ENIAMpaths.ml
38.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
(*
* ENIAMsubsyntax: MWE, abbreviation and sentence detecion for Polish
* Copyright (C) 2016 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
* Copyright (C) 2016 Institute of Computer Science Polish Academy of Sciences
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*)
open Xstd
open ENIAMtokenizerTypes
(* let to_string_indexed (paths,last) =
String.concat "\n" (Xlist.map paths (fun (i,j,t) ->
Printf.sprintf "%2d %2d %s" i j (ENIAMtokens.string_of_tokens 0 (Token t))))
^ Printf.sprintf "\nlast=%d" last *)
(*let indexed_token_record_to_xml i j t =
let lemma,pos,tags =
match t.token with
Lemma(lemma,pos,tags) -> lemma,pos,tags
| _ -> failwith "indexed_token_record_to_xml" in
Xml.Element("token",["i",string_of_int i;"j",string_of_int j;
"beg",string_of_int t.beg;"len",string_of_int t.len;"weight",string_of_float t.weight],[
Xml.Element("orth",[],[Xml.PCData t.orth]);
Xml.Element("lemma",[],[Xml.PCData lemma]);
Xml.Element("pos",[],[Xml.PCData pos]);
Xml.Element("tags",[],Xlist.map tags (fun l ->
Xml.Element("variant",[],[Xml.PCData (String.concat ":" (Xlist.map l (fun l2 -> String.concat "." l2)))])));
Xml.Element("valence",[],Xlist.map t.valence WalXmlOf.num_frame);
Xml.Element("senses",[],
Xlist.map t.senses (fun (sense,hipero,weight) ->
Xml.Element("sense",["name",sense;"weight",string_of_float weight],
Xlist.map hipero (fun s -> Xml.Element("hipero",[],[Xml.PCData s])))))])
let to_xml (paths,last) =
Xml.Element("paths",["last",string_of_int last],
Xlist.map paths (fun (i,j,t) -> indexed_token_record_to_xml i j t)) *)
let compare_token_record p r =
let v = compare p.beg r.beg in
if v <> 0 then v else
let v = compare p.next r.next in
if v <> 0 then v else
compare p r
let sort (paths,last) =
Xlist.sort paths compare_token_record, last
let rec uniq_rec rev = function
[] -> List.rev rev
| [p] -> List.rev (p :: rev)
| p :: r :: l ->
(* Printf.printf "uniq_rec 1: %s\n" (ENIAMtokens.string_of_token_env p);
Printf.printf "uniq_rec 2: %s\n" (ENIAMtokens.string_of_token_env r);
if p = r then Printf.printf "uniq_rec eq %d\n" (compare p r) else Printf.printf "uniq_rec neq %d\n" (compare p r);*)
if p = r then uniq_rec rev (r :: l) else uniq_rec (p :: rev) (r :: l)
let uniq (paths,last) =
uniq_rec [] paths, last
let rec translate_into_paths_rec paths = function
Token t -> t :: paths
| Seq l -> Xlist.fold l paths translate_into_paths_rec
| Variant l -> Xlist.fold l paths translate_into_paths_rec
let translate_into_paths tokens =
let paths = Xlist.fold tokens [] (fun paths token ->
translate_into_paths_rec paths token) in
let last = if paths = [] then 0 else (List.hd paths).next in
let paths = sort (paths,last) in
let paths = uniq paths in
paths
let remove_inaccessible_tokens paths beg last =
let set = Xlist.fold paths (IntSet.singleton beg) (fun set t ->
if IntSet.mem set t.beg then IntSet.add set t.next else set) in
if not (IntSet.mem set last) then raise ENIAMsubsyntaxTypes.BrokenPaths else
Xlist.fold paths [] (fun paths t ->
if IntSet.mem set t.beg then t :: paths else paths)
let remove_category cat paths =
List.rev (Xlist.fold paths [] (fun paths t ->
if t.cat = cat then paths else t :: paths))
(**********************************************************************************)
let create_sentence_end_beg i len next orth =
[{empty_token_env with beg=i;len=20;next=i+20;token=Interp "</clause>";cat="Interp"};
{empty_token_env with orth=orth;beg=i+20;len=20;next=i+40;token=Interp "</sentence>";cat="Interp"};
{empty_token_env with beg=i+40;len=20;next=i+60;token=Interp "<sentence>";cat="Interp"};
{empty_token_env with beg=i+60;len=len-60;next=next;token=Interp "<clause>";cat="Interp"}]
let create_clause_end_beg i len next orth =
[{empty_token_env with beg=i;len=60;next=i+60;token=Interp "</clause>";cat="Interp"};
{empty_token_env with beg=i+60;len=len-60;next=next;token=Interp "<clause>";cat="Interp"}]
let process_interpunction_token beg next t =
if t.beg = beg then
if t.next = next then [
{empty_token_env with beg=t.beg;len=20;next=t.beg+20;token=Interp "<sentence>";cat="Interp"};
{empty_token_env with beg=t.beg+20;len=20;next=t.beg+40;token=Interp "<clause>";cat="Interp"};
{t with beg=t.beg+40;len=t.len-80;next=t.beg+t.len-40};
{empty_token_env with beg=t.beg+t.len-40;len=20;next=t.beg+t.len-20;token=Interp "</clause>";cat="Interp"};
{empty_token_env with beg=t.beg+t.len-20;len=20;next=t.next;token=Interp "</sentence>";cat="Interp"}]
else [
{empty_token_env with beg=t.beg;len=20;next=t.beg+20;token=Interp "<sentence>";cat="Interp"};
{empty_token_env with beg=t.beg+20;len=20;next=t.beg+40;token=Interp "<clause>";cat="Interp"};
{t with beg=t.beg+40;len=60;next=t.next}]
else
if t.next = next then match t.token with
Interp "." -> [
{empty_token_env with beg=t.beg;len=20;next=t.beg+20;token=Interp "</clause>";cat="Interp"};
{t with beg=t.beg+20;len=t.len-20;token=Interp "</sentence>";cat="Interp"}]
| _ -> [
{t with len=t.len-40;next=t.beg+t.len-40};
{empty_token_env with beg=t.beg+t.len-40;len=20;next=t.beg+t.len-20;token=Interp "</clause>";cat="Interp"};
{empty_token_env with beg=t.beg+t.len-20;len=20;next=t.next;token=Interp "</sentence>";cat="Interp"}]
else match t.token with
Interp "." -> t :: (create_sentence_end_beg t.beg t.len t.next t.orth)
| Lemma(",","conj",[[]]) -> t :: (create_clause_end_beg t.beg t.len t.next t.orth)
| Interp ":" -> t :: (create_clause_end_beg t.beg t.len t.next t.orth) @ (create_sentence_end_beg t.beg t.len t.next t.orth)
| Interp ";" -> t :: (create_sentence_end_beg t.beg t.len t.next t.orth)
| Interp "¶" -> t :: (create_clause_end_beg t.beg t.len t.next t.orth) @ (create_sentence_end_beg t.beg t.len t.next t.orth)
| _ -> [t]
let rec process_interpunction beg next paths =
List.flatten (List.rev (Xlist.rev_map paths (fun t ->
process_interpunction_token beg next t)))
(**********************************************************************************)
(* Korzystamy z tego, że istnieje wierzchołem najmniejszy i największy *)
let rec biconnected_compontents_rec next found rev = function
[] -> if rev = [] then found else ((*List.rev*) rev) :: found
| t :: paths ->
if t.beg > next then failwith "biconnected_compontents_rec" else
if t.beg = next then
biconnected_compontents_rec t.next (if rev = [] then found else ((*List.rev*) rev) :: found) [t] paths else
biconnected_compontents_rec (max next t.next) found (t :: rev) paths
let biconnected_compontents paths =
List.rev (biconnected_compontents_rec 0 [] [] paths)
(**********************************************************************************)
(*let excluded_interps = StringSet.of_list [
"praet:sg:f:pri:perf";
"praet:sg:f:pri:imperf.perf";
"praet:sg:f:pri:imperf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:pri:perf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:pri:imperf.perf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:pri:imperf";
"praet:pl:m1.p1:pri:perf";
"praet:pl:m1.p1:pri:imperf.perf";
"praet:pl:m1.p1:pri:imperf";
"praet:sg:m1.m2.m3:pri:perf";
"praet:sg:m1.m2.m3:pri:imperf.perf";
"praet:sg:m1.m2.m3:pri:imperf";
"praet:sg:n1.n2:pri:perf";
"praet:sg:n1.n2:pri:imperf.perf";
"praet:sg:n1.n2:pri:imperf";
"praet:sg:f:sec:perf";
"praet:sg:f:sec:imperf.perf";
"praet:sg:f:sec:imperf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:sec:perf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:sec:imperf.perf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:sec:imperf";
"praet:pl:m1.p1:sec:perf";
"praet:pl:m1.p1:sec:imperf.perf";
"praet:pl:m1.p1:sec:imperf";
"praet:sg:m1.m2.m3:sec:perf";
"praet:sg:m1.m2.m3:sec:imperf.perf";
"praet:sg:m1.m2.m3:sec:imperf";
"praet:sg:n1.n2:sec:perf";
"praet:sg:n1.n2:sec:imperf.perf";
"praet:sg:n1.n2:sec:imperf";
"praet:sg:f:ter:perf";
"praet:sg:f:ter:imperf.perf";
"praet:sg:f:ter:imperf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:ter:perf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:ter:imperf.perf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:ter:imperf";
"praet:pl:m1.p1:ter:perf";
"praet:pl:m1.p1:ter:imperf.perf";
"praet:pl:m1.p1:ter:imperf";
"praet:sg:m1.m2.m3:ter:perf";
"praet:sg:m1.m2.m3:ter:imperf.perf";
"praet:sg:m1.m2.m3:ter:imperf";
"praet:sg:n1.n2:ter:perf";
"praet:sg:n1.n2:ter:imperf.perf";
"praet:sg:n1.n2:ter:imperf";
"cond:sg:m1.m2.m3:ter:perf";
"cond:sg:m1.m2.m3:ter:imperf.perf";
"cond:sg:m1.m2.m3:ter:imperf";
"cond:sg:m1.m2.m3:sec:perf";
"cond:sg:m1.m2.m3:sec:imperf.perf";
"cond:sg:m1.m2.m3:sec:imperf";
"cond:sg:m1.m2.m3:pri:perf";
"cond:sg:m1.m2.m3:pri:imperf.perf";
"cond:sg:m1.m2.m3:pri:imperf";
"cond:sg:m1.m2.m3:perf";
"cond:sg:m1.m2.m3:imperf.perf";
"cond:sg:m1.m2.m3:imperf";
"cond:sg:f:ter:perf";
"cond:sg:f:ter:imperf.perf";
"cond:sg:f:ter:imperf";
"cond:sg:f:sec:perf";
"cond:sg:f:sec:imperf.perf";
"cond:sg:f:sec:imperf";
"cond:sg:f:pri:perf";
"cond:sg:f:pri:imperf.perf";
"cond:sg:f:pri:imperf";
"cond:sg:f:perf";
"cond:sg:f:imperf.perf";
"cond:sg:f:imperf";
"cond:sg:n1.n2:ter:perf";
"cond:sg:n1.n2:ter:imperf.perf";
"cond:sg:n1.n2:ter:imperf";
"cond:sg:n1.n2:sec:perf";
"cond:sg:n1.n2:sec:imperf.perf";
"cond:sg:n1.n2:sec:imperf";
"cond:sg:n1.n2:pri:perf";
"cond:sg:n1.n2:pri:imperf.perf";
"cond:sg:n1.n2:pri:imperf";
"cond:sg:n1.n2:perf";
"cond:sg:n1.n2:imperf.perf";
"cond:sg:n1.n2:imperf";
"cond:pl:m2.m3.f.n1.n2.p2.p3:ter:perf";
"cond:pl:m2.m3.f.n1.n2.p2.p3:ter:imperf.perf";
"cond:pl:m2.m3.f.n1.n2.p2.p3:ter:imperf";
"cond:pl:m2.m3.f.n1.n2.p2.p3:sec:perf";
"cond:pl:m2.m3.f.n1.n2.p2.p3:sec:imperf.perf";
"cond:pl:m2.m3.f.n1.n2.p2.p3:sec:imperf";
"cond:pl:m2.m3.f.n1.n2.p2.p3:pri:perf";
"cond:pl:m2.m3.f.n1.n2.p2.p3:pri:imperf.perf";
"cond:pl:m2.m3.f.n1.n2.p2.p3:pri:imperf";
"cond:pl:m2.m3.f.n1.n2.p2.p3:perf";
"cond:pl:m2.m3.f.n1.n2.p2.p3:imperf.perf";
"cond:pl:m2.m3.f.n1.n2.p2.p3:imperf";
"cond:pl:m1.p1:ter:perf";
"cond:pl:m1.p1:ter:imperf.perf";
"cond:pl:m1.p1:ter:imperf";
"cond:pl:m1.p1:sec:perf";
"cond:pl:m1.p1:sec:imperf.perf";
"cond:pl:m1.p1:sec:imperf";
"cond:pl:m1.p1:pri:perf";
"cond:pl:m1.p1:pri:imperf.perf";
"cond:pl:m1.p1:pri:imperf";
"cond:pl:m1.p1:perf";
"cond:pl:m1.p1:imperf.perf";
"cond:pl:m1.p1:imperf";
"winien:sg:n1.n2:ter:imperf";
"winien:sg:n1.n2:sec:imperf";
"winien:sg:n1.n2:pri:imperf";
(* "winien:sg:n1.n2:imperf"; *)
"winien:sg:m1.m2.m3:ter:imperf";
"winien:sg:m1.m2.m3:sec:imperf";
"winien:sg:m1.m2.m3:pri:imperf";
(* "winien:sg:m1.m2.m3:imperf"; *)
"winien:sg:f:ter:imperf";
"winien:sg:f:sec:imperf";
"winien:sg:f:pri:imperf";
(* "winien:sg:f:imperf"; *)
"winien:pl:m2.m3.f.n1.n2.p2.p3:ter:imperf";
"winien:pl:m2.m3.f.n1.n2.p2.p3:sec:imperf";
"winien:pl:m2.m3.f.n1.n2.p2.p3:pri:imperf";
(* "winien:pl:m2.m3.f.n1.n2.p2.p3:imperf"; *)
"winien:pl:m1.p1:ter:imperf";
"winien:pl:m1.p1:sec:imperf";
"winien:pl:m1.p1:pri:imperf";
(* "winien:pl:m1.p1:imperf"; *)
]
let transformed_interps = Xlist.fold [
"praet:sg:f:perf:agl","praet:sg:f:perf";
"praet:sg:f:imperf.perf:agl","praet:sg:f:imperf.perf";
"praet:sg:f:imperf:agl","praet:sg:f:imperf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:perf:agl","praet:pl:m2.m3.f.n1.n2.p2.p3:perf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:imperf.perf:agl","praet:pl:m2.m3.f.n1.n2.p2.p3:imperf.perf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:imperf:agl","praet:pl:m2.m3.f.n1.n2.p2.p3:imperf";
"praet:pl:m1.p1:perf:agl","praet:pl:m1.p1:perf";
"praet:pl:m1.p1:imperf.perf:agl","praet:pl:m1.p1:imperf.perf";
"praet:pl:m1.p1:imperf:agl","praet:pl:m1.p1:imperf";
"praet:sg:m1.m2.m3:perf:agl","praet:sg:m1.m2.m3:perf";
"praet:sg:m1.m2.m3:imperf.perf:agl","praet:sg:m1.m2.m3:imperf.perf";
"praet:sg:m1.m2.m3:imperf:agl","praet:sg:m1.m2.m3:imperf";
"praet:sg:n1.n2:perf:agl","praet:sg:n1.n2:perf";
"praet:sg:n1.n2:imperf.perf:agl","praet:sg:n1.n2:imperf.perf";
"praet:sg:n1.n2:imperf:agl","praet:sg:n1.n2:imperf";
"praet:sg:f:perf:nagl","praet:sg:f:perf";
"praet:sg:f:imperf.perf:nagl","praet:sg:f:imperf.perf";
"praet:sg:f:imperf:nagl","praet:sg:f:imperf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:perf:nagl","praet:pl:m2.m3.f.n1.n2.p2.p3:perf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:imperf.perf:nagl","praet:pl:m2.m3.f.n1.n2.p2.p3:imperf.perf";
"praet:pl:m2.m3.f.n1.n2.p2.p3:imperf:nagl","praet:pl:m2.m3.f.n1.n2.p2.p3:imperf";
"praet:pl:m1.p1:perf:nagl","praet:pl:m1.p1:perf";
"praet:pl:m1.p1:imperf.perf:nagl","praet:pl:m1.p1:imperf.perf";
"praet:pl:m1.p1:imperf:nagl","praet:pl:m1.p1:imperf";
"praet:sg:m1.m2.m3:perf:nagl","praet:sg:m1.m2.m3:perf";
"praet:sg:m1.m2.m3:imperf.perf:nagl","praet:sg:m1.m2.m3:imperf.perf";
"praet:sg:m1.m2.m3:imperf:nagl","praet:sg:m1.m2.m3:imperf";
"praet:sg:n1.n2:perf:nagl","praet:sg:n1.n2:perf";
"praet:sg:n1.n2:imperf.perf:nagl","praet:sg:n1.n2:imperf.perf";
"praet:sg:n1.n2:imperf:nagl","praet:sg:n1.n2:imperf";
] StringMap.empty (fun map (k,v) -> StringMap.add map k v)
let merge_lemmata l =
let map = Xlist.fold l StringMap.empty (fun map (lemma,interp,quantity,status) ->
let interp = if interp = "num:comp" then "numc" else interp in
if StringSet.mem excluded_interps interp then map else
let interp = try StringMap.find transformed_interps interp with Not_found -> interp in
let s = lemma ^ "#" ^ ENIAMinflexion.string_of_status status in
StringMap.add_inc map s (lemma,quantity,[interp],status) (fun (_,q,l,_) -> lemma,q+quantity,interp :: l,status)) in
let map = StringMap.map map (fun (lemma,quantity,interps,status) ->
lemma,
Xlist.fold interps StringMap.empty (fun map interp ->
Xlist.fold (ENIAMtagset.parse interp) map (fun map (pos,tags) ->
StringMap.add_inc map pos [tags] (fun l -> tags :: l))),
max 1 (quantity / Xlist.size interps),
status) in
StringMap.fold map [] (fun l _ (lemma,map,quantity,status) ->
StringMap.fold map l (fun l cat interp ->
(lemma,cat,interp,quantity,status) :: l))*)
(*let map_depr_interp = function
"subst:sg.pl:nom.gen.dat.acc.inst.loc.voc:m1|depr:pl:nom.acc.voc:m2" -> "subst:sg.pl:nom.gen.dat.acc.inst.loc.voc:m1"
| "subst:sg:nom.voc:m1|depr:pl:nom.acc.voc:m2" -> "subst:sg:nom.voc:m1"
| interp ->
(* print_endline interp; *)
interp
let merge_lemmata l =
(* print_endline "merge_lemmata 1"; *)
(* Xlist.iter l (fun t -> Printf.printf "%s %s\n" t.ENIAMinflexion.lemma t.ENIAMinflexion.interp); *)
let l = if !ENIAMsubsyntaxTypes.strong_disambiguate_flag then
let vl,nvl = Xlist.fold l ([],[]) (fun (vl,nvl) t ->
if t.ENIAMinflexion.status = ENIAMinflexion.LemmaVal || t.ENIAMinflexion.status = ENIAMinflexion.LemmaAlt then t :: vl,nvl else vl,t :: nvl) in
if vl = [] then nvl else vl else l in (* to wycina potrzebne interpretacje *)
(* print_endline "merge_lemmata 2"; *)
(* Xlist.iter l (fun t -> Printf.printf "%s %s\n" t.ENIAMinflexion.lemma t.ENIAMinflexion.interp); *)
(* FIXME: excluded_interps, transformed_interps, num:comp *)
if !ENIAMsubsyntaxTypes.merge_lemmata then
let map = Xlist.fold l StringMap.empty (fun map t(*lemma,interp,quantity,status*) ->
(* let interp = if interp = "num:comp" then "numc" else interp in
if StringSet.mem excluded_interps interp then map else
let interp = try StringMap.find transformed_interps interp with Not_found -> interp in *)
let s = t.ENIAMinflexion.lemma ^ "#"(* ^ ENIAMinflexion.string_of_status status*) in
StringMap.add_inc map s (t.ENIAMinflexion.lemma,t.ENIAMinflexion.freq,[t.ENIAMinflexion.interp](*,t.ENIAMinflexion.status*))
(fun (_,q,l(*,_*)) -> t.ENIAMinflexion.lemma,q+t.ENIAMinflexion.freq,t.ENIAMinflexion.interp :: l(*,t.ENIAMinflexion.status*))) in
let map = StringMap.map map (fun (lemma,quantity,interps(*,status*)) ->
lemma,
Xlist.fold interps StringMap.empty (fun map interp ->
Xlist.fold (ENIAMtagset.parse (map_depr_interp interp)) map (fun map (pos,tags) ->
StringMap.add_inc map pos [tags] (fun l -> tags :: l))),
max 1 (quantity / Xlist.size interps)(*,
status*)) in
(* print_endline "merge_lemmata 4"; *)
StringMap.fold map [] (fun l _ (lemma,map,quantity(*,status*)) ->
StringMap.fold map l (fun l cat interp ->
(* Printf.printf "%s %s\n" lemma cat; *)
(lemma,cat,interp,quantity,ENIAMinflexion.LemmNotVal(*,status*)) :: l))
else (
let l = Xlist.rev_map l (fun t ->
t.ENIAMinflexion.lemma,
Xlist.fold (ENIAMtagset.parse t.ENIAMinflexion.interp) StringMap.empty (fun map (pos,tags) ->
StringMap.add_inc map pos [tags] (fun l -> tags :: l)),
t.ENIAMinflexion.freq,
t.ENIAMinflexion.status) in
(* print_endline "merge_lemmata 3"; *)
(* Xlist.iter l (fun (lemma,_,_,_ )-> Printf.printf "%s\n" lemma); *)
Xlist.fold l [] (fun l (lemma,map,quantity,status) ->
StringMap.fold map l (fun l cat interp ->
(lemma,cat,interp,quantity,status) :: l)))
let uppercase lemma cl ll =
let n = String.length lemma in
let nll = String.length ll in
cl ^ String.sub lemma nll (n - nll)
let quant_mod quantity =
log10 (float quantity)
let add_attr attrs = function
ENIAMinflexion.LemmaVal -> attrs
| ENIAMinflexion.LemmaAlt -> attrs
| ENIAMinflexion.LemmNotVal -> LemmNotVal :: attrs
| ENIAMinflexion.TokNotFound -> TokNotFound :: attrs
let lemmatize_token = function
| {token=AllSmall s} as t ->
t :: (Xlist.rev_map (merge_lemmata (ENIAMinflexion.get_interpretations s)) (fun (lemma,cat,interp,quantity,status) ->
{t with token=Lemma(lemma,cat,interp); weight=t.weight+.(quant_mod quantity); attrs=add_attr t.attrs status}))
| {token=SmallLetter s} as t ->
t :: (Xlist.rev_map (merge_lemmata (ENIAMinflexion.get_interpretations s)) (fun (lemma,cat,interp,quantity,status) ->
{t with token=Lemma(lemma,cat,interp); weight=t.weight+.(quant_mod quantity); attrs=add_attr t.attrs status}))
| {token=FirstCap(s,lower,cl,ll)} as t ->
if !ENIAMsubsyntaxTypes.merge_lemmata then
let l = ENIAMinflexion.get_interpretations s in
let l = Xlist.fold (ENIAMinflexion.get_interpretations lower) l (fun l t ->
{t with ENIAMinflexion.lemma=uppercase t.ENIAMinflexion.lemma cl ll} :: l) in
t :: (Xlist.rev_map (merge_lemmata l) (fun (lemma,cat,interp,quantity,status) ->
{t with token=Lemma(lemma,cat,interp); weight=t.weight+.(quant_mod quantity); attrs=add_attr t.attrs status}))
else
let l = Xlist.rev_map (merge_lemmata (ENIAMinflexion.get_interpretations s)) (fun (lemma,cat,interp,quantity,status) ->
{t with token=Lemma(lemma,cat,interp); weight=t.weight+.(quant_mod quantity); attrs=NotValProper :: add_attr t.attrs status}) in
let b = Xlist.fold l false (fun b t -> if Xlist.mem t.attrs LemmNotVal || Xlist.mem t.attrs TokNotFound then b else true) in
if b then t :: l else
let l2 = Xlist.rev_map (merge_lemmata (ENIAMinflexion.get_interpretations lower)) (fun (lemma,cat,interp,quantity,status) ->
{t with token=Lemma(uppercase lemma cl ll,cat,interp); weight=t.weight+.(quant_mod quantity); attrs=NotValProper :: LemmLowercase :: add_attr t.attrs status}) in
let b = Xlist.fold l2 false (fun b t -> if Xlist.mem t.attrs LemmNotVal || Xlist.mem t.attrs TokNotFound then b else true) in
if b then t :: l2 else t :: l
| {token=AllCap(s,_,_)} as t ->
t :: (Xlist.rev_map (merge_lemmata (ENIAMinflexion.get_interpretations s)) (fun (lemma,cat,interp,quantity,status) ->
{t with token=Lemma(lemma,cat,interp); weight=t.weight+.(quant_mod quantity); attrs=Capitalics :: NotValProper :: add_attr t.attrs status}))
| {token=CapLetter(s,_)} as t ->
t :: (Xlist.rev_map (merge_lemmata (ENIAMinflexion.get_interpretations s)) (fun (lemma,cat,interp,quantity,status) ->
{t with token=Lemma(lemma,cat,interp); weight=t.weight+.(quant_mod quantity); attrs=NotValProper :: add_attr t.attrs status}))
| {token=SomeCap s} as t ->
t :: (Xlist.rev_map (merge_lemmata (ENIAMinflexion.get_interpretations s)) (fun (lemma,cat,interp,quantity,status) ->
{t with token=Lemma(lemma,cat,interp); weight=t.weight+.(quant_mod quantity); attrs=NotValProper :: add_attr t.attrs status}))
| t -> [t]
let rec lemmatize_rec rev = function
[] -> List.rev rev
| t :: l -> lemmatize_rec (lemmatize_token t @ rev) l
let lemmatize (paths,last) =
List.rev (Xlist.fold (lemmatize_rec [] paths) [] (fun paths t ->
match t.token with
Lemma(lemma,cat,_) -> if (Xlist.mem t.attrs LemmNotVal || Xlist.mem t.attrs TokNotFound) &&
(Xlist.mem t.attrs HasAglSuffix) && not !ENIAMsubsyntaxTypes.merge_lemmata then (
(* Printf.printf "lemmatize HasAglSuffix: %s %s\n" lemma cat; *)
paths)
else t(*{t with attrs=List.remove "required validated lemmatization" t.attrs}*) :: paths
| _ -> t :: paths)), last*)
(* TODO: docelowa lematyzacja:
- lematyzacja za pomocą półręcznie wytworzonych reguł lematyzacji i listy wyjątków
- walidacja lematów za pomocą listy znanych lematów zawierającej lemat, kategorię, rodzaj subst, aspekt verb (obejmuje też walidację akronimów)
- rozpoznawanie wyrażeń wielosłownych (mwe i mte) za pomocą listy zawierającej ich lematy i szablony odmiany
*)
(**********************************************************************************)
(**********************************************************************************)
(**********************************************************************************)
(*let rec get_beg_id = function
Token t -> t.beg
| Seq(t :: _) -> get_beg_id t
| Variant(t :: _) -> get_beg_id t
| _ -> failwith "get_beg_id"
let rec get_end_id = function
Token t -> t.beg + t.len
| Seq [] -> failwith "get_end_id"
| Seq l -> get_end_id (List.hd (List.rev l))
| Variant(t :: _) -> get_end_id t
| _ -> failwith "get_end_id"*)
(*let rec lemmatize_tokens paths next_id = function
Token({token=Dig(v,cat)} as t)-> PrePaths.add_edge paths t.beg next_id t.orth v (ENIAMtagset.parse cat) t.beg t.len
| Token({token=Lemma(lemma,interp)} as t) -> PrePaths.add_edge paths t.beg next_id t.orth lemma (ENIAMtagset.parse interp) t.beg t.len
| Token({token=Interp lemma} as t) -> PrePaths.add_edge paths t.beg next_id t.orth lemma (ENIAMtagset.parse "interp") t.beg t.len
| Token({token=AllSmall s} as t) ->
Xlist.fold (ENIAMinflexion.get_interpretations s) paths (fun paths (lemma,postags) ->
PrePaths.add_edge paths t.beg next_id t.orth lemma (ENIAMtagset.parse postags) t.beg t.len)
| Token({token=FirstCap(s,s2)} as t) -> (* FIXME: dodać wersję z s2 ; uporządkować słownik; dodać akronimy *)
Xlist.fold (ENIAMinflexion.get_interpretations s) paths (fun paths (lemma,postags) ->
PrePaths.add_edge paths t.beg next_id t.orth lemma (ENIAMtagset.parse postags) t.beg t.len)
| Token _ -> paths
| Seq [t] -> lemmatize_tokens paths next_id t
| Seq(t :: next :: l) -> lemmatize_tokens (lemmatize_tokens paths (get_beg_id next) t) next_id (Seq(next :: l))
| Seq [] -> failwith "lemmatize_tokens"
| Variant l -> Xlist.fold l paths (fun paths t -> lemmatize_tokens paths next_id t)*)
(*let rec lemmatize_paths_tokens paths = function (* FIXME: uzgodnić postać lematów *)
Token({token=Dig(v,cat)} as t)-> PrePaths.add_edge paths t.beg t.next t.orth v (ENIAMtagset.parse cat) t.attrs t.beg t.len
| Token({token=Lemma(lemma,interp)} as t) ->
if Xlist.mem t.attrs "lemmatized as lowercase" || Xlist.mem t.attrs "lemma not validated" then paths else (* FIXME *)
PrePaths.add_edge paths t.beg t.next t.orth lemma (ENIAMtagset.parse interp) t.attrs t.beg t.len
| Token({token=Interp lemma} as t) -> PrePaths.add_edge paths t.beg t.next t.orth lemma (ENIAMtagset.parse "interp") t.attrs t.beg t.len
| Token({token=Proper _} as t) -> failwith "lemmatize_paths_tokens: ni"
| Token({token=Compound _} as t) -> failwith "lemmatize_paths_tokens: ni"
(* | Token({token=AllSmall s} as t) ->
Xlist.fold (ENIAMinflexion.get_interpretations s) paths (fun paths (lemma,postags) ->
PrePaths.add_edge paths t.beg t.next t.orth lemma (ENIAMtagset.parse postags) t.beg t.len)
| Token({token=SmallLetter s} as t) ->
Xlist.fold (ENIAMinflexion.get_interpretations s) paths (fun paths (lemma,postags) ->
PrePaths.add_edge paths t.beg t.next t.orth lemma (ENIAMtagset.parse postags) t.beg t.len)
| Token({token=FirstCap(s,s2)} as t) -> (* FIXME: dodać wersję z s2 ; uporządkować słownik; dodać akronimy *)
Xlist.fold (ENIAMinflexion.get_interpretations s) paths (fun paths (lemma,postags) ->
PrePaths.add_edge paths t.beg t.next t.orth lemma (ENIAMtagset.parse postags) t.beg t.len)
| Token({token=CapLetter(s,s2)} as t) -> (* FIXME: dodać wersję z s2 ; uporządkować słownik; dodać akronimy *)
Xlist.fold (ENIAMinflexion.get_interpretations s) paths (fun paths (lemma,postags) ->
PrePaths.add_edge paths t.beg t.next t.orth lemma (ENIAMtagset.parse postags) t.beg t.len)*)
| Token _ -> paths
| Seq l -> Xlist.fold l paths (fun paths t -> lemmatize_paths_tokens paths t)
| Variant l -> Xlist.fold l paths (fun paths t -> lemmatize_paths_tokens paths t)
(*let rec lemmatize paths = function
t :: next :: l -> lemmatize (lemmatize_tokens paths (get_beg_id next) t) (next :: l)
| [t] -> lemmatize_tokens paths (get_end_id t) t
| [] -> failwith "lemmatize"*)
let rec lemmatize_paths paths = function
t :: l -> lemmatize_paths (lemmatize_paths_tokens paths t) l
| [] -> paths *)
(* FIXME: dodać 'co do' prep:gen *)
(* Dane do przekazania:
- lematy i interpretacje: generowanie typów i termów
- orths
- początki i długości: decydują o wyświetlaniu struktury składnikowej (zwłaszcza niejednoznacznej)
- struktura grafu: wyróżniki przy niejednoznaczności
- sensy wraz z hiperonimami
- <indent> *)
(*
Ala zjadła kota.
Ala subst:sg:nom:f imię -> istota
kot subst:sg:nom:m2 pospolita - kot 2 - istota 1 istota żywa 1 zwierzę 1 strunowiec 1 czaszkowiec 1 kręgowiec 1 tetrapod 1 owodniowiec 1 ssak 1 ssak żyworodny 1 łożyskowiec 1 ssak drapieżny 1 kot 1 kot 2
zjeść - zjeść 1 - CZASOWNIK 1 CZASOWNIK należący do określonego pola leksykalnego 1 CZASOWNIK oznaczający sytuację związaną z reakcją organizmu lub czynnością fizjologiczną 1 CZASOWNIK - AKT oznaczający reakcję organizmu lub czynność fizjologiczne 1 zjeść 1
Ala -> common("imię")
Ala -> proper("istota")
kot -> common("kot 2")
czas 3 doba 1=dzień 2
czas 3 miesiąc 1
czas 3 rok 1 rok 2
czas 3 termin 1 dzień 3
data 1=termin 1
czas 3 pora roku 1 lato 1
punkt lub odcinek czasu w obrębie doby, określany na podstawie wskazań zegara
"o godzinie 15:20."
czas 3 godzina 4
do opisu czasu trwania:
jednostka czasu 1: godzina 3, sekunda 2, (minuta 4 - nie podłączona) dzień 2, miesiąc 1, rok 1/2
*)
(**
(* empty *)
let empty = IntMap.empty, 0, 0
let dict_empty = {lemmas=StringMap.empty; dbeg=0-1; dlen=0-1}
let poss_record_empty = {interp=[]; attrs=[]; proper=[]; senses=[]}
(* add *)
let dict_add dict lemma postags attrs beg len =
if postags = [] then dict else
let interps = try StringMap.find dict.lemmas lemma with Not_found -> StringMap.empty in
let interps = Xlist.fold postags interps (fun interps (pos,tags) ->
StringMap.add_inc interps pos {poss_record_empty with interp=[tags]; attrs=attrs} (fun l ->
{l with interp=tags :: l.interp; attrs=StringSet.to_list (StringSet.union (StringSet.of_list l.attrs) (StringSet.of_list attrs))})) in
if dict.dbeg <> beg && dict.dbeg <> -1 then failwith "dict_add" else
if dict.dlen <> len && dict.dlen <> -1 then failwith "dict_add" else
{lemmas=StringMap.add dict.lemmas lemma interps; dbeg=beg; dlen=len}
let add_simple map i j orth lemma postags attrs beg len =
let map2 = try IntMap.find map i with Not_found -> IntMap.empty in
let orths = try IntMap.find map2 j with Not_found -> StringMap.empty in
let dict = try StringMap.find orths orth with Not_found -> dict_empty in
let dict = dict_add dict lemma postags attrs beg len in
let orths = StringMap.add orths orth dict in
let map2 = IntMap.add map2 j orths in
IntMap.add map i map2
let add_edge (map,last,n) i j orth lemma postags attrs beg len =
add_simple map i j orth lemma postags attrs beg len, max j last, max j n
let rec add_path (map,last,n) i j = function
[] -> failwith "add_path"
| [orth,lemma,postags,beg,len] ->
add_simple map i j orth lemma postags [] beg len, last, n
| (orth,lemma,postags,beg,len) :: l ->
add_path (add_simple map i (n+1) orth lemma postags [] beg len, last, n+1) (n+1) j l
(*
let insert (map,last,n) i j orth dict =
let map2 = try IntMap.find map i with Not_found -> IntMap.empty in
let orths = try IntMap.find map2 j with Not_found -> StringMap.empty in
let orths = StringMap.add orths orth dict in
let map2 = IntMap.add map2 j orths in
IntMap.add map i map2, last, n
let rec insert_path (map,last,n) i j = function
[] -> failwith "add_path"
| [orth,dict] ->
insert (map,last,n) i j orth dict
| (orth,dict) :: l ->
insert_path (insert (map,last,n+1) i (n+1) orth dict) (n+1) j l
let set_sentence_begin (map,last,n) i j orth =
try
let map2 = IntMap.find map i in
let orths = IntMap.find map2 j in
let dict = StringMap.find orths orth in
let orths = StringMap.add orths orth {dict with sentence_begin=true} in
let map2 = IntMap.add map2 j orths in
IntMap.add map i map2, last, n
with Not_found -> failwith "set_sentence_begin"
let set_sentence_end (map,last,n) i j orth =
try
let map2 = IntMap.find map i in
let orths = IntMap.find map2 j in
let dict = StringMap.find orths orth in
let orths = StringMap.add orths orth {dict with sentence_end=true} in
let map2 = IntMap.add map2 j orths in
IntMap.add map i map2, last, n
with Not_found -> failwith "set_sentence_end"
let is_sentence_end (map,last,n) i j orth =
try
let map2 = IntMap.find map i in
let orths = IntMap.find map2 j in
let dict = StringMap.find orths orth in
dict.sentence_end
with Not_found -> failwith "is_sentence_end"
let manage_sentence_end (map,last,n) =
IntMap.map map (fun map2 ->
IntMap.map map2 (fun orths ->
StringMap.fold orths StringMap.empty (fun orths orth dict ->
if orth = ".last_node" then StringMap.add orths "." {dict with sentence_end=true}
else StringMap.add orths orth dict))),last,n
(* other *)
let remove (map,last,n) i j orth =
try
let map2 = IntMap.find map i in
let orths = IntMap.find map2 j in
let orths = StringMap.remove orths orth in
let map2 = if StringMap.is_empty orths then IntMap.remove map2 j else IntMap.add map2 j orths in
(if IntMap.is_empty map2 then IntMap.remove map i else IntMap.add map i map2), last, n
with Not_found -> map,last,n
let rec find_paths_bound (map,last,n) k i =
if i = last || k = 0 then [[]] else
if not (IntMap.mem map i) then failwith "find_paths_bound" else
IntMap.fold (IntMap.find map i) [] (fun paths j set ->
let tails = find_paths_bound (map,last,n) (k-1) j in
StringMap.fold set paths (fun paths s _ ->
Xlist.fold tails paths (fun paths tail -> (s :: tail) :: paths)))
let rec find_paths_rec (map,last,n) i =
if i = last then [[]] else
if not (IntMap.mem map i) then failwith "find_paths_rec" else
IntMap.fold (IntMap.find map i) [] (fun paths j set ->
let tails = find_paths_rec (map,last,n) j in
StringMap.fold set paths (fun paths s _ ->
Xlist.fold tails paths (fun paths tail -> (s :: tail) :: paths)))
let find_paths (map,last,n) =
find_paths_rec (map,last,n) 0
*)
let has_lemma orths =
StringMap.fold orths false (fun b _ dict ->
if StringMap.is_empty dict.lemmas then b else true)
let rec no_possible_path_rec map last i =
if last = i then false else
let map2 = try IntMap.find map i with Not_found -> IntMap.empty in
IntMap.fold map2 true (fun b j orths ->
if has_lemma orths then
b && no_possible_path_rec map last j
else b)
let no_possible_path (map,last,n) =
no_possible_path_rec map last 0
(*
let rec match_path_rec map found i rev = function
[] -> (i :: rev) :: found
| s :: l ->
let map2 = try IntMap.find map i with Not_found -> IntMap.empty in
let found2 = IntMap.fold map2 [] (fun found2 j set ->
if StringMap.mem set s then j :: found2 else found2) in
Xlist.fold found2 found (fun found j -> match_path_rec map found j (i :: rev) l)
let match_path (map,last,n) = function
[] -> failwith "match_path"
| s :: l ->
let found = IntMap.fold map [] (fun found i map2 ->
IntMap.fold map2 found (fun found j set ->
if StringMap.mem set s then (i,j) :: found else found)) in
Xlist.fold found [] (fun found (i,j) -> match_path_rec map found j [i] l)
let get_matched orths = function
Orth s -> if StringMap.mem orths s then [s] else []
| Pos s -> (*print_endline ("a1 " ^ s);*) StringSet.to_list (StringMap.fold orths StringSet.empty (fun set orth dict ->
StringMap.fold dict.lemmas set (fun set lemma interps ->
StringMap.fold interps set (fun set pos _ ->
(* print_endline ("a2 " ^ pos); *)
if s = pos then StringSet.add set orth else set))))
(* | All -> orths *)
let rec match_path_ex_rec map found i rev = function
[] -> ((i,[]) :: rev) :: found
| s :: l ->
let map2 = try IntMap.find map i with Not_found -> IntMap.empty in
let found2 = IntMap.fold map2 [] (fun found2 j orths ->
let l = get_matched orths s in
if l <> [] then (j,l) :: found2 else found2) in
Xlist.fold found2 found (fun found (j,l2) -> match_path_ex_rec map found j ((i,l2) :: rev) l)
let match_path_ex (map,last,n) = function
[] -> failwith "match_path_ex"
| s :: l ->
let found = IntMap.fold map [] (fun found i map2 ->
IntMap.fold map2 found (fun found j orths ->
let l = get_matched orths s in
if l <> [] then (i,j,l) :: found else found)) in
Xlist.fold found [] (fun found (i,j,l2) -> (*print_endline ("b1 " );*) match_path_ex_rec map found j [i,l2] l)
let last_node (_,last,_) = last
let set_last_node (map,last,n) new_last = map, new_last, n
let find (map,last,n) i =
try
IntMap.fold (IntMap.find map i) [] (fun found j orths ->
StringMap.fold orths found (fun found orth _ ->
(i,j,orth) :: found))
with Not_found -> []
let find_full (map,last,n) i =
try
IntMap.fold (IntMap.find map i) [] (fun found j orths ->
StringMap.fold orths found (fun found orth dict ->
(i,j,orth,dict) :: found))
with Not_found -> []
*)
let fold (map,last,n) s f =
IntMap.fold map s (fun s i map2 ->
IntMap.fold map2 s (fun s j set ->
StringMap.fold set s (fun s orth lemmas ->
f s orth i j lemmas)))
(*
let map (map,last,n) f =
IntMap.map map (fun map2 ->
IntMap.map map2 (fun orths ->
StringMap.map orths (fun lemmas ->
f lemmas))), last, n
let mapi (map,last,n) f =
IntMap.mapi map (fun i map2 ->
IntMap.mapi map2 (fun j orths ->
StringMap.mapi orths (fun orth lemmas ->
f orth i j lemmas))), last, n
let get_edges (map,_,_) i j =
IntMap.find (IntMap.find map i) j
let get_edges_from (map,_,_) i =
IntMap.find map i
*)
let rec topological_sort_rec map visited l i =
if IntSet.mem visited i then (l,visited) else
let l, visited = IntMap.fold (try IntMap.find map i with Not_found -> IntMap.empty) (l,IntSet.add visited i) (fun (l,visited) j _ ->
topological_sort_rec map visited l j) in
i :: l, visited
let topological_sort (map,last,n) =
let l, _ = topological_sort_rec map IntSet.empty [] 0 in
let translation, k = Xlist.fold l (IntMap.empty,0) (fun (translation,k) i ->
IntMap.add translation i k, k+1) in
let map = IntMap.fold map IntMap.empty (fun map i map2 ->
let map2 = IntMap.fold map2 IntMap.empty (fun map2 j orths ->
try IntMap.add map2 (IntMap.find translation j) orths with Not_found -> map2) in
try IntMap.add map (IntMap.find translation i) map2 with Not_found -> map) in
map, (try IntMap.find translation last with Not_found -> failwith "topological_sort 3"), k-1
(*let interp_to_string interp =
String.concat " " (Xlist.fold interp.interp [] (fun l tags ->
(String.concat ":" (Xlist.map tags (String.concat "."))) :: l))
let interps_to_string interps =
String.concat " " (StringMap.fold interps [] (fun l pos interp ->
(pos ^ "[" ^ interp_to_string interp ^ "]") :: l))
let lemmas_to_string lemmas =
String.concat " " (StringMap.fold lemmas [] (fun l lemma interps ->
(lemma ^ "[" ^ interps_to_string interps ^ "]") :: l))
let to_string (map,last,n) =
let l = IntMap.fold map [] (fun l i map2 ->
IntMap.fold map2 l (fun l j orths ->
(Printf.sprintf "%5d %5d %s" i j (String.concat " " (StringMap.fold orths [] (fun l2 orths dict ->
(Printf.sprintf "%s %5d %5d [%s]" orths dict.dbeg dict.dlen (lemmas_to_string dict.lemmas)) :: l2)))) :: l)) in
Printf.sprintf "last=%d n=%d\n %s" last n (String.concat "\n " (List.sort compare l))*)
(*
let make_unique_orths (map,last,n) =
let names = fold (map,last,n) StringQMap.empty (fun names orth _ _ _ ->
StringQMap.add names orth) in
let names = StringQMap.fold names StringSet.empty (fun names name n ->
if n = 1 (*|| name = "."*) then names else StringSet.add names name) in (* FIXME: trzeba dodać usuwanie wszystkich orth zdefiniowanych w leksykonach POLFIE *)
let map,_ = IntMap.fold map (IntMap.empty,StringMap.empty) (fun (map,used) i map2 ->
let map2,used = IntMap.fold map2 (IntMap.empty,used) (fun (map2,used) j orths ->
let orths,used = StringMap.fold orths (StringMap.empty,used) (fun (orths,used) orth lemmas ->
let orth,used =
if StringSet.mem names orth then
let n =
try StringMap.find used orth + 1
with Not_found -> 1 in
orth ^ "-" ^ string_of_int n, StringMap.add used orth n
else orth,used in
StringMap.add orths orth lemmas, used) in
IntMap.add map2 j orths, used) in
IntMap.add map i map2, used) in
map,last,n
*)
**)