rules.ml
14.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
open Xstd
open Types
open Printf
type tags =
T of string * string
| A of string
let parse_name s =
if s = "" then failwith "parse_name: empty name" else
if String.get s 0 = '@' then String.sub s 1 (String.length s - 1)
else failwith ("parse_name: invalid name " ^ s)
let parse_tags s =
Xlist.map (Xstring.split " " s) (fun t ->
match Xstring.split "=" t with
[k] -> A k
| [k;v] -> T(k,v)
| _ -> failwith "parse_tags")
let parse_star = function
"" -> Productive
| "*" -> Star
| "ndm" -> Ndm
| s -> failwith "parse_star"
let merge_stars = function
Star,_ -> Star
| _,Star -> Star
| Ndm,_ -> failwith "merge_stars"
| _,Ndm -> failwith "merge_stars"
| _ -> Productive
let string_of_star = function
Productive -> ""
| Star -> "*"
| Ndm -> "ndm"
let print_rule file rule =
Printf.fprintf file "%s\t%d\t%s\t%s\t%s\t%s\t%s\n" rule.id rule.freq (string_of_star rule.star)
rule.pref rule.find rule.set rule.interp
(**********************************************************************************************)
type alternation = {astar: star; aphone: string; afind: string; aset: string}
let load_alternations filename =
let alternations,name,alts = File.fold_tab filename ([],"",[]) (fun (found,name,alts) -> function
[alt_name] ->
let alt_name = parse_name alt_name in
if name = "" then found,alt_name,[] else (name,List.rev alts) :: found,alt_name,[]
| [star;a;b;c] -> found,name,{astar=parse_star star; aphone=a; afind=b; aset=c} :: alts
| _ -> failwith "load_alternations") in
(name,List.rev alts) :: alternations
let alternations () = load_alternations "../morphology/data/alternations.dic"
let revert_alternations l =
Xlist.map l (fun a -> {a with afind=a.aset; aset=a.afind})
let alternation_map alternations = Xlist.fold alternations StringMap.empty (fun map (k,v) ->
StringMap.add map k v)
let rev_alternation_map alternations = Xlist.fold alternations StringMap.empty (fun map (k,v) ->
StringMap.add map k (revert_alternations v))
type suf_rule = {sstar: star; salt_name: string; ssufix: string; stags: tags list}
type pref_rule = {pstar: star; pprefix: string; ptags: tags list}
let load_suf_rules filename =
let suf_rules,name,rules = File.fold_tab filename ([],"",[]) (fun (found,name,rules) -> function
[rules_name] ->
let rules_name = parse_name rules_name in
if name = "" then found,rules_name,[] else (name,List.rev rules) :: found,rules_name,[]
| [star;alt_name;sufix;tags] -> found,name,{sstar=parse_star star; salt_name=alt_name; ssufix=sufix; stags=parse_tags tags} :: rules
| _ -> failwith "load_suf_rules") in
(name,List.rev rules) :: suf_rules
let load_pref_rules filename =
let pref_rules,name,rules = File.fold_tab filename ([],"",[]) (fun (found,name,rules) -> function
[rules_name] ->
let rules_name = parse_name rules_name in
if name = "" then found,rules_name,[] else (name,List.rev rules) :: found,rules_name,[]
| [star;prefix;tags] -> found,name,{pstar=parse_star star; pprefix=prefix; ptags=parse_tags tags} :: rules
| _ -> failwith "load_pref_rules") in
(name,List.rev rules) :: pref_rules
let rules () = load_suf_rules "../morphology/data/rules.dic"
let rev_rules () = load_suf_rules "../morphology/data/rev_rules.dic"
let pref_rules () = load_pref_rules "../morphology/data/pref_rules.dic"
let load_freq_rules filename =
File.fold_tab filename [] (fun rules -> function
[id; freq; star; pref; find; set; interp] ->
{id=id; freq=int_of_string freq; star=parse_star star; pref=pref; find=find; set=set;
tags=[]; interp=interp} :: rules
| _ -> failwith "load_freq_rules")
let expand_tags x l =
Xlist.map l (function
T(k,v) -> k,v
| A k -> k,x)
let expand_tags_simple l =
Xlist.map l (function
T(k,v) -> k,v
| A k -> failwith ("expand_tags_simple: " ^ k))
let prepare_rules alternation_map suf_rules =
Xlist.fold suf_rules [] (fun rules s ->
let alternation = try StringMap.find alternation_map s.salt_name with Not_found -> failwith ("prepare_rules: " ^ s.salt_name) in
Xlist.fold alternation rules (fun rules a ->
{star=merge_stars (s.sstar,a.astar); pref=""; find=a.afind ^ s.ssufix; set=a.aset;
tags=expand_tags a.aphone s.stags; interp=""; id=""; freq=0} :: rules))
let prepare_rev_rules rev_alternation_map suf_rules =
Xlist.fold suf_rules [] (fun rules s ->
let alternation = try StringMap.find rev_alternation_map s.salt_name with Not_found -> failwith ("prepare_rev_rules: " ^ s.salt_name) in
Xlist.fold alternation rules (fun rules a ->
{star=merge_stars (s.sstar,a.astar); pref=""; find=a.afind; set=a.aset ^ s.ssufix;
tags=expand_tags a.aphone s.stags; interp=""; id=""; freq=0} :: rules))
let prepare_pref_rules pref_rules =
Xlist.fold pref_rules [] (fun rules p ->
{star=p.pstar; pref=p.pprefix; find=""; set=""; tags=expand_tags "" p.ptags; interp=""; id=""; freq=0} :: rules)
let rule_map alternation_map rev_alternation_map rules rev_rules pref_rules =
let map = Xlist.fold rules StringMap.empty (fun map (k,v) -> StringMap.add map k (prepare_rules alternation_map v)) in
let map = Xlist.fold rev_rules map (fun map (k,v) -> StringMap.add map k (prepare_rev_rules rev_alternation_map v)) in
Xlist.fold pref_rules map (fun map (k,v) -> StringMap.add map k (prepare_pref_rules v))
let schemata () = File.load_tab "../morphology/data/schemata.dic" (fun l -> l)
(**********************************************************************************************)
let rec extract_tag s rev = function
[] -> "", List.rev rev
| (k,v) :: l -> if s = k then v, List.rev rev @ l else extract_tag s ((k,v) :: rev) l
let create_compound_rules schemata rule_map =
let found = Xlist.fold schemata [] (fun found schema ->
let compounds = Xlist.fold schema [{star=Productive;pref="";find="";set="";tags=[];interp=""; id=""; freq=0}] (fun compounds rule_set_name ->
let rules = try StringMap.find rule_map rule_set_name with Not_found -> failwith ("create_compound_rules: " ^ rule_set_name) in
Xlist.fold compounds [] (fun compounds compound ->
Xlist.fold rules compounds (fun compounds rule ->
(* printf "compound.find=%s; compound.set=%s\n" compound.find compound.set;
printf "rule.find=%s; rule.set=%s\n" rule.find rule.set; *)
if rule.find = "" && rule.set = "" then
{compound with star=merge_stars (compound.star, rule.star);
pref=compound.pref ^ rule.pref; tags=rule.tags@compound.tags} :: compounds
else if Xstring.check_sufix compound.set rule.find then
{compound with star=merge_stars (compound.star, rule.star);
find=Xstring.cut_sufix compound.set rule.find ^ compound.find; set=rule.set; tags=rule.tags@compound.tags} :: compounds
else if Xstring.check_sufix rule.find compound.set then
{compound with star=merge_stars (compound.star, rule.star);
find=compound.find; set=Xstring.cut_sufix rule.find compound.set ^ rule.set; tags=rule.tags@compound.tags} :: compounds
else compounds))) in
compounds @ found) in
let found = Xlist.rev_map found (fun rule ->
let suf, tags = extract_tag "suf" [] rule.tags in
{rule with set=rule.set ^ suf; tags=tags}) in
found
let make_compound_rules () =
let schemata = schemata () in
let alternations = alternations () in
let alternation_map = alternation_map alternations in
let rev_alternation_map = rev_alternation_map alternations in
let rule_map = rule_map alternation_map rev_alternation_map (rules ()) (rev_rules ()) (pref_rules ()) in
create_compound_rules schemata rule_map
(**********************************************************************************************)
let tag_value = function
"cat" -> 1
| "pref" -> 2
| "con" -> 3
| "grad" -> 4
| "group" -> 5
| "flex2" -> 6
| "flex" -> 7
| "lemma" -> 8
| "patal" -> 9
| "lpatal" -> 10
| "velar" -> 11
| s -> failwith ("tag_value: " ^ s)
let tag_value2 = function
"cat" -> 1
| "flex" -> 2
| "flex2" -> 3
| "grad" -> 4
| "pref" -> 5
| "lemma" -> 6
| "con" -> 7
| "group" -> 8
| "patal" -> 9
| "lpatal" -> 10
| "velar" -> 11
| s -> failwith ("tag_value2: " ^ s)
let compare_tag (a,_) (b,_) =
compare (tag_value a) (tag_value b)
let compare_tag2 (a,_) (b,_) =
compare (tag_value2 a) (tag_value2 b)
let load_interp_rules filename =
File.load_tab filename (function
star :: tags :: interp :: comment :: [] ->
{star=parse_star star;
pref=""; find=""; set="";
tags=expand_tags_simple (parse_tags tags); interp=interp; (*comment=comment;*) id=""; freq=0}
| line -> failwith ("load_tab: " ^ (String.concat "\t" line)))
module InterpTree = struct
type t =
N of string * t StringMap.t * rule list
| L of rule list
let empty = L []
let rec create_rec rule = function
[],N(key,map,rules) -> N(key,map,rule :: rules)
| [],L rules -> L(rule :: rules)
| (k,v) :: tags,N(key,map,rules) ->
if k <> key then failwith ("create_rec: " ^ k ^ " " ^ key) else
let tree = try StringMap.find map v with Not_found -> empty in
let tree = create_rec rule (tags,tree) in
N(key,StringMap.add map v tree,rules)
| (k,v) :: tags,L rules ->
let tree = create_rec rule (tags,empty) in
N(k,StringMap.add StringMap.empty v tree,rules)
let create interp_rules =
Xlist.fold interp_rules empty (fun interp_tree rule ->
let tags = Xlist.sort rule.tags compare_tag2 in
create_rec rule (tags,interp_tree))
let rec find_rec = function
[],N(_,_,rules) -> rules
| _,L rules -> rules
| (k,v) :: tags,N(key,map,rules) ->
if k <> key then find_rec (tags,N(key,map,rules)) else
try rules @ (find_rec (tags,StringMap.find map v))
with Not_found -> rules
let find interp_tree tags =
find_rec (Xlist.sort tags compare_tag2,interp_tree)
end
let interp_tree () = InterpTree.create (load_interp_rules "../morphology/data/interp_rules.dic")
(**********************************************************************************************)
let create_interp_compound_rules interp_tree compound_rules =
Xlist.fold compound_rules [] (fun interp_compound_rules rule ->
let interp_rules = InterpTree.find interp_tree rule.tags in
Xlist.fold interp_rules interp_compound_rules (fun interp_compound_rules interp_rule ->
{rule with interp=interp_rule.interp; star=merge_stars (rule.star, interp_rule.star)} :: interp_compound_rules))
let assign_ids rules =
fst (Xlist.fold rules ([],1) (fun (rules,id) rule ->
{rule with id=string_of_int id} :: rules, id+1))
let interp_compound_rules compound_rules = assign_ids (create_interp_compound_rules (interp_tree ()) compound_rules)
(**********************************************************************************************)
module CharTrees = struct
type t = M of t CharMap.t * rule list
let empty = M(CharMap.empty,[])
let rec add_path_rules rule orth_suf i (M(map,rules)) =
if i = -1 then M(map,rule :: rules) else
let tree = try CharMap.find map (String.get orth_suf i) with Not_found -> empty in
let tree = add_path_rules rule orth_suf (i-1) tree in
M(CharMap.add map (String.get orth_suf i) tree,rules)
let create_char_tree rules =
let tree = Xlist.fold rules empty (fun tree rule ->
add_path_rules rule rule.find (String.length rule.find - 1) tree) in
tree
let create rules =
let prefix_map = Xlist.fold rules StringMap.empty (fun prefix_map rule ->
StringMap.add_inc prefix_map rule.pref [rule] (fun l -> rule :: l)) in
StringMap.fold prefix_map [] (fun trees prefix rules -> (prefix, create_char_tree rules) :: trees)
let rec find_rec l i orth (M(map,rules)) =
if i = 0 then Xlist.fold rules l (fun l rule -> ("", rule) :: l) else
let l = try find_rec l (i-1) orth (CharMap.find map (String.get orth (i-1))) with Not_found -> l in
Xlist.fold rules l (fun l rule -> (String.sub orth 0 i, rule) :: l)
let find trees orth =
Xlist.fold trees [] (fun found (pref,tree) ->
(* print_endline pref; *)
if Xstring.check_prefix pref orth then (
let orth = Xstring.cut_prefix pref orth in
(* printf "%s %d " orth (Xlist.size found); *)
let found = find_rec found (String.length orth) orth tree in
(* printf "%d\n%!" (Xlist.size found); *)
(* Xlist.iter found (fun (stem,rule) -> printf "F %s\t%s\n" stem (string_of_rule rule)); *)
found)
else found)
let add_char c rule =
let s = String.make 1 c in
{rule with find=s ^ rule.find; set=s ^ rule.set}
let rec disjoint_rec super (M(map,rules)) =
let rules = rules @ super in
if CharMap.is_empty map then M(map,rules) else
M(CharMap.mapi map (fun c tree ->
disjoint_rec (Xlist.rev_map rules (add_char c)) tree),[])
let disjoint trees =
Xlist.rev_map trees (fun (pref,tree) ->
pref, disjoint_rec [] tree)
let rec print_rules_rec file (M(map,rules)) =
Xlist.iter rules (print_rule file);
CharMap.iter map (fun _ tree -> print_rules_rec file tree)
let print_rules filename trees =
File.file_out filename (fun file ->
Xlist.iter trees (fun (_,tree) ->
print_rules_rec file tree))
end
let compound_rule_trees compound_rules = CharTrees.create compound_rules
let interp_compound_rule_trees interp_compound_rules = CharTrees.create interp_compound_rules
let make_compound_rule_trees = compound_rule_trees
let make_interp_compound_rule_trees compound_rules =
interp_compound_rule_trees (interp_compound_rules compound_rules)
(**********************************************************************************************)
module OrderedRule = struct
type t = rule
let compare = compare
end
module RuleQMap = Xmap.MakeQ(OrderedRule)
let string_of_star = function
Productive -> ""
| Star -> "*"
| Ndm -> "ndm"
let string_of_freq_rule rule =
sprintf "%s\t%d\t%s\t%s\t%s\t%s\t%s" rule.id rule.freq (string_of_star rule.star) rule.pref rule.find rule.set rule.interp
(**********************************************************************************************)