preProcessing.ml
32.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
(*
* ENIAM: Categorial Syntactic-Semantic Parser for Polish
* Copyright (C) 2016 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
* Copyright (C) 2016 Institute of Computer Science Polish Academy of Sciences
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*)
open Xstd
open PreTypes
(* uwagi:
jak przetwarzać num:comp
czy rzeczownik niepoliczalny w liczbie mnogiej jest nadal niepoliczalny np. "Wody szumią."
trzeba zrobić słownik mwe, i nazw własnych
trzeba zweryfikować słownik niepoliczalnych
przetwarzanie liczebników złożonych np dwadzieścia jeden, jedna druga
*)
(**********************************************************************************)
let proper_names =
let l = Str.split_delim (Str.regexp "\n") (File.load_file Paths.proper_names_filename) in
let l2 = Str.split_delim (Str.regexp "\n") (File.load_file Paths.proper_names_filename2) in
Xlist.fold (l2 @ l) StringMap.empty (fun proper line ->
if String.length line = 0 then proper else
if String.get line 0 = '#' then proper else
match Str.split_delim (Str.regexp "\t") line with
[lemma; types] ->
let types = Str.split (Str.regexp "|") types in
StringMap.add_inc proper lemma types (fun types2 -> types @ types2)
| _ -> failwith ("proper_names: " ^ line))
let remove l s =
Xlist.fold l [] (fun l t ->
if s = t then l else t :: l)
let find_proper_names (paths,last) =
List.rev (Xlist.rev_map paths (fun t ->
match t.token with
Lemma(lemma,pos,interp) ->
if StringMap.mem proper_names lemma then
{t with token=Proper(lemma,pos,interp,StringMap.find proper_names lemma);
attrs=remove t.attrs "notvalidated proper"}
else
if Xlist.mem t.attrs "notvalidated proper" then
{t with token=Proper(lemma,pos,interp,[])}
else t
| _ -> t)), last
(**********************************************************************************)
module OrderedStringList = struct
type t = string list
let compare x y = compare (Xlist.sort x compare) (Xlist.sort y compare)
end
module OrderedStringListList = struct
type t = string list list
let compare x y = compare (Xlist.sort x compare) (Xlist.sort y compare)
end
module StringListMap = Xmap.Make(OrderedStringList)
module StringListListMap = Xmap.Make(OrderedStringListList)
module StringListListSet = Xset.Make(OrderedStringListList)
type tree = T of tree StringListMap.t | S of StringSet.t
let single_tags = function
[_] :: _ -> true
| _ -> false
let rec make_tree interp =
if single_tags interp then S (StringSet.of_list (List.flatten (List.flatten interp))) else
let map = Xlist.fold interp StringListMap.empty (fun map tags ->
StringListMap.add_inc map (List.hd tags) [List.tl tags] (fun l -> (List.tl tags) :: l)) in
T(StringListMap.map map make_tree)
let is_s_tree map =
StringListListMap.fold map false (fun b _ -> function
S _ -> true
| T _ -> b)
let rec fold_tree_rec rev s f = function
S set -> f s (List.rev rev) set
| T map -> StringListMap.fold map s (fun s tag tree ->
fold_tree_rec (tag :: rev) s f tree)
let fold_tree tree s f = fold_tree_rec [] s f tree
let rec combine_interps_rec map =
if is_s_tree map then
StringListListMap.fold map [] (fun interp tail_tags -> function
S tag -> ((Xlist.sort (StringSet.to_list tag) compare) :: tail_tags) :: interp
| _ -> failwith "combine_interps_rec")
else
let map = StringListListMap.fold map StringListListMap.empty (fun map tail_tags tree ->
fold_tree tree map (fun map head_tags tag ->
StringListListMap.add_inc map ((Xlist.sort (StringSet.to_list tag) compare) :: tail_tags) [head_tags] (fun l -> head_tags :: l))) in
combine_interps_rec (StringListListMap.map map make_tree)
let combine_interp interp =
let map = StringListListMap.add StringListListMap.empty [] (make_tree interp) in
combine_interps_rec map
let combine_pos = StringSet.of_list ["subst"; "depr"; "ppron12"; "ppron3"; "siebie"; "adj"; "num"; "ger"; "praet"; "fin"; "impt"; "imps"; "pcon"; "ppas"; "pact";
"inf"; "bedzie"; "aglt"; "winien"; "pant"; "prep"]
let combine_interps (paths,last) =
List.rev (Xlist.rev_map paths (fun t ->
match t.token with
Lemma(lemma,pos,interp) ->
(* Printf.printf "%s %s %s\n" lemma pos (PreTokenizer.string_of_interps interp); *)
let interp =
if pos = "ppron12" then Xlist.map interp (fun tags -> if Xlist.size tags = 4 then tags @ [["_"]] else tags)
else interp in
let interp =
if StringSet.mem combine_pos pos then combine_interp interp else
StringListListSet.to_list (StringListListSet.of_list interp) in
{t with token=Lemma(lemma,pos,interp)}
| _ -> t)), last
(**********************************************************************************)
let translate_digs (paths,last) =
Xlist.map paths (fun t ->
match t.token with
Dig(lemma,"dig") -> t
| Dig(lemma,"intnum") -> {t with token=Lemma(lemma,"intnum",[[]])}
| Dig(lemma,"realnum") -> {t with token=Lemma(lemma,"realnum",[[]])}
| Dig(lemma,"year") -> {t with token=Proper(lemma,"year",[[]],["rok"])}
| Dig(lemma,"month") -> t (*{t with token=Proper(lemma,"month",[[]],["miesiąc"])}*)
| Dig(lemma,"hour") -> {t with token=Proper(lemma,"hour",[[]],["godzina"])}
| Dig(lemma,"day") -> {t with token=Proper(lemma,"day",[[]],["dzień"])}
| Dig(lemma,"minute") -> t (*{t with token=Proper(lemma,"minute",[[]],["minuta"])}*)
| Dig(lemma,"2dig") -> t
| Dig(lemma,"3dig") -> t
| Dig(lemma,"pref3dig") -> t
| RomanDig(lemma,"roman") -> {t with token=Lemma(lemma,"roman",[[]]); attrs=t.attrs}
| RomanDig(lemma,"month") -> t (*{t with token=Proper(lemma,"symbol",[[]],["month"]); attrs="roman" :: t.attrs}*)
| Dig(lemma,"ordnum") -> {t with token=Lemma(lemma,"ordnum",[[]])}
| Compound("date",[Dig(d,"day");Dig(m,"month");Dig(y,"year")]) -> {t with token=Proper(d ^ "." ^ m ^ "." ^ y,"date",[[]],["data"])}
| Compound("date",[Dig(d,"day");RomanDig(m,"month");Dig(y,"year")]) -> {t with token=Proper(d ^ "." ^ m ^ "." ^ y,"date",[[]],["data"])}
| Compound("date",[Dig(d,"day");Dig(m,"month");Dig(y,"2dig")]) -> {t with token=Proper(d ^ "." ^ m ^ "." ^ y,"date",[[]],["data"])}
| Compound("date",[Dig(d,"day");RomanDig(m,"month");Dig(y,"2dig")]) -> {t with token=Proper(d ^ "." ^ m ^ "." ^ y,"date",[[]],["data"])}
| Compound("day-month",[Dig(d,"day");Dig(m,"month")]) -> {t with token=Proper(d ^ "." ^ m,"day-month",[[]],["data"])}
| Compound("hour-minute",[Dig(h,"hour");Dig(m,"minute")]) -> {t with token=Proper(h ^ ":" ^ m,"hour-minute",[[]],["godzina"])}
| Compound("match-result",[Dig(x,"intnum");Dig(y,"intnum")]) -> {t with token=Proper(x ^ ":" ^ y,"match-result",[[]],["rezultat"])}
| Compound("intnum-interval",[Dig(x,"intnum");Dig(y,"intnum")]) -> {t with token=Lemma(x ^ "-" ^ y,"intnum-interval",[[]])}
| Compound("roman-interval",[RomanDig(x,"roman");RomanDig(y,"roman")]) -> {t with token=Lemma(x ^ "-" ^ y,"roman-interval",[[]]); attrs=t.attrs}
| Compound("realnum-interval",[Dig(x,"realnum");Dig(y,"realnum")]) -> {t with token=Lemma(x ^ "-" ^ y,"realnum-interval",[[]])}
| Compound("realnum-interval",[Dig(x,"intnum");Dig(y,"realnum")]) -> {t with token=Lemma(x ^ "-" ^ y,"realnum-interval",[[]])}
| Compound("realnum-interval",[Dig(x,"realnum");Dig(y,"intnum")]) -> {t with token=Lemma(x ^ "-" ^ y,"realnum-interval",[[]])}
| Compound("date-interval",[Compound("date",[Dig(d1,"day");Dig(m1,"month");Dig(y1,"year")]);
Compound("date",[Dig(d2,"day");Dig(m2,"month");Dig(y2,"year")])]) -> {t with token=Proper(d1 ^ "." ^ m1 ^ "." ^ y1 ^ "-" ^ d2 ^ "." ^ m2 ^ "." ^ y2,"date-interval",[[]],["interwał"])}
| Compound("day-month-interval",[Compound("day-month",[Dig(d1,"day");Dig(m1,"month")]);
Compound("day-month",[Dig(d2,"day");Dig(m2,"month")])]) -> {t with token=Proper(d1 ^ "." ^ m1 ^ "-" ^ d2 ^ "." ^ m2,"day-month-interval",[[]],["interwał"])}
| Compound("day-interval",[Dig(d1,"day");Dig(d2,"day")]) -> {t with token=Proper(d1 ^ "-" ^ d2,"day-interval",[[]],["interwał"])}
| Compound("month-interval",[Dig(m1,"month");Dig(m2,"month")]) -> {t with token=Proper(m1 ^ "-" ^ m2,"month-interval",[[]],["interwał"])}
| Compound("month-interval",[RomanDig(m1,"month");RomanDig(m2,"month")]) -> {t with token=Proper(m1 ^ "-" ^ m2,"month-interval",[[]],["interwał"]); attrs="roman" :: t.attrs}
| Compound("year-interval",[Dig(y1,"year");Dig(y2,"year")]) -> {t with token=Proper(y1 ^ "-" ^ y2,"year-interval",[[]],["interwał"])}
| Compound("year-interval",[Dig(y1,"year");Dig(y2,"2dig")]) -> {t with token=Proper(y1 ^ "-" ^ y2,"year-interval",[[]],["interwał"])}
| Compound("hour-minute-interval",[Compound("hour-minute",[Dig(h1,"hour");Dig(m1,"minute")]);Compound("hour-minute",[Dig(h2,"hour");Dig(m2,"minute")])]) ->
{t with token=Proper(h1 ^ ":" ^ m1 ^ "-" ^ h2 ^ ":" ^ m2,"hour-minute-interval",[[]],["interwał"])}
| Compound("hour-interval",[Dig(h1,"hour");Dig(h2,"hour")]) -> {t with token=Proper(h1 ^ "-" ^ h2,"hour-interval",[[]],["interwał"])}
| Compound("minute-interval",[Dig(m1,"minute");Dig(m2,"minute")]) -> t (*{t with token=Proper(m1 ^ "-" ^ m2,"minute-interval",[[]],["interwał"])}*)
| Dig(lemma,"url") -> {t with token=Proper(lemma,"url",[[]],["url"])}
| Dig(lemma,"email") -> {t with token=Proper(lemma,"email",[[]],["email"])}
| Dig(cat,_) -> failwith ("translate_digs: Dig " ^ cat)
| RomanDig(cat,_) -> failwith ("translate_digs: Romandig " ^ cat)
| Compound(cat,_) as t -> failwith ("translate_digs: " ^ PreTokenizer.string_of_token t)
| _ -> t), last
let assign_valence (paths,last) =
let lexemes = Xlist.fold paths StringMap.empty (fun lexemes t ->
match t.token with
Lemma(lemma,pos,_) ->
StringMap.add_inc lexemes lemma (StringSet.singleton pos) (fun set -> StringSet.add set pos)
| Proper(lemma,pos,_,_) ->
let pos = match pos with
"subst" -> "psubst"
| "depr" -> "pdepr"
| _ -> pos (*failwith ("assign_valence: Proper " ^ pos ^ " " ^ lemma)*) in
StringMap.add_inc lexemes lemma (StringSet.singleton pos) (fun set -> StringSet.add set pos) (* nazwy własne mają przypisywaną domyślną walencję rzeczowników *)
| _ -> lexemes) in
let valence = WalFrames.find_frames lexemes in
List.rev (Xlist.rev_map paths (fun t ->
match t.token with
Lemma(lemma,pos,_) -> {t with valence=try Xlist.rev_map (StringMap.find (StringMap.find valence lemma) pos) (fun frame -> 0,frame) with Not_found -> []}
| Proper(lemma,pos,interp,_) -> {t with valence=(try Xlist.rev_map (StringMap.find (StringMap.find valence lemma)
(if pos = "subst" || pos = "depr" then "p" ^ pos else pos)) (fun frame -> 0,frame) with Not_found -> [](*failwith ("assign_valence: Proper(" ^ lemma ^ "," ^ pos ^ ")")*));
token=Lemma(lemma,pos,interp)}
| _ -> t)), last
(**********************************************************************************)
(* let prepare_indexes (paths,_) =
let set = Xlist.fold paths IntSet.empty (fun set t ->
IntSet.add (IntSet.add set t.beg) t.next) in
let map,last = Xlist.fold (Xlist.sort (IntSet.to_list set) compare) (IntMap.empty,0) (fun (map,n) x ->
IntMap.add map x n, n+1) in
List.rev (Xlist.rev_map paths (fun t ->
{t with lnode=IntMap.find map t.beg; rnode=IntMap.find map t.next})), last - 1 *)
let select_tokens (paths,last) =
List.rev (Xlist.fold paths [] (fun paths t ->
match t.token with
(* RomanDig(v,cat) -> {t with token=Lemma(v,cat,[[]])} :: paths
| Interp orth -> {t with token=Lemma(orth,"interp",[[]])} :: paths
| Dig(value,cat) -> {t with token=Lemma(value,cat,[[]])} :: paths
| Other2 orth -> {t with token=Lemma(orth,"unk",[[]])} :: paths
| Lemma(lemma,cat,interp) -> t :: paths
| Proper _ -> failwith "select_tokens"
| Compound _ -> t :: paths*)
(* RomanDig(v,cat) -> t :: paths *)
| Interp orth -> t :: paths
(* | Dig(value,cat) -> t :: paths *)
| Other2 orth -> t :: paths
| Lemma(lemma,cat,interp) -> if cat = "brev" then paths else t :: paths
| Proper _ -> failwith "select_tokens"
(* | Compound _ -> t :: paths *)
| _ -> paths)), last
let get_prefs_schema prefs schema =
Xlist.fold schema prefs (fun prefs t ->
Xlist.fold t.WalTypes.sel_prefs prefs StringSet.add)
let map_prefs_schema senses schema =
Xlist.map schema (fun t ->
if Xlist.mem t.WalTypes.morfs (WalTypes.Phrase WalTypes.Pro) || Xlist.mem t.WalTypes.morfs (WalTypes.Phrase WalTypes.ProNG) then t else
{t with WalTypes.sel_prefs = Xlist.fold t.WalTypes.sel_prefs [] (fun l s ->
if StringSet.mem senses s then s :: l else l)})
let disambiguate_senses (paths,last) =
let prefs = Xlist.fold paths (StringSet.singleton "ALL") (fun prefs t ->
Xlist.fold t.valence prefs (fun prefs -> function
_,WalTypes.Frame(_,schema) -> get_prefs_schema prefs schema
| _,WalTypes.LexFrame(_,_,_,schema) -> get_prefs_schema prefs schema
| _,WalTypes.ComprepFrame(_,_,_,schema) -> get_prefs_schema prefs schema)) in
let hipero = Xlist.fold paths (StringSet.singleton "ALL") (fun hipero t ->
Xlist.fold t.senses hipero (fun hipero (_,l,_) ->
Xlist.fold l hipero StringSet.add)) in
let senses = StringSet.intersection prefs hipero in
let is_zero = StringSet.mem hipero "0" in
let senses = if is_zero then StringSet.add senses "0" else senses in
Xlist.map paths (fun t ->
{t with valence = if is_zero then t.valence else
Xlist.map t.valence (function
n,WalTypes.Frame(a,schema) -> n,WalTypes.Frame(a,map_prefs_schema senses schema)
| n,WalTypes.LexFrame(s,p,r,schema) -> n,WalTypes.LexFrame(s,p,r,map_prefs_schema senses schema)
| n,WalTypes.ComprepFrame(s,p,r,schema) -> n,WalTypes.ComprepFrame(s,p,r,map_prefs_schema senses schema));
senses = Xlist.map t.senses (fun (s,l,w) ->
s, List.rev (Xlist.fold l [] (fun l s -> if StringSet.mem senses s then s :: l else l)),w)}), last
let load_lemma_frequencies filename =
let l = Str.split_delim (Str.regexp "\n") (File.load_file filename) in
Xlist.fold l StringMap.empty (fun map line ->
if String.length line = 0 then map else
if String.get line 0 = '#' then map else
match Str.split_delim (Str.regexp "\t") line with
[count; lemma; cat] -> StringMap.add map (lemma ^ "\t" ^ cat) (log10 (float_of_string count +. 1.))
| _ -> failwith ("load_lemma_frequencies: " ^ line))
let lemma_frequencies = load_lemma_frequencies Paths.lemma_frequencies_filename
let modify_weights (paths,last) =
List.rev (Xlist.fold paths [] (fun paths t ->
let w = Xlist.fold t.attrs t.weight (fun w -> function
"token not found" -> w -. 25.
| "lemma not validated"-> w -. 20.
| "notvalidated proper" -> w -. 1.
| "lemmatized as lowercase" -> w -. 0.1
| _ -> w) in
let w = match t.token with
Lemma(lemma,cat,_) -> (try w +. StringMap.find lemma_frequencies (lemma ^ "\t" ^ cat) with Not_found -> w)
| Proper(lemma,cat,_,_) -> (try w +. StringMap.find lemma_frequencies (lemma ^ "\t" ^ cat) with Not_found -> w)
| _ -> w in
{t with weight = w} :: paths)),last
(*let single_sense (paths,last) =
List.rev (Xlist.rev_map paths (fun t ->
let sense =
if t.senses = [] then [] else
[Xlist.fold t.senses ("",[],-.max_float) (fun (max_meaning,max_hipero,max_weight) (meaning,hipero,weight) ->
if max_weight >= weight then max_meaning,max_hipero,max_weight else meaning,hipero,weight)] in
{t with senses=sense})), last*)
open WalTypes
(*let single_schema schemata =
let map = Xlist.fold schemata StringMap.empty (fun map schema ->
let t = WalStringOf.schema (List.sort compare (Xlist.fold schema [] (fun l s ->
if s.gf <> ARG && s.gf <> ADJUNCT then {s with role=""; role_attr=""; sel_prefs=[]} :: l else
if s.cr <> [] || s.ce <> [] then {s with role=""; role_attr=""; sel_prefs=[]} :: l else l))) in
StringMap.add_inc map t [schema] (fun l -> schema :: l)) in
StringMap.fold map [] (fun l _ schemata ->
let map = Xlist.fold schemata StringMap.empty (fun map schema ->
Xlist.fold schema map (fun map s ->
let t = WalStringOf.schema [{s with role=""; role_attr=""; sel_prefs=[]}] in
StringMap.add_inc map t [s] (fun l -> s :: l))) in
let schema = StringMap.fold map [] (fun schema _ l ->
let s = List.hd l in
{s with sel_prefs=Xlist.fold s.sel_prefs [] (fun l t -> if t = "0" || t = "T" then t :: l else l)} :: schema) in
schema :: l)*)
let remove_meaning = function
DefaultAtrs(m,r,o,neg,p,a) -> DefaultAtrs([],r,o,neg,p,a)
| EmptyAtrs m -> EmptyAtrs []
| NounAtrs(m,nsyn,s(*,typ*)) -> NounAtrs([],nsyn,s(*,typ*))
| AdjAtrs(m,c,adjsyn(*,adjsem,typ*)) -> AdjAtrs([],c,adjsyn(*,adjsem,typ*))
| PersAtrs(m,le,neg,mo,t,au,a) -> PersAtrs([],le,neg,mo,t,au,a)
| GerAtrs(m,le,neg,a) -> GerAtrs([],le,neg,a)
| NonPersAtrs(m,le,role,role_attr,neg,a) -> NonPersAtrs([],le,role,role_attr,neg,a)
| _ -> failwith "remove_meaning"
(*let single_frame (paths,last) =
List.rev (Xlist.rev_map paths (fun t ->
let lex_frames,frames = Xlist.fold t.valence ([],StringMap.empty) (fun (lex_frames,frames) -> function
Frame(attrs,schema) ->
let attrs = remove_meaning attrs in
lex_frames, StringMap.add_inc frames (WalStringOf.frame_atrs attrs) (attrs,[schema]) (fun (_,l) -> attrs, schema :: l)
| frame -> frame :: lex_frames, frames) in
let frames = StringMap.fold frames lex_frames (fun frames _ (attrs,schemata) ->
Xlist.fold (single_schema schemata) frames (fun frames frame -> Frame(attrs,frame) :: frames)) in
{t with valence=frames})), last *)
let simplify_position_verb l = function (* FIXME: dodać czyszczenie E Pro *)
Phrase(NP(Case "dat")) -> l
| Phrase(NP(Case "inst")) -> l
| Phrase(PrepNP _) -> l
| Phrase(PrepAdjP _) -> l
| Phrase(NumP (Case "dat")) -> l
| Phrase(NumP (Case "inst")) -> l
| Phrase(PrepNumP _) -> l
| Phrase(ComprepNP _) -> l
| Phrase(ComparNP _) -> l
| Phrase(ComparPP _) -> l
| Phrase(IP) -> l
| Phrase(CP _) -> l
| Phrase(NCP(Case "dat",_,_)) -> l
| Phrase(NCP(Case "inst",_,_)) -> l
| Phrase(PrepNCP _) -> l
(* | Phrase(PadvP) -> l *)
| Phrase(AdvP) -> l
| Phrase(PrepP) -> l
| Phrase(Or) -> l
| Phrase(Qub) -> l
| Phrase(Adja) -> l
| Phrase(Inclusion) -> l
| Phrase Pro -> Phrase Null :: l
| t -> t :: l
let simplify_position_noun l = function
Phrase(NP(Case "gen")) -> l
| Phrase(NP(Case "nom")) -> l
| Phrase(NP(CaseAgr)) -> l
| Phrase(PrepNP _) -> l
| Phrase(AdjP AllAgr) -> l
| Phrase(NumP (Case "gen")) -> l
| Phrase(NumP (Case "nom")) -> l
| Phrase(NumP (CaseAgr)) -> l
| Phrase(PrepNumP _) -> l
| Phrase(ComprepNP _) -> l
| Phrase(ComparNP _) -> l
| Phrase(ComparPP _) -> l
| Phrase(IP) -> l
| Phrase(NCP(Case "gen",_,_)) -> l
| Phrase(PrepNCP _) -> l
| Phrase(PrepP) -> l
| Phrase(Qub) -> l
| Phrase(Adja) -> l
| Phrase(Inclusion) -> l
| Phrase Pro -> Phrase Null :: l
| t -> t :: l
let simplify_position_adj l = function
Phrase(AdvP) -> l
| t -> t :: l
let simplify_position_adv l = function
Phrase(AdvP) -> l
| t -> t :: l
let simplify_position pos l s =
let morfs = match pos with
"verb" -> List.rev (Xlist.fold s.morfs [] simplify_position_verb)
| "noun" -> List.rev (Xlist.fold s.morfs [] simplify_position_noun)
| "adj" -> List.rev (Xlist.fold s.morfs [] simplify_position_adj)
| "adv" -> List.rev (Xlist.fold s.morfs [] simplify_position_adv)
| _ -> s.morfs in
match morfs with
[] -> l
| [Phrase Null] -> l
| _ -> {s with morfs=morfs} :: l
let simplify_schemata pos schemata =
let schemata = Xlist.fold schemata StringMap.empty (fun schemata (schema,frame) ->
let schema = List.sort compare (Xlist.fold schema [] (fun l s ->
let s = {s with role=""; role_attr=""; sel_prefs=[]; cr=[]; ce=[]; morfs=List.sort compare s.morfs} in
if s.gf <> ARG && s.gf <> ADJUNCT then s :: l else
(* if s.cr <> [] || s.ce <> [] then s :: l else *)
simplify_position pos l s)) in
StringMap.add_inc schemata (WalStringOf.schema schema) (schema,[frame]) (fun (_,frames) -> schema, frame :: frames)) in
StringMap.fold schemata [] (fun l _ s -> s :: l)
(* FIXME: problem ComprepNP i PrepNCP *)
(* FIXME: problem gdy ten sam token występuje w kilku ścieżkach *)
let generate_verb_prep_adjuncts preps =
Xlist.map preps (fun (lemma,case) -> WalFrames.verb_prep_adjunct_schema_field lemma case)
let generate_verb_comprep_adjuncts compreps =
Xlist.map compreps (fun lemma -> WalFrames.verb_comprep_adjunct_schema_field lemma)
let generate_verb_compar_adjuncts compars =
Xlist.map compars (fun lemma -> WalFrames.verb_compar_adjunct_schema_field lemma)
let generate_noun_prep_adjuncts preps =
WalFrames.noun_prep_adjunct_schema_field preps
let generate_noun_compar_adjuncts compars =
WalFrames.noun_compar_adjunct_schema_field compars
let generate_adj_compar_adjuncts compars =
WalFrames.noun_compar_adjunct_schema_field compars
let compars = StringSet.of_list ["jak";"jako";"niż";"niczym";"niby";"co"]
let generate_prep_adjunct_tokens paths =
let map = Xlist.fold paths StringMap.empty (fun map t ->
match t.token with
Lemma(lemma,"prep",interp) ->
let map = if lemma = "po" then StringMap.add map "po:postp" ("po","postp") else map in
if StringSet.mem compars lemma then map else
Xlist.fold interp map (fun map -> function
[cases] -> Xlist.fold cases map (fun map case -> StringMap.add map (lemma ^ ":" ^ case) (lemma,case))
| [cases;_] -> Xlist.fold cases map (fun map case -> StringMap.add map (lemma ^ ":" ^ case) (lemma,case))
| _ -> map)
| _ -> map) in
StringMap.fold map [] (fun l _ v -> v :: l)
let generate_comprep_adjunct_tokens paths =
let lemmas = Xlist.fold paths StringSet.empty (fun lemmas t ->
match t.token with
Lemma(lemma,_,_) -> StringSet.add lemmas lemma
| _ -> lemmas) in
StringMap.fold WalFrames.comprep_reqs [] (fun compreps comprep reqs ->
let b = Xlist.fold reqs true (fun b s -> b && StringSet.mem lemmas s) in
if b then comprep :: compreps else compreps)
let generate_compar_adjunct_tokens paths =
let set = Xlist.fold paths StringSet.empty (fun set t ->
match t.token with
Lemma(lemma,"prep",interp) ->
if not (StringSet.mem compars lemma) then set else
StringSet.add set lemma
| _ -> set) in
StringSet.to_list set
let is_measure = function
NounAtrs(_,_,Common "measure") -> true
| _ -> false
let assign_simplified_valence (paths,last) =
let preps = generate_prep_adjunct_tokens paths in
let compreps = generate_comprep_adjunct_tokens paths in
let compars = generate_compar_adjunct_tokens paths in
let verb_prep_adjuncts = generate_verb_prep_adjuncts preps in
let verb_comprep_adjuncts = generate_verb_comprep_adjuncts compreps in
let verb_compar_adjuncts = generate_verb_compar_adjuncts compars in
let noun_prep_adjuncts = generate_noun_prep_adjuncts preps compreps in
let noun_compar_adjuncts = generate_noun_compar_adjuncts compars in
let adj_compar_adjuncts = generate_adj_compar_adjuncts compars in
let verb_adjuncts = WalFrames.verb_adjuncts_simp @ verb_prep_adjuncts @ verb_comprep_adjuncts @ verb_compar_adjuncts in
let noun_adjuncts = WalFrames.noun_adjuncts_simp @ [noun_prep_adjuncts] @ [noun_compar_adjuncts] in
let noun_measure_adjuncts = WalFrames.noun_measure_adjuncts_simp @ [noun_prep_adjuncts] @ [noun_compar_adjuncts] in
let adj_adjuncts = WalFrames.adj_adjuncts_simp @ [adj_compar_adjuncts] in
let adv_adjuncts = WalFrames.adv_adjuncts_simp @ [adj_compar_adjuncts] in
List.rev (Xlist.rev_map paths (fun t ->
let pos = match t.token with
Lemma(_,pos,_) -> WalFrames.simplify_pos pos
| _ -> "" in
let lex_frames,frames = Xlist.fold t.valence ([],StringMap.empty) (fun (lex_frames,frames) -> function
_,(Frame(attrs,schema) as frame) ->
let attrs = remove_meaning attrs in
lex_frames, StringMap.add_inc frames (WalStringOf.frame_atrs attrs) (attrs,[schema,frame]) (fun (_,l) -> attrs, (schema,frame) :: l)
| _,frame -> frame :: lex_frames, frames) in
let simp_frames,full_frames,n = Xlist.fold lex_frames ([],[],1) (fun (simp_frames,full_frames,n) frame ->
(n,frame) :: simp_frames, (n,frame) :: full_frames, n+1) in
let simp_frames,full_frames,_ = StringMap.fold frames (simp_frames,full_frames,n) (fun (simp_frames,full_frames,n) _ (attrs,schemata) ->
Xlist.fold (simplify_schemata pos schemata) (simp_frames,full_frames,n) (fun (simp_frames,full_frames,n) (schema,frames) ->
let schema = match pos with
"verb" -> schema @ verb_adjuncts
| "noun" -> schema @ (if is_measure attrs then noun_measure_adjuncts else noun_adjuncts)
| "adj" -> schema @ adj_adjuncts
| "adv" -> schema @ adv_adjuncts
| _ -> schema in
(n,Frame(attrs,schema)) :: simp_frames,
Xlist.fold frames full_frames (fun full_frames frame -> (n,frame) :: full_frames),
n+1)) in
{t with simple_valence=simp_frames; valence=full_frames})), last
(* FIXME: dodać do walencji preferencje selekcyjne nadrzędników symboli: dzień, godzina, rysunek itp. *)
(* FIXME: sprawdzić czy walencja nazw własnych jest dobrze zrobiona. *)
(* let first_id = 1 (* id=0 jest zarezerwowane dla pro; FIXME: czy to jest jeszcze aktualne? *)
let add_ids (paths,last) next_id =
let paths,next_id = Xlist.fold ((*List.rev*) paths) ([],next_id) (fun (paths,id) t ->
{t with id=id} :: paths, id+1) in
(paths,last),next_id *)
let parse query (*next_id*) =
(* print_endline "a1"; *)
let l = Xunicode.classified_chars_of_utf8_string query in
(* print_endline "a2"; *)
let l = PreTokenizer.tokenize l in
(* print_endline "a3"; *)
let l = PrePatterns.normalize_tokens [] l in
(* print_endline "a4"; *)
let l = PrePatterns.find_replacement_patterns l in
(* print_endline "a5"; *)
let l = PrePatterns.remove_spaces [] l in
let l = PrePatterns.find_abr_patterns PreAcronyms.abr_patterns l in
let l = PrePatterns.normalize_tokens [] l in
(* print_endline "a6"; *)
let paths = PrePaths.translate_into_paths l in
(* print_endline "a7"; *)
let paths = PrePaths.lemmatize paths in
(* print_endline "a8"; *)
let paths = PreMWE.process paths in
(* print_endline "a12"; *)
let paths = find_proper_names paths in
(* print_endline "a13"; *)
let paths = modify_weights paths in
let paths = translate_digs paths in
let paths = PreWordnet.assign_senses paths in
(* print_endline "a14"; *)
let paths = assign_valence paths in
(* print_endline "a15"; *)
let paths = combine_interps paths in
(* print_endline "a16"; *)
let paths = disambiguate_senses paths in
let paths = assign_simplified_valence paths in
let paths = PreSemantics.assign_semantics paths in
(* print_endline "a16"; *)
let paths = select_tokens paths in
(* print_endline "a17"; *)
(* let paths = if !single_sense_flag then single_sense paths else paths in
let paths = if !single_frame_flag then single_frame paths else paths in*)
(*let paths, next_id = add_ids paths next_id in
let paths = prepare_indexes paths in*)
(* print_endline "a18"; *)
paths(*, next_id*)
(* print_endline (PrePaths.to_string paths); *)
(* let paths =
if PrePaths.no_possible_path (PrePaths.map paths PreLemmatization.remove_postags) then
PrePaths.map paths process_ign
else paths in
let paths = PrePaths.map paths PreLemmatization.remove_postags in
let paths = PreCaseShift.manage_lower_upper_case paths in (* FIXME: niepotrzebnie powiększa pierwszy token (przymiotniki partykuły itp.) *)
let paths = PreLemmatization.combine_interps paths in
(* print_endline (PrePaths.to_string paths); *)*)
(* let parse_conll paths next_id =
(* print_endline "a11"; *)
let paths = PreMWE.process paths in
(* print_endline "a12"; *)
let paths = find_proper_names paths in
(* print_endline "a13"; *)
let paths = modify_weights paths in
let paths = PreWordnet.assign_senses paths in
(* print_endline "a14"; *)
let paths = combine_interps paths in (* FIXME: to powinno też działać dla Proper *)
(* print_endline "a15"; *)
let paths = assign_valence paths in
(* print_endline "a16"; *)
let paths = disambiguate_senses paths in
let paths = assign_simplified_valence paths in
let paths = PreSemantics.assign_semantics paths in
(* print_endline "a16"; *)
let paths = select_tokens paths in
(* print_endline "a17"; *)
(* let paths = if !single_sense_flag then single_sense paths else paths in
let paths = if !single_frame_flag then single_frame paths else paths in*)
(* let paths, next_id = add_ids paths in *) (* FIXME: jak powiązać id z connl z tymi z pre *)
let paths, next_id = add_ids paths next_id in
let paths = prepare_indexes paths in
let paths = PrePaths.sort paths in
(* print_endline "a18"; *)
paths, next_id *)
let make_ids tokens paths =
Xlist.rev_map paths (fun t ->
let n = ExtArray.add tokens t in
n,t.beg,t.next)
let prepare_indexes2 paths =
let set = Xlist.fold paths IntSet.empty (fun set (_,beg,next) ->
IntSet.add (IntSet.add set beg) next) in
let map,last = Xlist.fold (Xlist.sort (IntSet.to_list set) compare) (IntMap.empty,0) (fun (map,n) x ->
IntMap.add map x n, n+1) in
List.rev (Xlist.rev_map paths (fun (id,beg,next) ->
(id,IntMap.find map beg,IntMap.find map next))), last - 1
let make_chart paths last =
let chart = Array.make (last+1) [] in
Xlist.iter paths (fun (id,beg,next) ->
chart.(beg) <- (id,next) :: chart.(beg));
chart
let parse_text = function
RawText query ->
let tokens = ExtArray.make 100 empty_token in
let _ = ExtArray.add tokens empty_token in (* id=0 jest zarezerwowane dla pro; FIXME: czy to jest jeszcze aktualne? *)
let paragraphs = Xlist.map (Xstring.split "\n" query) (fun paragraph ->
let paths,_ = parse paragraph in
let paths = make_ids tokens paths in
let paths,last = prepare_indexes2 paths in
let chart = make_chart paths last in
let par = Array.of_list ([""] @ Xunicode.utf8_chars_of_utf8_string paragraph @ [""]) in
PreSentences.find_sentence par tokens chart last;
PreSentences.find_quoted_sentences par tokens chart last;
PreSentences.find_query par tokens chart last;
let sentences = PreSentences.extract_sentences paragraph tokens chart last in
AltParagraph[Raw,RawParagraph paragraph; Struct,StructParagraph sentences]) in
AltText[Raw,RawText query; Struct,StructText(List.rev paragraphs, tokens)]
(* | AltText[Raw,RawText query;CONLL,StructText([
StructParagraph[{psentence = AltSentence[Raw, RawSentence text; CONLL, StructSentence(_,paths,last)]} as p]],_)] ->
let (cpaths,clast), next_id = parse_conll (paths,last) first_id in
let (paths,last), next_id = parse query next_id in
let sentences, next_id = split_into_sentences query paths last next_id in
let conll = StructParagraph[{p with psentence = AltSentence[Raw, RawSentence text;
Mate, StructSentence("M",cpaths,clast); CONLL, StructSentence("C",cpaths,clast)]}] in
(* print_endline "parse_text 6"; *)
AltText[Raw,RawText query; Struct, StructText([
AltParagraph[Raw,RawParagraph query; ENIAM, StructParagraph sentences; CONLL, conll]],next_id)]*)
| _ -> failwith "parse_text: not implemented"
let rec main_loop in_chan out_chan =
(* print_endline "main_loop 1"; *)
let query = (Marshal.from_channel in_chan : text) in
(* print_endline "main_loop 2"; *)
if query = RawText "" then () else (
(try
(* let time0 = Sys.time () in *)
let utime0 = Unix.gettimeofday () in
(* print_endline "main_loop 3a"; *)
let text = parse_text query in
(* print_endline "main_loop 4a"; *)
(* let time2 = Sys.time () in *)
let utime2 = Unix.gettimeofday () in
(* Printf.printf "time=%f utime=%f\n%!" (time2 -. time0) (utime2 -. utime0); *)
Marshal.to_channel out_chan (text(*paths,last,next_id*),"",utime2 -. utime0) [];
(* print_endline "main_loop 5"; *)
()
with e -> (
(* print_endline "main_loop 7"; *)
Marshal.to_channel out_chan (RawText ""(*[],0*),Printexc.to_string e,0.) []));
(* print_endline "main_loop 6"; *)
flush out_chan;
main_loop in_chan out_chan)
(* let _ = main_loop stdin stdout *)
let sockaddr = Unix.ADDR_INET(Unix.inet_addr_any,Paths.pre_port)
let _ =
Gc.compact ();
print_endline "Ready!";
Unix.establish_server main_loop sockaddr