NUM.fst
2.97 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% File: NUM.fst
% Author: Helmut Schmid; IMS, Universitaet Stuttgart
% Date: July 2003
% Content: definition of cardinal and ordinal number stems
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Cardinals %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
$CardStem/2-9$ = zw(ei|o) | drei | vier | fünf | sechs | sieben | acht | neun
$CardStem/1-9$ = eins | $CardStem/2-9$
$NumStem/10-19$ = zehn|elf|zwölf | (drei|vier|fünf|sech|sieb|acht|neun)zehn
$NumStem/10-19$ = zehn|elf|zwölf | (drei|vier|fünf|sech|sieb|acht|neun)zehn
$NumStem/20-90$ = dreißig | (zwan|vier|fünf|sech|sieb|acht|neun)zig
$Card/2-99$ = ( \
$CardStem/1-9$ |\
$NumStem/10-19$ |\
((ein | $CardStem/2-9$) und)? $NumStem/20-90$ )
$Card/1-99$ = eins | $Card/2-99$
$Card/2-999$ = ( \
$Card/2-99$ |\
(ein | $CardStem/2-9$)? hundert ((und)? $Card/1-99$ )?)
$Card/1-999$ = eins | $Card/2-999$
$Card/2-999999$ = ( \
$Card/2-999$ | \
(ein | $Card/2-999$)? tausend ((und)? $Card/1-999$)? )
$CardBase0$ = null | eins | $Card/2-999999$
$CardDeriv0$ = null | ein | $Card/2-999999$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Ordinals %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
$OrdStem/3-9$ = dritt | viert | fünft | sechst | siebt | acht | neunt
$OrdStem/1-9$ = erst | zweit | $OrdStem/3-9$
$Ord/3-99$ = ( \
$OrdStem/3-9$ |\
$NumStem/10-19$t |\
$NumStem/20-90$st |\
(ein | $CardStem/2-9$) und $NumStem/20-90$st )
$Ord/1-99$ = erst | zweit | $Ord/3-99$
$Ord/3-999$ = ( \
$Ord/3-99$ |\
(ein | $CardStem/2-9$)? hundertst |\
(ein | $CardStem/2-9$)? hundert (und)? $Ord/1-99$ )
$Ord/1-999$ = erst | zweit | $Ord/3-999$
$Ord/3-999999$ = ( \
$Ord/3-999$ | \
(ein | $Card/2-999$)? tausend (und)? $Ord/1-999$ )
$Ord0$ = nullt | erst | zweit | $Ord/3-999999$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Digit Numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
$DigCard$ = [0-9]+ ([\,\./] [0-9]+)*
$DigOrd$ = $DigCard$\.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Resulting transducers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
$Quant$ = $CardDeriv0$ <QUANT>:<> |\
$Ord0$ <QUANT>:<> |\
$DigCard$ \-? <QUANT>:<> |\
(beid | mehr | viel | dies | doppel | ganz | gegen) <QUANT>:<>
$CbnC$ = {<>}:{<CARD><base><nativ><Card>}
$ObnO$ = {<>}:{<ORD><base><nativ><Ord>}
$ObnD$ = {<>}:{<ORD><base><nativ><DigOrd>}
$NumBase$ = {<>}:{<Initial><Base_Stems>}\
($CardBase0$ $CbnC$ |\
$Ord0$ $ObnO$ |\
$DigCard$ $CbnC$ |\
$DigOrd$ $ObnD$)
$NumDeriv$ = <>:<Deriv_Stems>\
($CardDeriv0$ <CARD> |\
$Ord0$ <ORD> |\
$DigCard$ <DIGCARD>) {<>}:{<deriv><nativ>}
$NumKompos$ = <>:<Kompos_Stems> $Ord0$ \
<ORD>{<>}:{<kompos><nativ>}
$Num_Stems$ = $NumBase$ | $NumDeriv$ | $NumKompos$