ENIAMdisambiguation.ml
11.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
(*
* ENIAMsemantics implements semantic processing for ENIAM
* Copyright (C) 2016-2017 Wojciech Jaworski <wjaworski atSPAMfree mimuw dot edu dot pl>
* Copyright (C) 2016-2017 Institute of Computer Science Polish Academy of Sciences
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*)
open ENIAM_LCGtypes
open Xstd
let _ = Random.self_init ()
let rec get_nth n = function
[] -> failwith "get_nth"
| (i,_) :: l -> if n = 0 then i else get_nth (n-1) l
let rec select_random_rec selection = function
Ref i -> selection
| Node t ->
let selection = select_random_rec selection t.args in
Xlist.fold t.attrs selection (fun selection (_,t) -> select_random_rec selection t)
| Variant(e,l) ->
let selected,selection =
if StringMap.mem selection e then
StringMap.find selection e, selection
else
let selected =
if e = "" then Xlist.map l fst
else [get_nth (Random.int (Xlist.size l)) l] in
selected, StringMap.add selection e selected in
(* Printf.printf "select_random_rec: %s [%s]\n%!" e (String.concat ";" selected); *)
Xlist.fold l selection (fun selection (i,t) ->
if Xlist.mem selected i then select_random_rec selection t else selection)
| Tuple l -> Xlist.fold l selection select_random_rec
| Val _ -> selection
| Dot -> selection
| t -> failwith ("select_random_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let select_random tree =
Int.fold 0 (ExtArray.size tree - 1) StringMap.empty (fun selection i ->
select_random_rec selection (ExtArray.get tree i))
let rec apply_selection_rec selection = function
Ref i -> Ref i
| Node t ->
Node{t with args=apply_selection_rec selection t.args;
attrs=Xlist.map t.attrs (fun (k,v) -> k, apply_selection_rec selection v)}
| Variant(e,l) ->
if not (StringMap.mem selection e) then Dot
(*failwith ("apply_selection_rec: unknown label '" ^ e ^ "'")*) else
let selected = StringMap.find selection e in
(* Printf.printf "apply_selection_rec: %s [%s]\n%!" e (String.concat ";" selected); *)
let l = Xlist.fold l [] (fun l (i,t) ->
if Xlist.mem selected i then (i,t) :: l else l) in
(match l with
[] -> (*failwith "apply_selection_rec: empty selection"*) Dot
| [_,t] -> apply_selection_rec selection t
| l ->
let l = Xlist.rev_map l (fun (i,t) ->
i, apply_selection_rec selection t) in
Variant(e,l))
| Tuple l ->
let l = Xlist.rev_map l (apply_selection_rec selection) in
Tuple(List.rev l)
| Val s -> Val s
| Dot -> Dot
| t -> failwith ("apply_selection_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let apply_selection selection tree =
let result_tree = Array.make (Array.length tree) Dot in
Int.iter 0 (Array.length tree - 1) (fun i ->
result_tree.(i) <- apply_selection_rec selection tree.(i));
result_tree
let rec make_rearrange_map tree map next = function
Ref i ->
if IntMap.mem map i then map,next else
let map = IntMap.add map i next in
make_rearrange_map tree map (next+1) tree.(i)
| Node t -> make_rearrange_map tree map next t.args
| Variant(e,l) -> Xlist.fold l (map,next) (fun (map,next) (i,t) -> make_rearrange_map tree map next t)
| Tuple l -> Xlist.fold l (map,next) (fun (map,next) -> make_rearrange_map tree map next)
| Dot -> map,next
| t -> failwith ("make_rearrange_map: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec rearrange_refs map = function
Ref i -> Ref (try IntMap.find map i with Not_found -> failwith "rearrange_refs")
| Node t -> Node{t with args=rearrange_refs map t.args}
| Variant(e,l) ->
let l = Xlist.rev_map l (fun (i,t) -> i, rearrange_refs map t) in
Variant(e,List.rev l)
| Tuple l ->
let l = Xlist.rev_map l (rearrange_refs map) in
Tuple(List.rev l)
| Dot -> Dot
| t -> failwith ("make_rearrange_map: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rearrange_tree tree =
let map = IntMap.add IntMap.empty 0 0 in
let map,next = make_rearrange_map tree map 1 tree.(0) in
let result_tree = Array.make next Dot in
IntMap.iter map (fun orig res ->
result_tree.(res) <- rearrange_refs map tree.(orig));
result_tree
let random_tree tokens lex_sems tree =
(* print_endline "random_tree"; *)
let selection = select_random tree in
let tree = apply_selection selection (ExtArray.to_array tree) in
rearrange_tree tree
let rec selprefs_rec cost = function
Ref i -> cost.(i), Ref i
| Node t -> -1, Node{t with args = snd(selprefs_rec cost t.args)}
| Variant(e,l) ->
let c,l = Xlist.fold l (max_int,[]) (fun (min_c,l) (i,t) ->
let c,t = selprefs_rec cost t in
if c < min_c then c,[i,t] else
if c > min_c then min_c,l else
min_c, (i,t) :: l) in
(match l with
[_,t] -> c,t
| _ -> c,Variant(e,List.rev l))
| Tuple l ->
let c,l = Xlist.fold l (0,[]) (fun (c,l) t ->
let c2,t = selprefs_rec cost t in
c+c2, t :: l) in
c,Tuple(List.rev l)
| Dot -> 0, Dot
| t -> failwith ("selprefs_rec: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec get_attr pat = function
[] -> raise Not_found
| (s,v) :: l ->
if s = pat then v
else get_attr pat l
let rec list_of_selprefs = function
Val s -> [s]
| Dot -> []
| Tuple l -> List.flatten (Xlist.rev_map l list_of_selprefs)
| t -> failwith ("list_of_selprefs: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let map_of_hipero = function
Variant(_,l) -> Xlist.fold l StringMap.empty (fun map -> function
_,Tuple[Val hipero; Val cost] -> StringMap.add_inc map hipero (int_of_string cost) (fun cost2 -> min (int_of_string cost) cost2)
| _ -> failwith "map_of_hipero 2")
| Tuple[Val hipero; Val cost] -> StringMap.add StringMap.empty hipero (int_of_string cost)
| t -> failwith ("map_of_hipero: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let rec count_selprefs_cost tree cost = function
Ref i ->
if cost.(i) = -1 then
let c = count_selprefs_cost tree cost (ExtArray.get tree i) in
cost.(i) <- c;
c
else cost.(i)
| Node t ->
(count_selprefs_cost tree cost t.args) +
(match try get_attr "gf" t.attrs with Not_found -> Val "" with
Val "adjunct" -> 100
| Val "subj" | Val "obj" | Val "arg" | Val "core" ->
if get_attr "rev-hipero" t.attrs = Val "+" then 0 else
let selprefs = try list_of_selprefs (get_attr "selprefs" t.attrs) with Not_found -> failwith ("count_selprefs_cost: no selprefs " ^ t.lemma) in
let hipero = try map_of_hipero (get_attr "hipero" t.attrs) with Not_found -> failwith ("count_selprefs_cost: no hipero " ^ t.lemma) in
Xlist.fold selprefs 1000 (fun cost selpref ->
try min cost (StringMap.find hipero selpref) with Not_found -> cost)
| Val "" -> 200
| Val s -> failwith ("count_selprefs_cost: unknown gf=" ^ s ^ " for " ^ t.lemma)
| _ -> failwith "count_selprefs_cost")
| Variant(e,l) ->
Xlist.fold l max_int (fun min_c (_,t) ->
min min_c (count_selprefs_cost tree cost t))
| Tuple l -> Xlist.fold l 0 (fun c t -> c + count_selprefs_cost tree cost t)
| Dot -> 0
| t -> failwith ("count_selprefs_cost: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let selprefs tree =
let cost = Array.make (ExtArray.size tree) (-1) in
cost.(0) <- count_selprefs_cost tree cost (ExtArray.get tree 0);
Int.iter 0 (ExtArray.size tree - 1) (fun i ->
ExtArray.set tree i (snd (selprefs_rec cost (ExtArray.get tree i))));
()
let merge_variant e l =
let set = Xlist.fold l TermSet.empty (fun set (_,t) -> TermSet.add set t) in
if TermSet.size set = 1 then TermSet.max_elt set else
Variant(e,l)
let merge_nodes result_tree t_map e l =
let l = Xlist.rev_map l (function
i, Ref id -> i, (match ExtArray.get result_tree id with Node t -> t | _ -> raise Not_found)
| _ -> raise Not_found) in
let _,h = List.hd l in
let h_cat = try get_attr "CAT" h.attrs with Not_found -> Dot in
let h_coerced = try get_attr "COERCED" h.attrs with Not_found -> Dot in
Xlist.iter (List.tl l) (fun (_,t) ->
let t_cat = try get_attr "CAT" t.attrs with Not_found -> Dot in
let t_coerced = try get_attr "COERCED" t.attrs with Not_found -> Dot in
if h.orth <> t.orth || h.lemma <> t.lemma || h.pos <> t.pos || h.weight <> t.weight ||
h.id <> t.id || h.symbol <> t.symbol || h_cat <> t_cat || h_coerced <> t_coerced ||
h.arg_symbol <> t.arg_symbol || h.arg_dir <> t.arg_dir then raise Not_found else ());
let args = Xlist.fold l [] (fun l (i,t) -> (i,t.args) :: l) in
let attrs = Xlist.fold l StringMap.empty (fun map (i,t) ->
Xlist.fold t.attrs map (fun map (k,v) ->
StringMap.add_inc map k [i,v] (fun l -> (i,v) :: l))) in
let args = merge_variant e args in
let attrs = StringMap.fold attrs [] (fun l k v ->
(k,merge_variant e v) :: l) in
let t = Node{h with args=args; attrs=attrs} in
let s = ENIAM_LCGstringOf.linear_term 0 t in
if StringMap.mem !t_map s then Ref(StringMap.find !t_map s) else (
let id = ExtArray.add result_tree t in
t_map := StringMap.add !t_map s id;
Ref id)
let rec merge_rec tree result_tree id_map t_map = function
Ref i ->
if IntMap.mem !id_map i then Ref(IntMap.find !id_map i) else
let t = merge_rec tree result_tree id_map t_map (ExtArray.get tree i) in
let s = ENIAM_LCGstringOf.linear_term 0 t in
if StringMap.mem !t_map s then Ref(StringMap.find !t_map s) else (
let id = ExtArray.add result_tree t in
id_map := IntMap.add !id_map i id;
t_map := StringMap.add !t_map s id;
Ref id)
| Node t -> Node{t with args=merge_rec tree result_tree id_map t_map t.args}
| Variant(e,l) ->
let map = Xlist.fold l StringMap.empty (fun map (i,t) ->
let t = merge_rec tree result_tree id_map t_map t in
StringMap.add map (ENIAM_LCGstringOf.linear_term 0 t) t) in
let _,l = StringMap.fold map (1,[]) (fun (i,l) _ t -> i+1, (string_of_int i,t) :: l) in
(match l with
[_,t] -> t
| _ -> (try merge_nodes result_tree t_map e l with Not_found -> Variant(e,List.rev l)))
| Tuple l ->
let l = Xlist.rev_map l (merge_rec tree result_tree id_map t_map) in
Tuple(List.rev l)
| Dot -> Dot
| t -> failwith ("merge: " ^ ENIAM_LCGstringOf.linear_term 0 t)
let merge tree =
let result_tree = ExtArray.make (ExtArray.size tree / 4) Dot in
let _ = ExtArray.add result_tree Dot in
let t = merge_rec tree result_tree (ref IntMap.empty) (ref StringMap.empty) (ExtArray.get tree 0) in
ExtArray.set result_tree 0 t;
result_tree