (fun b (_,t) -> b && is_reduced_rec t) && is_reduced_rec t.symbol && (*is_reduced_rec t.arg_symbol &&*) is_reduced_rec t.args
(* | Morf m -> true *)
| Cut t -> is_reduced_rec t
| Ref i -> true
| _ -> false
let is_reduced = (*function
Triple(_,_,_) as t -> is_reduced_rec t
| _ -> false*) is_reduced_rec
let is_reduced_dependency_tree dependency_tree =
Int.fold 0 (Array.length dependency_tree - 1) true (fun b i ->
b && is_reduced dependency_tree.(i))
let rec assign_labels_rec = function
Tuple l -> Tuple(Xlist.map l assign_labels_rec)
| Variant(_,l) -> Variant(get_variant_label (), fst (Xlist.fold l ([],1) (fun (l,i) (_,t) ->
(string_of_int i, assign_labels_rec t) :: l,i+1)))
| Dot -> Dot
| Val s -> Val s
| Node t -> Node{t with args=assign_labels_rec t.args}
(* | Morf m -> Morf m *)
| Cut t -> Cut(assign_labels_rec t)
| Ref i -> Ref i
| _ -> failwith "assign_labels_rec"
let assign_labels dependency_tree =
Int.iter 0 (Array.length dependency_tree - 1) (fun i ->
dependency_tree.(i) <- assign_labels_rec dependency_tree.(i))
let rec remove_cuts_rec = function
Tuple l -> Tuple(Xlist.map l remove_cuts_rec)
| Variant(e,l) -> Variant(e, Xlist.map l (fun (i,t) -> i, remove_cuts_rec t))
| Dot -> Dot
| Val s -> Val s
| Node t -> Node{t with args=remove_cuts_rec t.args}
(* | Morf m -> Morf m *)
| Cut t -> remove_cuts_rec t
| Ref i -> Ref i
| _ -> failwith "remove_cuts_rec"
let remove_cuts dependency_tree =
Int.iter 0 (Array.length dependency_tree - 1) (fun i ->
dependency_tree.(i) <- remove_cuts_rec dependency_tree.(i))
let linear_term_beta_reduction4 references =
let reduced = Array.make (ExtArray.size references) Dot in
let size = ref 0 in
let refs = ref TermMap.empty in
let next_ref = ref 1 in
let rec flatten_variant set = function
Variant(_,l) -> Xlist.fold l set (fun set (_,t) -> flatten_variant set t)
| Cut t -> TermSet.add set (Cut t)
| _ -> failwith "flatten_variant" in
let rec simplify_args = function
Tuple l -> Tuple(Xlist.map l simplify_args)
| Dot -> Dot
| Variant(e,l) -> (match TermSet.to_list (flatten_variant TermSet.empty (Variant(e,l))) with
[] -> failwith "simplify_args 1"
| [t] -> t
| l -> Variant("",Xlist.map l (fun t -> ("0",t))))
| Cut t -> Cut t
| t -> failwith ("simplify_args 2: " ^ ENIAM_LCGstringOf.linear_term 0 t) in
let rec create_cut_refs = function
Node t ->
let t = {t with args=simplify_args t.args} in
(try
let i = TermMap.find !refs (Node t) in
Cut(Ref i)
with Not_found ->
refs := TermMap.add !refs (Node t) !next_ref;
let t = Cut(Ref !next_ref) in
incr next_ref;
t)
| Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i,create_cut_refs t))
| _ -> failwith "create_cut_refs" in
let rec linear_term_beta_reduction subst = function
Var v -> (try StringMap.find subst v with Not_found -> Var v) (* zakladam, ze termy, ktore sa podstawiane na zmienne nie maja zmiennych wolnych *)
| Tuple l ->
let l = Xlist.map l (linear_term_beta_reduction subst) in
(match Xlist.fold l [] (fun l t -> if t = Dot then l else t :: l) with
[] -> Dot
| [t] -> t
| l -> Tuple(List.rev l))
| Variant(e,l) -> Variant(e,Xlist.map l (fun (i,t) -> i,linear_term_beta_reduction subst t))
| VariantVar(v,t) -> VariantVar(v, linear_term_beta_reduction subst t)
| ProjVar(v,t) ->
(match linear_term_beta_reduction subst t with
VariantVar(v2,t2) -> if v = v2 then t2 else ProjVar(v,VariantVar(v2,t2))
| Variant(e,l) -> Variant(e,Xlist.map l (fun (i,s) -> i,linear_term_beta_reduction subst (ProjVar(v,s))))
| t2 -> ProjVar(v,t2))
| SubstVar v -> SubstVar v
| Subst(s,v,t) ->
(match linear_term_beta_reduction subst s with
| Tuple l -> Tuple(Xlist.map l (fun s -> linear_term_beta_reduction subst (Subst(s,v,t))))
| Variant(e,l) -> Variant(e,Xlist.map l (fun (i,s) -> i,linear_term_beta_reduction subst (Subst(s,v,t))))
| Lambda(v2,s) -> Lambda(v2, linear_term_beta_reduction subst (Subst(s,v,t)))
| Dot -> Dot
| SetAttr(e,s1,s2) -> SetAttr(e,linear_term_beta_reduction subst (Subst(s1,v,t)),linear_term_beta_reduction subst (Subst(s2,v,t)))
| Val s -> Val s
| Var w -> if w = v then t else Subst(Var w,v,t)
| SubstVar w -> if w = v then t else SubstVar w
| Inj(n,s) -> Inj(n,linear_term_beta_reduction subst (Subst(s,v,t)))
| Node s -> Node{s with attrs=Xlist.map s.attrs (fun (e,s) -> e, linear_term_beta_reduction subst (Subst(s,v,t)));
(* gs=linear_term_beta_reduction subst (Subst(s.gs,v,t)); *)
symbol=linear_term_beta_reduction subst (Subst(s.symbol,v,t));
(* arg_symbol=linear_term_beta_reduction subst (Subst(s.arg_symbol,v,t)); *)
args=linear_term_beta_reduction subst (Subst(s.args,v,t))}
(* | Morf m -> Morf m
| Gf s -> Gf s *)
| Cut(Ref i) -> Cut(Ref i)
| Cut s -> linear_term_beta_reduction subst (Cut(Subst(s,v,t)))
| s2 -> Subst(s2,v,t))
| Inj(n,t) -> Inj(n,linear_term_beta_reduction subst t)
| Case(t,l) ->
(match linear_term_beta_reduction subst t with
Inj(n,t) ->
if Xlist.size l < n then Case(Inj(n,t),l) else
let v, r = List.nth l (n-1) in
let subst = StringMap.add subst v t in
linear_term_beta_reduction subst r
| Variant(e,l2) -> linear_term_beta_reduction subst (Variant(e,Xlist.map l2 (fun (i,t2) -> i,Case(t2,l))))
| t2 -> Case(t2,Xlist.map l (fun (v,t) -> v, linear_term_beta_reduction subst t))) (* FIXME alfa-konwersja i przykrywanie *)
| Lambda(v,t) -> Lambda(v, linear_term_beta_reduction subst t)
| LambdaSet(l,t) -> LambdaSet(l, linear_term_beta_reduction subst t)
| LambdaRot(n,t) ->
(match linear_term_beta_reduction subst t with
Lambda(v,t) -> if n = 1 then Lambda(v,t) else LambdaRot(n,Lambda(v,t))
| LambdaSet([v],t) -> if n = 1 then Lambda(v,t) else LambdaRot(n,LambdaSet([v],t))
| LambdaSet(l,t) ->
if Xlist.size l < n then LambdaRot(n,LambdaSet(l,t)) else
let s,l = extract_nth n [] l in
Lambda(s,LambdaSet(l,t))
| Variant(e,l) -> Variant(e,Xlist.map l (fun (i,s) -> i,linear_term_beta_reduction subst (LambdaRot(n,s))))
| t2 -> LambdaRot(n,t2))
| App(s,t) ->
let t = linear_term_beta_reduction subst t in
(match linear_term_beta_reduction subst s, t with
Lambda(v,s),_ ->
let subst = StringMap.add subst v t in
linear_term_beta_reduction subst s
| LambdaSet([v],s),_ -> (* FIXME ten przypadek nie powinien miec miejsca, jego wystepowanie wskazuje na brak rotacji przy maczowaniu *)
let subst = StringMap.add subst v t in
linear_term_beta_reduction subst s
| Variant(e,l),_ -> linear_term_beta_reduction subst (Variant(e,Xlist.map l (fun (i,s) -> i,App(s,t))))
| t2,_ -> App(t2,t))
| Dot -> Dot
| Fix(f,t) ->
(match linear_term_beta_reduction subst f with
Empty s -> linear_term_beta_reduction subst s
| Apply s -> linear_term_beta_reduction subst (App(t,s))
| Insert(s1,s2) -> Tuple[Fix(s1,t);Fix(s2,t)]
| f -> Fix(f,linear_term_beta_reduction subst t))
| Empty t -> Empty(linear_term_beta_reduction subst t)
| Apply t -> Apply(linear_term_beta_reduction subst t)
| Insert(s,t) -> Insert(linear_term_beta_reduction subst s,linear_term_beta_reduction subst t)
| Val s -> Val s
| SetAttr(e,s,t) ->
(match linear_term_beta_reduction subst t with
Dot -> Dot
| Tuple l -> linear_term_beta_reduction subst (Tuple(Xlist.map l (fun t -> SetAttr(e,s,t))))
| Node t -> (match e,s with
(* "GF",Gf gf -> Node{t with agf=gf}
| "MORF",Morf morf -> Node{t with amorf=morf}
| "AROLE",Val arole -> Node{t with arole=arole} *)
| "ARG_SYMBOL",symbol -> Node{t with arg_symbol=symbol}
| "ARG_DIR",Val dir -> Node{t with arg_dir=dir}
| _ -> Node{t with attrs=(e,linear_term_beta_reduction subst s) :: t.attrs})
| Variant(e2,l) -> Variant(e2,Xlist.map l (fun (i,t) -> i,linear_term_beta_reduction subst (SetAttr(e,s,t))))
| t -> SetAttr(e,s,t))
(* | Choice(e,i,t) -> Choice(e,i,linear_term_beta_reduction subst t) *)
| Node t ->
if !size > !no_nodes then raise SemTooBig;
incr size;
Node{t with attrs=Xlist.map t.attrs (fun (e,t) -> e, linear_term_beta_reduction subst t);
(* gs=linear_term_beta_reduction subst t.gs; *)
symbol=linear_term_beta_reduction subst t.symbol;
(* arg_symbol=linear_term_beta_reduction subst t.arg_symbol; *)
args=linear_term_beta_reduction subst t.args}
(* | Morf m -> Morf m
| Gf s -> Gf s
| Choice _ -> failwith "linear_term_beta_reduction"
| Concept _ -> failwith "linear_term_beta_reduction"
| Context _ -> failwith "linear_term_beta_reduction"
| Relation _ -> failwith "linear_term_beta_reduction"
| RevRelation _ -> failwith "linear_term_beta_reduction"
| SingleRelation _ -> failwith "linear_term_beta_reduction"
| AddRelation _ -> failwith "linear_term_beta_reduction"
| RemoveRelation _ -> failwith "linear_term_beta_reduction"
| SetContextName _ -> failwith "linear_term_beta_reduction" *)
| Ref i -> (* nie ma problemu przy wywoływaniu z różnymi podstawieniami, bo termy w poszczególnych referencjach nie mają zmiennych wolnych
reduced zawiera termy bez zmiennych *)
if reduced.(i) = Dot then (
let t = linear_term_beta_reduction subst (ExtArray.get references i) in
if is_reduced t then reduced.(i) <- t else ExtArray.set references i t;
t)
else reduced.(i)
| Cut(Ref i) -> Cut(Ref i)
| Cut t ->
let t = linear_term_beta_reduction subst t in
if is_reduced t then create_cut_refs t else Cut t
in
linear_term_beta_reduction StringMap.empty (ExtArray.get references 0), !refs, !next_ref
(* dodać usuwanie jednorazowych etykiet i
zastąpić Cut(Ref i) przez coś innego *)
let reduce t references =
ExtArray.set references 0 t;
(* let references = prepare_references t references next_reference in *)
(* LCGlatexOf.print_references "references1" references; *)
let t,refs,next_ref = linear_term_beta_reduction4 references in
let dependency_tree = prepare_dependency_tree t refs next_ref in
(* LCGlatexOf.print_references "references2" references; *)
dependency_tree
let rec reshape_dependency_tree_rec dependency_tree a visited = function
Node t -> Node{t with args = reshape_dependency_tree_rec dependency_tree a visited t.args}
| Tuple l ->
let l = Xlist.fold l [] (fun l t ->
let t = reshape_dependency_tree_rec dependency_tree a visited t in
match t with
Dot -> l
| Tuple l2 -> l2 @ l
| t -> t :: l) in
(match l with
[] -> Dot
| [t] -> t
| l -> Tuple l)
| Variant(e,l) ->
Variant(e,List.rev (Xlist.rev_map l (fun (i,t) ->
i, reshape_dependency_tree_rec dependency_tree a visited t)))
| Dot -> Dot
| Ref i ->
if IntMap.mem !visited i then Ref (IntMap.find !visited i) else (
(* Printf.printf "reshape_dependency_tree_rec 1\n%!"; *)
let t = reshape_dependency_tree_rec dependency_tree a visited (ExtArray.get dependency_tree i) in
(* Printf.printf "reshape_dependency_tree_rec 2\n%!"; *)
let i2 = ExtArray.add a t in
visited := IntMap.add !visited i i2;
Ref i2)
| t -> failwith ("reshape_dependency_tree_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let reshape_dependency_tree dependency_tree =
let a = ExtArray.make (ExtArray.size dependency_tree) Dot in
let _ = ExtArray.add a Dot in
let t = reshape_dependency_tree_rec dependency_tree a (ref IntMap.empty) (ExtArray.get dependency_tree 0) in
ExtArray.set a 0 t;
ExtArray.to_array a
let rec find_labels_attrs labels = function
Variant(e,l) ->
let labels = StringMap.add_inc labels e (Xlist.map l fst) (fun l -> l) in
Xlist.fold l labels (fun labels (i,t) -> find_labels_attrs labels t)
| Dot -> labels
| Val s -> labels
| t -> failwith ("find_labels_attrs: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec find_labels_rec dependency_tree visited = function
Node t ->
let labels = find_labels_rec dependency_tree visited t.args in
let attr_labels = Xlist.fold t.attrs StringMap.empty (fun labels (_,t) -> find_labels_attrs labels t) in
StringMap.fold attr_labels labels (fun labels e l ->
StringMap.add_inc labels e (1,l) (fun (m,_) -> m + 1, l))
| Tuple l ->
Xlist.fold l StringMap.empty (fun comb_labels t ->
let labels = find_labels_rec dependency_tree visited t in
StringMap.fold labels comb_labels (fun comb_labels e (n,l) ->
StringMap.add_inc comb_labels e (n,l) (fun (m,_) -> m + n,l)))
| Variant(e,l) ->
Xlist.fold l StringMap.empty (fun comb_labels (_,t) ->
let labels = find_labels_rec dependency_tree visited t in
StringMap.fold labels comb_labels (fun comb_labels e (n,l) ->
StringMap.add_inc comb_labels e (n,l) (fun (m,_) -> max m n,l)))
| Dot -> StringMap.empty
| Ref i ->
if IntMap.mem !visited i then IntMap.find !visited i else
let labels = find_labels_rec dependency_tree visited dependency_tree.(i) in
visited := IntMap.add !visited i labels;
labels
| t -> failwith ("find_labels_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let find_multiple_labels dependency_tree =
find_labels_rec dependency_tree (ref IntMap.empty) dependency_tree.(0)
let rec find_label_dependants dependency_tree i e members dependants visited = function
Node t ->
let members,dependants,visited = find_label_dependants dependency_tree i e members dependants visited t.args in
let members,dependants,visited = find_label_dependants dependency_tree i e members dependants visited t.symbol in
let members,dependants,visited = find_label_dependants dependency_tree i e members dependants visited t.arg_symbol in
Xlist.fold t.attrs (members,dependants, visited) (fun (members,dependants,visited) (_,t) ->
find_label_dependants dependency_tree i e members dependants visited t)
| Tuple l ->
Xlist.fold l (members,dependants,visited) (fun (members,dependants,visited) t ->
find_label_dependants dependency_tree i e members dependants visited t)
| Variant(e2,l) ->
let members,dependants = if e2 = e then IntSet.add members i, IntSet.add dependants i else members,dependants in
Xlist.fold l (members,dependants,visited) (fun (members,dependants,visited) (_,t) ->
find_label_dependants dependency_tree i e members dependants visited t)
| Dot -> members,dependants,visited
| Val s -> members,dependants,visited
| Ref i2 ->
let members,dependants,visited =
if IntSet.mem visited i2 then members,dependants,visited else
find_label_dependants dependency_tree i2 e members dependants visited (ExtArray.get dependency_tree i2) in
let dependants = if IntSet.mem dependants i2 then IntSet.add dependants i else dependants in
members, dependants, IntSet.add visited i2
| t -> failwith ("find_label_dependants: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec is_dependant dependants = function
Tuple l -> Xlist.fold l false (fun b t -> b || is_dependant dependants t)
| Variant(e,l) -> Xlist.fold l false (fun b (_,t) -> b || is_dependant dependants t)
| Dot -> false
| Ref i -> IntSet.mem dependants i
| t -> failwith ("is_dependant: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec select_variant_rec e i = function
Variant(e2,l) ->
if e = e2 then
let t = try Xlist.assoc l i with Not_found -> failwith "select_variant_rec" in
select_variant_rec e i t
else
Variant(e2,List.rev (Xlist.rev_map l (fun (i2,t) ->
i2,select_variant_rec e i t)))
| Tuple l -> Tuple(List.rev (Xlist.rev_map l (select_variant_rec e i)))
| Dot -> Dot
| Val s -> Val s
| t -> failwith ("select_variant_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let select_variant e i = function
Node t ->
Node{t with
attrs = List.rev (Xlist.rev_map t.attrs (fun (s,t) -> s,select_variant_rec e i t));
symbol = select_variant_rec e i t.symbol}
| t -> failwith ("select_variant: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec set_variant_rec dependency_tree e i members dependants visited = function
Node t -> Node{t with args = set_variant_rec dependency_tree e i members dependants visited t.args}
| Tuple l ->
Tuple(List.rev (Xlist.rev_map l
(set_variant_rec dependency_tree e i members dependants visited)))
| Variant(e2,l) ->
Variant(e2,List.rev (Xlist.rev_map l (fun (i2,t) ->
i2,set_variant_rec dependency_tree e i members dependants visited t)))
| Dot -> Dot
| Ref i2 ->
if IntMap.mem !visited i2 then Ref(IntMap.find !visited i2) else
if not (IntSet.mem dependants i2) then Ref i2 else
let t = ExtArray.get dependency_tree i2 in
let t = if IntSet.mem members i2 then select_variant e i t else t in
let t = set_variant_rec dependency_tree e i members dependants visited t in
let i3 = ExtArray.add dependency_tree t in
visited := IntMap.add !visited i2 i3;
Ref i3
| t -> failwith ("set_variant_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let set_variant dependency_tree e il members dependants t =
let l = Xlist.map il (fun i ->
i, set_variant_rec dependency_tree e i members dependants (ref IntMap.empty) t) in
Variant(e,l)
let rec normalize_variants_rec dependency_tree e il members dependants = function
Node t -> Node{t with args = normalize_variants_rec dependency_tree e il members dependants t.args}
| Tuple l ->
let n = Xlist.fold l 0 (fun n t -> if is_dependant dependants t then n+1 else n) in
(match n with
0 -> failwith "normalize_variants_rec"
| 1 -> Tuple(List.rev (Xlist.fold l [] (fun l t ->
let t =
if is_dependant dependants t then
normalize_variants_rec dependency_tree e il members dependants t
else t in
t :: l)))
| _ -> set_variant dependency_tree e il members dependants (Tuple l))
| Variant(e2,l) ->
let n = Xlist.fold l 0 (fun n (_,t) -> if is_dependant dependants t then n+1 else n) in
(match n with
0 -> failwith "normalize_variants_rec"
| 1 -> Variant(e2,List.rev (Xlist.fold l [] (fun l (i2,t) ->
let t =
if is_dependant dependants t then
normalize_variants_rec dependency_tree e il members dependants t
else t in
(i2,t) :: l)))
| _ -> set_variant dependency_tree e il members dependants (Variant(e2,l)))
| Dot -> Dot
| Ref i ->
if IntSet.mem members i then set_variant dependency_tree e il members dependants (Ref i) else
let t = normalize_variants_rec dependency_tree e il members dependants (ExtArray.get dependency_tree i) in
ExtArray.set dependency_tree i t;
Ref i
| t -> failwith ("normalize_variants_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let normalize_variants dependency_tree =
(* print_endline "normalize_variants 1"; *)
let labels = find_multiple_labels dependency_tree in
(* print_endline "normalize_variants 2"; *)
let a = ExtArray.make (Array.length dependency_tree) Dot in
Int.iter 0 (Array.length dependency_tree - 1) (fun i ->
ExtArray.add a dependency_tree.(i));
(* print_endline "normalize_variants 3"; *)
StringMap.iter labels (fun e (count,il) ->
if count > 1 then
let members,dependants,_ = find_label_dependants a 0 e IntSet.empty IntSet.empty IntSet.empty (ExtArray.get a 0) in
if IntSet.mem members 0 then failwith "normalize_variants" else
let t = normalize_variants_rec a e il members dependants (ExtArray.get a 0) in
ExtArray.set a 0 t);
(* print_endline "normalize_variants 4"; *)
reshape_dependency_tree a (*ExtArray.to_array a*)
let rec validate_dependency_tree_args = function
Tuple l -> Xlist.iter l validate_dependency_tree_args
| Variant(e,l) -> Xlist.iter l (fun (i,t) -> validate_dependency_tree_args t)
| Dot -> ()
| Ref i -> ()
| t -> failwith ("validate_dependency_tree_args: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec validate_dependency_tree_atrs = function
Variant(e,l) -> Xlist.iter l (fun (i,t) -> validate_dependency_tree_atrs t)
| Dot -> ()
| Val s -> ()
| t -> failwith ("validate_dependency_tree_atrs: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let validate_dependency_tree2 = function
Node t ->
validate_dependency_tree_args t.args;
Xlist.iter t.attrs (fun (_,s) -> validate_dependency_tree_atrs s)
(* | Dot -> () (* FIXME: to trzebaby usunąć i wprowadzić rekurencję po drzewie *) *)
| t -> failwith ("validate_dependency_tree2: " ^ ENIAM_LCGstringOf.linear_term 0 t)
(* let rec validate_dependency_tree_labels set = function
Variant(e,l) ->
Xlist.fold l (StringSet.add set e) (fun set (i,t) -> validate_dependency_tree_labels set t)
| Dot -> set
| Val s -> set
| t -> failwith ("validate_dependency_tree_labels: " ^ ENIAM_LCGstringOf.linear_term 0 t) *)
let validate_dependency_tree dependency_tree =
Int.iter 0 (Array.length dependency_tree - 1) (fun i ->
validate_dependency_tree2 dependency_tree.(i));
let labels = find_multiple_labels dependency_tree in
let labels = StringMap.fold labels [] (fun labels e (n,_) ->
if n > 1 then e :: labels else labels) in
if labels <> [] then
failwith ("validate_dependency_tree: multiple labels " ^ String.concat " " labels) else
(* let _ = Int.fold 0 (Array.length dependency_tree - 1) StringSet.empty (fun labels i ->
match dependency_tree.(i) with
Node t ->
let set = Xlist.fold t.attrs StringSet.empty (fun set (_,t) -> validate_dependency_tree_labels set t) in
let intersection = StringSet.intersection labels set in
if StringSet.is_empty intersection then StringSet.union labels set
else failwith ("validate_dependency_tree: multiple labels " ^ String.concat " " (StringSet.to_list intersection))
| _ -> failwith "validate_dependency_tree") in *)
()