ParallelExtract.java 3.76 KB
package extractors;

import is2.data.Cluster;
import is2.data.DataF;
import is2.data.Edges;
import is2.data.F2SF;
import is2.data.FV;
import is2.data.Instances;
import is2.data.Long2IntInterface;

import java.util.ArrayList;
import java.util.concurrent.Callable;


/**
 * @author Bernd Bohnet, 30.08.2009
 * 
 * This class implements a parallel feature extractor.
 */
final public class ParallelExtract implements Callable<Object> 
{
	// the data space of the weights for a dependency tree  
	final DataF d;

	// the data extractor does the actual work
	final Extractor extractor;

	private Instances is;
	private int i;

	private F2SF para;
	
	private Cluster cluster;
	
	private Long2IntInterface li;
	
	public ParallelExtract(Extractor e, Instances is, int i, DataF d,  F2SF para,Cluster cluster, Long2IntInterface li) {

		this.is =is;
		extractor=e;
		this.d =d;
		this.i=i;
		this.para=para;
		this.cluster = cluster;
		this.li=li;
	}


	public static class DSet {
		int w1,w2;
	}
	
	public Object call() {

		try {
		
		F2SF f= para;
		
		
		short[] pos=is.pposs[i];
		int[] forms=is.forms[i];
		int[] lemmas=is.plemmas[i];
		short[][] feats=is.feats[i];
		int length = pos.length;
		
		long[] svs = new long[250]; 

		int type=extractor.getType();
		
		while (true) {

			DSet set = get();
			if (set ==null) break;

			int w1=set.w1;
			int w2=set.w2;

			f.clear();
			int n =extractor.basic(pos, forms, w1, w2,cluster, f);
			d.pl[w1][w2]=f.getScoreF();

			short[] labels = Edges.get(pos[w1], pos[w2],false);
			float[][] lab = d.lab[w1][w2];

			extractor.firstm(is, i, w1, w2, 0, cluster, svs);

			if (labels!=null) {

				
				for (int l = labels.length - 1; l >= 0; l--) {

					short label = labels[l];
	
					f.clear();
					for(int k=svs.length-1;k>=0;k--) if (svs[k]>0) f.add(li.l2i(svs[k]+label*type));
					lab[label][0]=f.getScoreF();
				}
			}

			labels = Edges.get(pos[w1], pos[w2],true);

			if (labels!=null)  {
	
				for (int l = labels.length - 1; l >= 0; l--) {

					int label = labels[l];
					f.clear();
					for(int k=svs.length-1;k>=0;k--) if (svs[k]>0) f.add(li.l2i(svs[k]+label*type));	
					lab[label][1]=f.getScoreF();
				}
			}

			int s = w1<w2 ? w1 : w2;
			int e = w1<w2 ? w2 : w1;

			int sg = w1<w2 ? w1 : 0;
			int eg = w1<w2 ? length : w1+1;

		
			 for(int m=s;m<e;m++) {
				for(int dir=0;dir<2;dir++) {				
					labels = Edges.get(pos[w1], pos[w2],dir==1);
					float lab2[]= new float[labels.length];

					int g = (m==s||e==m) ? -1 : m;
					
				
					extractor.siblingm(is,i,pos,forms,lemmas,feats, w1, w2, g, 0, cluster, svs,n);
								
					for (int l = labels.length - 1; l >= 0; l--) {

						int label = labels[l];
						f.clear();
						
						for(int k=svs.length-1;k>=0;k--) {
							if (svs[k]>0) f.add(li.l2i(svs[k]+label*type));
						}				
						lab2[l] = (float)f.score;//f.getScoreF();
					}
					d.sib[w1][w2][m][dir]=lab2;
				}
			}
		
			 for(int m=sg;m<eg;m++) {
				for(int dir=0;dir<2;dir++) {				
					labels = Edges.get(pos[w1], pos[w2],dir==1);
					float[] lab2 = new float[labels.length];

					int g = (m==s||e==m) ? -1 : m;
					
					extractor.gcm(is, i, w1,w2,g, 0, cluster, svs);
					
					for (int l = labels.length - 1; l >= 0; l--) {

						int label = labels[l];

						f.clear();
						for(int k=svs.length-1;k>=0;k--) {
							if (svs[k]>0) f.add(li.l2i(svs[k]+label*type));
						}
						lab2[l] = f.getScoreF();
					}
					d.gra[w1][w2][m][dir] =lab2;
				}
			}

		}
		} catch(Exception e ) {
			e.printStackTrace();
		}
		return null;
	}

	
	static ArrayList<DSet> sets = new ArrayList<DSet>();
	
	private DSet  get() {
	
		synchronized (sets) {
			if (sets.size()==0) return null;		
			return sets.remove(sets.size()-1);
		}
	}
	static public void add(int w1, int w2){
		DSet ds =new DSet();
		ds.w1=w1;
		ds.w2=w2;
		sets.add(ds);
	}
	
		
		
		
}