ENIAMsemValence.ml
31.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
(*
* ENIAMsemantics implements semantic processing for ENIAM
* Copyright (C) 2016-2017 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
* Copyright (C) 2016-2017 Institute of Computer Science Polish Academy of Sciences
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*)
open ENIAM_LCGtypes
open ENIAM_LCGlexiconTypes
open ENIAMlexSemanticsTypes
open Xstd
type pos = {role: linear_term; role_attr: linear_term; selprefs: linear_term; catprefs: string list; gf: ENIAMwalTypes.gf;
cr: string list; ce: string list;
is_necessary: bool; is_pro: bool; is_prong: bool; is_multi: bool; dir: string; morfs: StringSet.t}
let get_pro_lemma attrs =
let pers,num,gend = Xlist.fold attrs ("","",[]) (fun (pers,num,gend) -> function
"PERS",Val s -> s,num,gend
| "NUM",Val s -> pers,s,gend
| "GEND",Val s -> pers,num,[s]
| "GEND",Variant(_,l) -> pers,num,Xlist.map l (function (_,Val s) -> s | _ -> failwith "get_pro_lemma")
| _ -> failwith "get_pro_lemma") in
match pers,num with
"",_ -> "pro"
| "pri","" -> "pro1"
| "pri","sg" -> "ja"
| "pri","pl" -> "my"
| "sec","" -> "pro2"
| "sec","sg" -> "ty"
| "sec","pl" -> "wy"
| "ter","" -> "pro3"
| "ter","sg" ->
(match Xlist.fold gend (false,false,false) (fun (m,n,f) -> function
"m1" -> true,n,f
| "m2" -> true,n,f
| "m3" -> true,n,f
| "n" -> m,true,f
(* | "n1" -> m,true,f
| "n2" -> m,true,f *)
| "f" -> m,n,true
| _ -> m,n,f) with
true,false,false -> "on"
| false,true,true -> "ono"
| false,false,true -> "ona"
| _ -> "pro3sg")
| "ter","pl" ->
(match Xlist.fold gend (false,false) (fun (mo,nmo) -> function
"m1" -> true,nmo
| "p1" -> true,nmo
| _ -> mo,true) with
true,false -> "oni"
| false,true -> "one"
| _ -> "pro3pl")
| _ -> failwith "get_pro_lemma"
let make_sem_args sem_args =
if sem_args = [] then Dot else ENIAM_LCGrules.make_variant (Xlist.map sem_args (fun s -> Val s))
(*let rec match_value v2 = function
Val v -> if v = v2 then Val v else raise Not_found
| Variant(e,l) -> (* Przykład kiedy warianty niepasujące do selektora są rozproszone po drzewie np "Wiele wody płynie." *)
let chosen = Xlist.fold l [] (fun chosen (i,t) -> try let _ = match_value v2 t in i :: chosen with Not_found -> chosen) in
if chosen = [] then raise Not_found else
if Xlist.size chosen = Xlist.size l then Variant(e,l) else
(*Choice(e,chosen,Variant(e,l))*)failwith "match_value: ni"
| t -> failwith ("match_value: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec match_neg_value vals = function
Val v -> if Xlist.mem vals v then raise Not_found else Val v
| Variant(e,l) ->
let chosen = Xlist.fold l [] (fun chosen (i,t) -> try let _ = match_neg_value vals t in i :: chosen with Not_found -> chosen) in
if chosen = [] then raise Not_found else
if Xlist.size chosen = Xlist.size l then Variant(e,l) else
(*Choice(e,chosen,Variant(e,l))*)failwith "match_neg_value: ni"
| t -> failwith ("match_neg_value: " ^ ENIAM_LCGstringOf.linear_term 0 t)*)
let check_chosen chosen_map e chosen =
let chosen = StringSet.of_list chosen in
StringMap.add_inc chosen_map e chosen (fun set ->
let set = StringSet.intersection chosen set in
if StringSet.is_empty set then raise Not_found else
set)
let rec match_value v2 chosen_map = function
Val v -> if v = v2 then chosen_map else raise Not_found
| Variant(e,l) -> (* Przykład kiedy warianty niepasujące do selektora są rozproszone po drzewie np "Wiele wody płynie." *)
let chosen,chosen_map = Xlist.fold l ([],chosen_map) (fun (chosen,chosen_map) (i,t) ->
try let chosen_map = match_value v2 chosen_map t in i :: chosen, chosen_map
with Not_found -> chosen, chosen_map) in
if chosen = [] then raise Not_found else
if Xlist.size chosen = Xlist.size l then chosen_map else
check_chosen chosen_map e chosen
| t -> failwith ("match_value: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec match_neg_value vals chosen_map = function
Val v -> if Xlist.mem vals v then raise Not_found else chosen_map
| Variant(e,l) ->
let chosen,chosen_map = Xlist.fold l ([],chosen_map) (fun (chosen,chosen_map) (i,t) ->
try let chosen_map = match_neg_value vals chosen_map t in i :: chosen, chosen_map
with Not_found -> chosen, chosen_map) in
if chosen = [] then raise Not_found else
if Xlist.size chosen = Xlist.size l then chosen_map else
check_chosen chosen_map e chosen
| t -> failwith ("match_neg_value: " ^ ENIAM_LCGstringOf.linear_term 0 t)
(*let rec apply_selector v2 = function
(sel,[]) -> failwith ("apply_selector: " ^ ENIAMcategoriesPL.string_of_selector sel)
| Negation,("NEGATION",v) :: l -> ("NEGATION",match_value v2 v) :: l
| Aspect,("ASPECT",v) :: l -> ("ASPECT",match_value v2 v) :: l
| Mood,("MOOD",v) :: l -> ("MOOD",match_value v2 v) :: l
| Nsyn,("NSYN",v) :: l -> ("NSYN",match_value v2 v) :: l
| Nsem,("NSEM",v) :: l -> ("NSEM",match_value v2 v) :: l
| Case,("CASE",v) :: l -> ("CASE",match_value v2 v) :: l
| Mode,("MODE",v) :: l -> ("MODE",match_value v2 v) :: l
| sel,(attr,v) :: l -> (*print_endline ("apply_selector: " ^ ENIAMcategoriesPL.string_of_selector sel ^ " " ^ attr);*) (attr,v) :: (apply_selector v2 (sel,l))
let rec apply_neg_selector vals = function
(sel,[]) -> failwith ("apply_neg_selector: " ^ ENIAMcategoriesPL.string_of_selector sel)
| Nsem,("NSEM",v) :: l -> ("NSEM",match_neg_value vals v) :: l
| Case,("CASE",v) :: l -> ("CASE",match_neg_value vals v) :: l
| sel,(attr,v) :: l -> (*print_endline ("apply_neg_selector: " ^ ENIAMcategoriesPL.string_of_selector sel ^ " " ^ attr);*) (attr,v) :: (apply_neg_selector vals (sel,l))
let rec apply_selectors attrs = function
[] -> attrs
| (sel,Eq,[v]) :: l -> apply_selectors (apply_selector v (sel,attrs)) l
| (sel,Neq,vals) :: l -> apply_selectors (apply_neg_selector vals (sel,attrs)) l
| _ -> failwith "apply_selectors"*)
let rec apply_selector v2 chosen_map = function
(sel,[]) -> failwith ("apply_selector: " ^ ENIAMcategoriesPL.string_of_selector sel)
| Negation,("NEGATION",v) :: l -> match_value v2 chosen_map v
| Aspect,("ASPECT",v) :: l -> match_value v2 chosen_map v
| Mood,("MOOD",v) :: l -> match_value v2 chosen_map v
| Nsyn,("NSYN",v) :: l -> match_value v2 chosen_map v
| Nsem,("NSEM",v) :: l -> match_value v2 chosen_map v
| Case,("CASE",v) :: l -> match_value v2 chosen_map v
| Mode,("MODE",v) :: l -> match_value v2 chosen_map v
| Acm,("ACM",v) :: l -> match_value v2 chosen_map v
| Cat,("CAT",v) :: l -> match_value v2 chosen_map v
| sel,(attr,v) :: l -> (*print_endline ("apply_selector: " ^ ENIAMcategoriesPL.string_of_selector sel ^ " " ^ attr);*) apply_selector v2 chosen_map (sel,l)
let rec apply_neg_selector vals chosen_map = function
(sel,[]) -> failwith ("apply_neg_selector: " ^ ENIAMcategoriesPL.string_of_selector sel)
| Nsem,("NSEM",v) :: l -> match_neg_value vals chosen_map v
| Case,("CASE",v) :: l -> match_neg_value vals chosen_map v
| sel,(attr,v) :: l -> (*print_endline ("apply_neg_selector: " ^ ENIAMcategoriesPL.string_of_selector sel ^ " " ^ attr);*) apply_neg_selector vals chosen_map (sel,l)
let rec apply_selectors attrs chosen_map = function
[] -> chosen_map
| (sel,Eq,[v]) :: l -> apply_selectors attrs (apply_selector v chosen_map (sel,attrs)) l
| (sel,Neq,vals) :: l -> apply_selectors attrs (apply_neg_selector vals chosen_map (sel,attrs)) l
| _ -> failwith "apply_selectors"
let rec select_variant chosen_map = function
Variant(e,l) ->
(try
let chosen = StringMap.find chosen_map e in
let l = Xlist.fold l [] (fun l (i,t) ->
if StringSet.mem chosen i then (i,select_variant chosen_map t) :: l else l) in
match l with
[] -> failwith "select_variant"
| [_,t] -> t
| l -> Variant(e,l)
with Not_found -> Variant(e,List.rev (Xlist.rev_map l (fun (i,t) -> i,select_variant chosen_map t))))
| Tuple l -> Tuple(List.rev (Xlist.rev_map l (select_variant chosen_map)))
| Dot -> Dot
| Val s -> Val s
| t -> failwith ("select_variant: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let apply_selectors2 attrs sels symbol =
let chosen_map = apply_selectors attrs StringMap.empty sels in
List.rev (Xlist.rev_map attrs (fun (s,t) ->
s, select_variant chosen_map t)),
select_variant chosen_map symbol
module OrderedStringDir =
struct
type t = string * string
let compare = compare
end
module StringDirMap = Xmap.Make(OrderedStringDir)
let rec get_arg_symbols_variant arg_symbols = function
Ref i ->
let l,dir = arg_symbols.(i) in
Xlist.map l (fun s -> (s,dir),Ref i)
| Variant(e,l) ->
let map = Xlist.fold l StringDirMap.empty (fun map (i,t) ->
Xlist.fold (get_arg_symbols_variant arg_symbols t) map (fun map (arg_symbol,t) ->
StringDirMap.add_inc map arg_symbol [i,t] (fun l -> (i,t) :: l))) in
StringDirMap.fold map [] (fun found arg_symbol l -> (arg_symbol,Variant(e,l)) :: found)
| t -> failwith ("get_arg_symbols_variant: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec get_arg_symbols_tuple arg_symbols rev = function
Dot -> rev
| Tuple l -> Xlist.fold l rev (get_arg_symbols_tuple arg_symbols)
| t -> (get_arg_symbols_variant arg_symbols t) :: rev
let string_of_argdir = function
"forward" -> "/"
| "backward" -> "\\"
| "both" -> "|"
| _ -> failwith "string_of_argdir"
let string_of_arg arg =
String.concat ", " (Xlist.map arg (fun ((arg_symbol,dir),t) -> (string_of_argdir dir) ^ arg_symbol ^ ":" ^ ENIAM_LCGstringOf.linear_term 0 t))
let string_of_position p =
(string_of_argdir p.dir) ^
(if p.is_multi then "?" else "") ^
String.concat "+" (StringSet.to_list p.morfs)
let manage_arg p t =
let t = SetAttr("gf",Val (ENIAMwalStringOf.gf p.gf),t) in
let t =
if p.gf = ENIAMwalTypes.SUBJ || p.gf = ENIAMwalTypes.OBJ || p.gf = ENIAMwalTypes.ARG then
SetAttr("role",p.role,SetAttr("role-attr",p.role_attr,SetAttr("selprefs",p.selprefs,t)))
else if p.gf = ENIAMwalTypes.CORE then SetAttr("selprefs",p.selprefs,t)
else if p.gf = ENIAMwalTypes.ADJUNCT || p.gf = ENIAMwalTypes.NOSEM || p.gf = ENIAMwalTypes.CORE then t
else failwith "manage_arg: ni 2" in
let t = Xlist.fold p.cr t (fun t cr -> SetAttr("controller",Val cr,t)) in
let t = Xlist.fold p.ce t (fun t ce -> SetAttr("controllee",Val ce,t)) in
let t = if p.gf = ENIAMwalTypes.NOSEM then Dot else t in
t
let rec match_arg_positions lemma arg rev = function
p :: positions ->
(* Printf.printf "match_arg_positions 1: arg=%s rev=[%s] positions=%s :: [%s]\n%!" (string_of_arg arg) (String.concat "; " (Xlist.map rev string_of_position)) (string_of_position p) (String.concat "; " (Xlist.map positions string_of_position)); *)
let l = Xlist.fold arg [] (fun l ((arg_symbol,dir),t) ->
if StringSet.mem p.morfs arg_symbol && p.dir = dir then t :: l else l) in
(match l with
[] -> (*print_endline "match_arg_positions: not matched";*) match_arg_positions lemma arg (p :: rev) positions
| [t] ->
let t = manage_arg p t in
if p.is_multi then (t, rev @ (p :: positions)) :: (match_arg_positions lemma arg (p :: rev) positions)
else (t, rev @ positions) :: (match_arg_positions lemma arg (p :: rev) positions)
| [t1;t2] -> (* FIXME: przydałoby się to uogólnić na listę dowolnej długości *)
let t1 = manage_arg p t1 in
let t2 = manage_arg p t2 in
let t = Variant("",["1",t1;"2",t2]) in
if p.is_multi then (t, rev @ (p :: positions)) :: (match_arg_positions lemma arg (p :: rev) positions)
else (t, rev @ positions) :: (match_arg_positions lemma arg (p :: rev) positions)
| _ -> failwith ("match_arg_positions: lemma=" ^ lemma ^ " arg=" ^ string_of_arg arg ^ " position=" ^ string_of_position p))
| [] -> (*Printf.printf "match_arg_positions 2: arg=%s rev=[%s] positions=[]\n%!" (string_of_arg arg) (String.concat "; " (Xlist.map rev string_of_position));*) []
(* Jeśli ta funkcja zwróci pustą listę, oznacza to, że argumentów nie dało się dopasować do pozycji *)
let rec match_args_positions_rec lemma prong_attrs positions = function
arg :: args ->
(* Printf.printf "match_args_positions_rec: args=%s :: [%s] positions=[%s]\n%!" (string_of_arg arg) (String.concat "; " (Xlist.map args string_of_arg)) (String.concat "; " (Xlist.map positions string_of_position)); *)
Xlist.fold (match_arg_positions lemma arg [] positions) [] (fun found (arg_pos,positions) ->
Xlist.fold (match_args_positions_rec lemma prong_attrs positions args) found (fun found l -> (arg_pos :: l) :: found))
| [] ->
(* Printf.printf "match_args_positions_rec: args=[] positions=[%s]\n%!" (String.concat "; " (Xlist.map positions string_of_position)); *)
let b = Xlist.fold positions false (fun b p -> p.is_necessary || b) in
(* if b then print_endline "match_args_positions: not matched"; *)
if b then [] else
[Xlist.fold positions [] (fun found p ->
if not p.is_pro then found else
let attrs = if p.is_prong then prong_attrs else [] in
let cats = p.catprefs(*ENIAM_LCGrules.make_variant (ENIAMwalRenderer.extract_sel_prefs p.sel_prefs)*) in
let lemma = get_pro_lemma attrs in
let sem_args = try StringMap.find ENIAMlexSemanticsData.pron_sem_args lemma with Not_found -> failwith "match_args_positions_rec" in
let attrs = ["sense",Val lemma;"hipero",Tuple[Val "ALL"; Val "0"];"role",p.role;
"role-attr",p.role_attr; "selprefs",p.selprefs; "gf",Val (ENIAMwalStringOf.gf p.gf);
"agf",Val ""; "sem-args",make_sem_args sem_args; "rev-hipero",Val "+"] @ attrs in
let attrs = Xlist.fold p.cr attrs (fun attrs cr -> ("controller",Val cr) :: attrs) in
let attrs = Xlist.fold p.ce attrs (fun attrs ce -> ("controllee",Val ce) :: attrs) in
Xlist.fold cats found (fun found cat ->
let attrs = ["CAT",Val cat;"COERCED",Val cat] @ attrs in
Node{ENIAM_LCGrenderer.empty_node with lemma=lemma; pos="pro"; attrs=attrs} :: found))]
(* FIXME: opcjonalność podrzędników argumentów zleksykalizowanych *)
(* Jeśli ta funkcja zwróci pustą listę, oznacza to, że argumentów nie dało się dopasować do pozycji *)
let match_args_positions lemma prong_attrs args positions =
(* Printf.printf "match_args_positions: args=[%s] positions=[%s]\n%!" (String.concat "; " (Xlist.map args string_of_arg)) (String.concat "; " (Xlist.map positions string_of_position)); *)
Xlist.rev_map (match_args_positions_rec lemma prong_attrs positions args) (function
[] -> Dot
| [t] -> t
| l -> Tuple l)
let translate_selprefs = function
ENIAMwalTypes.SynsetId _ -> failwith "translate_selprefs"
| ENIAMwalTypes.Predef _ -> failwith "translate_selprefs"
| ENIAMwalTypes.SynsetName s -> s
| ENIAMwalTypes.RelationRole _ -> "ALL"
let string_of_internal_morf = function
Atom s -> s
| AVar s -> s
| Top -> "T"
| t -> failwith ("string_of_internal_morf: " ^ ENIAM_LCGstringOf.internal_grammar_symbol_prime t)
let string_of_morf = function
ENIAMwalTypes.LCG Tensor l -> String.concat "*" (Xlist.map l string_of_internal_morf)
| ENIAMwalTypes.LCG t -> failwith ("string_of_morf: " ^ ENIAM_LCGstringOf.grammar_symbol_prime t)
| _ -> failwith "string_of_morf"
let rec string_of_arg_symbol = function
Dot -> ""
| Val s -> s
| Tuple l -> String.concat "*" (Xlist.map l string_of_arg_symbol)
| t -> failwith ("string_of_arg_symbol: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let translate_dir = function
ENIAMwalTypes.Both_ -> "both"
| ENIAMwalTypes.Forward_ -> "forward"
| ENIAMwalTypes.Backward_ -> "backward"
let translate_position id p =
{role = Val p.ENIAMwalTypes.role;
role_attr = Val p.ENIAMwalTypes.role_attr;
selprefs = (match Xlist.map p.ENIAMwalTypes.sel_prefs translate_selprefs with
[] -> Dot
| [s] -> Val s
| l -> Tuple(Xlist.rev_map l (fun s -> Val s)));
catprefs = p.ENIAMwalTypes.cat_prefs;
gf=p.ENIAMwalTypes.gf;
cr=Xlist.map p.ENIAMwalTypes.cr (fun cr -> id ^ "-" ^ cr);
ce=Xlist.map p.ENIAMwalTypes.ce (fun ce -> id ^ "-" ^ ce);
is_necessary = p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.Req(*Xlist.fold p.ENIAMwalTypes.morfs true (fun b -> function ENIAMwalTypes.LCG One -> false | _ -> b)*);
is_pro = p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.Pro || p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.ProNG;
is_prong = p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.ProNG;
is_multi = p.ENIAMwalTypes.is_necessary = ENIAMwalTypes.Multi;
dir= translate_dir p.ENIAMwalTypes.dir;
morfs =
if p.ENIAMwalTypes.morfs=[ENIAMwalTypes.LCG One] then StringSet.empty else
Xlist.fold p.ENIAMwalTypes.morfs StringSet.empty (fun morfs morf ->
if morf = ENIAMwalTypes.LCG One then ((*Printf.printf "translate_position: One%!\n";*) morfs) else
StringSet.add morfs (string_of_morf morf))}
let get_phrase_symbol = function
Tuple[Val "lex";Val "się";Val "qub"] -> "lex-się-qub"
| Tuple(Val s :: _) -> s
| Val s -> s
(* | Dot -> "dot" *)
| t -> failwith ("get_phrase_symbol: " ^ ENIAM_LCGstringOf.linear_term 0 t)
exception NoFrame of string * string * IntSet.t
let get_prong_attrs attrs =
Xlist.fold attrs [] (fun attrs -> function
"NUM",t -> ("NUM",t) :: attrs
| "GEND",t -> ("GEND",t) :: attrs
| "PERS",t -> ("PERS",t) :: attrs
| _ -> attrs)
let rec assign_frames_rec tokens lex_sems tree arg_symbols visited = function
Ref i ->
if IntSet.mem visited i then ((*Printf.printf "assign_frames_rec: skipping reference %d\n%!" i;*)Ref i,visited) else (
(* Printf.printf "assign_frames_rec: entering reference %d\n%!" i; *)
let t,visited = assign_frames_rec tokens lex_sems tree arg_symbols visited tree.(i) in
(* Printf.printf "assign_frames_rec: leaving reference %d\n%!" i; *)
tree.(i) <- t;
Ref i,IntSet.add visited i)
| Node t ->
let args,visited = assign_frames_rec tokens lex_sems tree arg_symbols visited t.args in
let t = {t with args=args} in
(* print_endline ("assign_frames_rec 1: " ^ t.lemma); *)
if t.lemma = "<root>" then Node t,visited else
let args = get_arg_symbols_tuple arg_symbols [] args in
let s = ExtArray.get lex_sems t.id in
let phsymbol = get_phrase_symbol t.symbol in
(* print_endline ("assign_frames_rec: phsymbol='" ^ phsymbol ^ "' for node " ^ t.lemma); *)
let frames = Xlist.fold s.ENIAMlexSemanticsTypes.frames [] (fun frames frame ->
(* print_endline ("selectors: " ^ ENIAMcategoriesPL.string_of_selectors frame.selectors); *)
(* Printf.printf "assign_frames_rec 2: lemma=%s positions=[%s]\n%!" t.lemma (ENIAMwalStringOf.schema frame.positions); *)
try
let attrs,symbol = apply_selectors2 t.attrs frame.selectors t.symbol in
let frame = ENIAMsemLexicon.extend_frame phsymbol frame in
(* print_endline "passed"; *)
(attrs,symbol,frame,Xlist.rev_map frame.positions (translate_position (string_of_int t.id))) :: frames
with Not_found ->
(* print_endline "rejected"; *)
frames) in
if frames = [] then failwith ("assign_frames_rec: no frame phsymbol='" ^ phsymbol ^ "' node='" ^ t.lemma ^ "'") else
let prong_attrs = get_prong_attrs t.attrs in
let e = ENIAM_LCGreductions.get_variant_label () in
let l,_ = Xlist.fold frames ([],1) (fun (l,n) (attrs,symbol,frame,positions) ->
(* Printf.printf "assign_frames_rec 3: lemma=%s args=[%s] positions=[%s]\n%!" t.lemma (String.concat "; " (Xlist.map args string_of_arg)) (String.concat "; " (Xlist.map positions string_of_position)); *)
if frame.senses = [] then failwith ("assign_frames_rec: no senses '" ^ t.lemma ^ "'") else
Xlist.fold (match_args_positions t.lemma prong_attrs args positions) (l,n) (fun (l,n) args ->
Xlist.fold frame.senses (l,n) (fun (l,n) (sense,hipero,weight) ->
(string_of_int n, Node{t with attrs=
("sense",Val sense) ::
("hipero",ENIAM_LCGrules.make_variant (Xlist.map hipero (fun (h,n) -> Tuple[Val h;Val(string_of_int n)]))) ::
("arole",Val frame.arole) ::
("arole-attr",Val frame.arole_attr) ::
("arev",Val (if frame.arev then "+" else "-")) ::
("agf",Val frame.agf) ::
("sem-args",make_sem_args frame.sem_args) ::
("rev-hipero",Val (if frame.rev_hipero then "+" else "-")) ::
("fopinion",Val (ENIAMwalStringOf.opinion frame.fopinion)) ::
("sopinion",Val (ENIAMwalStringOf.opinion frame.sopinion)) :: attrs; args=args; symbol=symbol}) ::
l,n+1))) in
if l = [] then (
(* print_endline ("assign_frames_rec 4: no frame assingment found for " ^ t.lemma ^ " " ^ ENIAM_LCGstringOf.linear_term 0 t.symbol); *)
raise (NoFrame(t.lemma,ENIAM_LCGstringOf.linear_term 0 t.symbol,visited))) else
Variant(e,l),visited
| Variant(e,l) ->
let a = ref "" in
let b = ref "" in
let l,visited = Xlist.fold l ([],visited) (fun (l,visited) (i,t) ->
try
let t,visited = assign_frames_rec tokens lex_sems tree arg_symbols visited t in
(i,t) :: l, visited
with NoFrame(x,y,visited) -> a:=x; b:=y; l, visited) in
if l = [] then raise (NoFrame(!a,!b,visited)) else
Variant(e,List.rev l),visited
| Tuple l ->
let l,visited = Xlist.fold l ([],visited) (fun (l,visited) t ->
let t,visited = assign_frames_rec tokens lex_sems tree arg_symbols visited t in
t :: l, visited) in
Tuple(List.rev l),visited
| Dot -> Dot,visited
| t -> failwith ("assign_frames_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec get_arg_symbols = function
Node{arg_symbol=Tuple([Val "cp"; Val "T"; Val "T"]);
symbol=Tuple([Val "cp"; ctype; comp]); arg_dir=dir} ->
[string_of_arg_symbol (Tuple([Val "cp"; Val "T"; Val "T"]));
string_of_arg_symbol (Tuple([Val "cp"; ctype; comp]))],dir
| Node{arg_symbol=Tuple([Val "ncp"; Val "T"; Val arg_case; Val "T"; Val "T"; Val "T"; Val "T"]);
symbol=Tuple([Val "ncp"; number; case; gender; person; ctype; comp]); arg_dir=dir} ->
[string_of_arg_symbol (Tuple([Val "ncp"; Val "T"; Val arg_case; Val "T"; Val "T"; Val "T"; Val "T"]));
string_of_arg_symbol (Tuple([Val "ncp"; Val "T"; Val arg_case; Val "T"; Val "T"; ctype; comp]))],dir
| Node{arg_symbol=Tuple([Val "prepncp"; Val arg_prep; Val arg_case; Val "T"; Val "T"]);
symbol=Tuple([Val "prepncp"; prep; case; ctype; comp]); arg_dir=dir} ->
[string_of_arg_symbol (Tuple([Val "prepncp"; Val arg_prep; Val arg_case; Val "T"; Val "T"]));
string_of_arg_symbol (Tuple([Val "prepncp"; prep; case; ctype; comp]))],dir
| Node t -> [string_of_arg_symbol t.arg_symbol], t.arg_dir
| t -> failwith ("get_arg_symbols: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let assign_frames tokens lex_sems tree =
(* print_endline "assign_frames"; *)
let tree = Array.copy tree in
let arg_symbols = Array.make (Array.length tree) ([],"") in
Int.iter 0 (Array.length tree - 1) (fun i ->
arg_symbols.(i) <- get_arg_symbols tree.(i));
let _ = assign_frames_rec tokens lex_sems tree arg_symbols IntSet.empty (Ref 0) in
tree (* FIXME: dodac reshape_tree ??? *)
let rec extract_attr pat rev = function
[] -> raise Not_found
| (s,v) :: l ->
if s = pat then (List.rev rev) @ l, v
else extract_attr pat ((s,v) :: rev) l
let rec get_attr pat = function
[] -> raise Not_found
| (s,v) :: l ->
if s = pat then v
else get_attr pat l
let rec cut_nodes result_tree = function
| Node t ->
let i = ExtArray.add result_tree (Node t) in
Ref i
| Variant(e,l) ->
let l = Xlist.rev_map l (fun (i,t) -> i, cut_nodes result_tree t) in
Variant(e,List.rev l)
| Tuple l ->
let l = Xlist.rev_map l (cut_nodes result_tree) in
Tuple(List.rev l)
| Dot -> Dot
| t -> failwith ("cut_nodes: " ^ ENIAM_LCGstringOf.linear_term 0 t)
exception AGF
let rec manage_agf = function
| Node t ->
(* print_endline ("manage_agf 1 " ^ ENIAM_LCGstringOf.linear_term 0 (Node t)); *)
let attrs,agf = try extract_attr "agf" [] t.attrs with Not_found -> failwith ("manage_agf: " ^ t.lemma ^ " " ^ string_of_int t.id) in
(* print_endline "manage_agf 2"; *)
let gf = try get_attr "gf" t.attrs with Not_found -> Dot in (* FIXME: to by się chyba przydało poprawić, żeby gf było zawsze ustalone *)
(* print_endline "manage_agf 3"; *)
if agf = Val "" || agf=gf then Node{t with attrs=attrs} else raise AGF
| Variant(e,l) ->
(* print_endline ("manage_agf 4: " ^ ENIAM_LCGstringOf.linear_term 0 (Variant(e,l))); *)
let l = Xlist.fold l [] (fun l (i,t) -> try (i, manage_agf t) :: l with AGF -> l) in
(* print_endline ("manage_agf 5: " ^ ENIAM_LCGstringOf.linear_term 0 (Variant(e,l))); *)
if l = [] then raise AGF else Variant(e,List.rev l)
| Tuple l ->
(* print_endline "manage_agf 6"; *)
let l = Xlist.rev_map l manage_agf in
(* print_endline "manage_agf 7"; *)
Tuple(List.rev l)
| Dot -> Dot
| t -> failwith ("cut_nodes: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec reduce_set_attr attr v = function
Node t -> Node{t with attrs=(attr,v) :: t.attrs}
| Variant(e,l) ->
Variant(e,List.rev (Xlist.rev_map l (fun (i,t) ->
i, reduce_set_attr attr v t)))
| t -> failwith ("reduce_set_attr: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree = function
Ref i ->
if mid_tree.(i) <> Dot then mid_tree.(i) else
let t = reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree orig_tree.(i) in
mid_tree.(i) <- t;
t
| Node t ->
let args = reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree t.args in
(* print_endline ("reduce_tree_rec 1: " ^ ENIAM_LCGstringOf.linear_term 0 args); *)
let args = try manage_agf args with AGF -> failwith "reduce_tree_rec: AGF" in (* FIXME: to nie musi być błąd, należałoby przechwytywać wyjątek na poziorie wariantu powyżej *)
let args = cut_nodes result_tree args in
(* print_endline ("reduce_tree_rec 2: " ^ ENIAM_LCGstringOf.linear_term 0 args); *)
(*let id =
if t.id = 0 then
let id = ExtArray.add tokens {ENIAMtokenizerTypes.empty_token_env with ENIAMtokenizerTypes.token=ENIAMtokenizerTypes.Lemma("pro","pro",[[]])} in
let _ = ExtArray.add lex_sems empty_lex_sem in
id
else t.id in*)
Node{t with args=args; (*id=id*)}
| Variant(e,l) ->
let l = Xlist.rev_map l (fun (i,t) -> i, reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree t) in
Variant(e,List.rev l)
| Tuple l ->
let l = Xlist.rev_map l (reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree) in
Tuple(List.rev l)
| Dot -> Dot
| SetAttr(attr,v,t) ->
let t = reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree t in
reduce_set_attr attr v t
| t -> failwith ("reduce_tree_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let reduce_tree tokens lex_sems orig_tree =
(* print_endline "reduce_tree"; *)
let mid_tree = Array.make (Array.length orig_tree) Dot in
let result_tree = ExtArray.make (Array.length orig_tree) Dot in
let _ = ExtArray.add result_tree Dot in
let t = reduce_tree_rec tokens lex_sems result_tree mid_tree orig_tree orig_tree.(0) in
ExtArray.set result_tree 0 t;
result_tree
let is_subj = function
| Node t ->
let gf = try get_attr "gf" t.attrs with Not_found -> failwith "is_subj" in
gf = Val "subj"
| t -> failwith ("is_subj: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let is_core = function
| Node t ->
let gf = try get_attr "gf" t.attrs with Not_found -> failwith "is_core" in
gf = Val "core"
| t -> failwith ("is_core: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let set_subj_coref ce = function
| Node t ->
let gf = try get_attr "gf" t.attrs with Not_found -> failwith "set_subj_coref" in
if gf = Val "subj" then Node{t with attrs=("coref",ce) :: t.attrs} else Node t
| t -> failwith ("set_subj_coref: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let set_core_selprefs selprefs = function (* FIXME: trzeba usunąć dotychczasowe selprefs. *)
| Node t ->
let gf = try get_attr "gf" t.attrs with Not_found -> failwith "set_core_selprefs" in
if gf = Val "core" then Node{t with attrs=("selprefs",selprefs) :: t.attrs} else Node t
| t -> failwith ("set_core_selprefs: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec set_subj_coref_args tree ce = function
Ref i ->
if is_subj (ExtArray.get tree i) then
let id = ExtArray.add tree (set_subj_coref ce (ExtArray.get tree i)) in
Ref id
else Ref i
| Variant(e,l) ->
let l = Xlist.rev_map l (fun (i,t) -> i, set_subj_coref_args tree ce t) in
Variant(e,List.rev l)
| Tuple l ->
let l = Xlist.rev_map l (set_subj_coref_args tree ce) in
Tuple(List.rev l)
| Dot -> Dot
| t -> failwith ("set_subj_coref_args: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec set_selprefs_core tree selprefs = function
Ref i ->
if is_core (ExtArray.get tree i) then
let id = ExtArray.add tree (set_core_selprefs selprefs (ExtArray.get tree i)) in
Ref id
else Ref i
| Variant(e,l) ->
let l = Xlist.rev_map l (fun (i,t) -> i, set_selprefs_core tree selprefs t) in
Variant(e,List.rev l)
| Tuple l ->
let l = Xlist.rev_map l (set_selprefs_core tree selprefs) in
Tuple(List.rev l)
| Dot -> Dot
| t -> failwith ("set_selprefs_core: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec transfer_attributes_rec tree visited = function
Ref i ->
if visited.(i) then Ref i else (
visited.(i) <- true;
ExtArray.set tree i (transfer_attributes_rec tree visited (ExtArray.get tree i));
Ref i)
| Node t ->
let t = {t with args = transfer_attributes_rec tree visited t.args} in
(* print_endline ("transfer_attributes_rec 1: " ^ ENIAM_LCGstringOf.linear_term 0 args); *)
let t =
if t.pos = "inf" || t.pos = "pcon" || t.pos = "pant" then
try
let attrs,ce = extract_attr "controllee" [] t.attrs in
let args = set_subj_coref_args tree ce t.args in
{t with attrs=attrs; args=args}
with Not_found -> t else
if t.pos = "prep" && get_attr "gf" t.attrs = Val "arg" then
let attrs,selprefs = extract_attr "selprefs" [] t.attrs in
let args = set_selprefs_core tree selprefs t.args in
{t with attrs=("selprefs", Val "ALL") :: attrs; args=args}
else t in
Node t
| Variant(e,l) ->
let l = Xlist.rev_map l (fun (i,t) -> i, transfer_attributes_rec tree visited t) in
Variant(e,List.rev l)
| Tuple l ->
let l = Xlist.rev_map l (transfer_attributes_rec tree visited) in
Tuple(List.rev l)
| Dot -> Dot
| t -> failwith ("transfer_attributes_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let transfer_attributes tree =
let visited = Array.make (ExtArray.size tree) false in
visited.(0) <- true;
let t = transfer_attributes_rec tree visited (ExtArray.get tree 0) in
ExtArray.set tree 0 t;
()