ajax_user_stats.py
14 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# -*- coding: utf-8 -*-
"""Module covering functions used in user statistics views"""
import operator
from django.contrib.auth.models import User
from django.db.models import Count, Sum, Q
from common.decorators import render, ajax
from dictionary.models import Lemma, Lemma_Status
from accounts.models import RealizedLemma, RealizedPhraseology, \
RealizedPhraseologyBinding, RealizedSemantics
@render('sel_user_stats.html')
@ajax(method='get', encode_result=False)
def get_user_stats(request, user_name):
"""Function rendering sel_user_stats.html page."""
if user_name:
user = User.objects.get(username=user_name)
else:
user = request.user
all_owned_lemmas = user.lemmas.filter(old=False)
all_phraseologic_owned_lemmas = user.phraseologist_lemmas.filter(old=False)
all_semantic_owned_lemmas = user.semanticist_lemmas.filter(old=False)
ord_statuses = Lemma_Status.objects.order_by('priority')[1:]
status_table_dict = []
all_owned_frames_count = 0
all_phraseologic_owned_frames_count = 0
all_semantic_owned_frames_count = 0
for status in ord_statuses:
owned_lemmas = all_owned_lemmas.filter(status=status)
phraseologic_owned_lemmas = all_phraseologic_owned_lemmas.filter(status=status)
semantic_owned_lemmas = all_semantic_owned_lemmas.filter(status=status)
owned_frames_count = owned_lemmas.annotate(num_frames=Count('frames')).aggregate(Sum('num_frames'))['num_frames__sum']
phraseologic_owned_frames_count = phraseologic_owned_lemmas.annotate(num_frames=Count('frames')).aggregate(Sum('num_frames'))['num_frames__sum']
semantic_owned_frames_count = semantic_owned_lemmas.annotate(num_frames=Count('frames')).aggregate(Sum('num_frames'))['num_frames__sum']
if not owned_frames_count:
owned_frames_count = 0
if not phraseologic_owned_frames_count:
phraseologic_owned_frames_count = 0
if not semantic_owned_frames_count:
semantic_owned_frames_count = 0
status_dict = {'status': status.status,
'owned_lemmas_count': owned_lemmas.count(),
'owned_frames_count': owned_frames_count,
'phraseologic_owned_lemmas_count': phraseologic_owned_lemmas.count(),
'phraseologic_owned_frames_count': phraseologic_owned_frames_count,
'semantic_owned_lemmas_count': semantic_owned_lemmas.count(),
'semantic_owned_frames_count': semantic_owned_frames_count}
status_table_dict.append(status_dict)
all_owned_frames_count += owned_frames_count
all_phraseologic_owned_frames_count += phraseologic_owned_frames_count
all_semantic_owned_frames_count += semantic_owned_frames_count
lex_work_stats = get_lexical_stats(user)
phraseology_work_stats = get_phraseology_stats(user)
semantics_work_stats = get_semantics_stats(user)
total_earned_cash = lex_work_stats['earned_cash']+phraseology_work_stats['earned_cash']+semantics_work_stats['earned_cash']
return {'lemma_status_tab': status_table_dict,
'all_owned_lemmas_count': all_owned_lemmas.count(),
'all_owned_frames_count': all_owned_frames_count,
'all_phraseologic_owned_lemmas_count': all_phraseologic_owned_lemmas.count(),
'all_phraseologic_owned_frames_count': all_phraseologic_owned_frames_count,
'all_semantic_owned_lemmas_count': all_semantic_owned_lemmas.count(),
'all_semantic_owned_frames_count': all_semantic_owned_frames_count,
'earned_cash': total_earned_cash,
'paid_cash': round(user.user_stats.paid_cash, 2),
'surcharge': round(user.user_stats.paid_cash-total_earned_cash, 2),
'lex_work_stats': lex_work_stats,
'phraseology_work_stats': phraseology_work_stats,
'semantics_work_stats': semantics_work_stats}
def get_lexical_stats(user):
earned_cash = RealizedLemma.objects.filter(user_stats__user=user).aggregate(Sum('cash'))['cash__sum']
if earned_cash == None:
earned_cash = 0.0
lemmas_marked_to_erase = Lemma.objects.filter(owner=user,
old=False,
status__type__sym_name='erase')
lemmas_to_erase_cash = 1.0*float(lemmas_marked_to_erase.count())
earned_cash += lemmas_to_erase_cash
bonus_cash = RealizedLemma.objects.filter(user_stats__user=user,
bonus=True).aggregate(Sum('cash'))['cash__sum']
if bonus_cash == None:
bonus_cash = 0.0
prop_frames = RealizedLemma.objects.filter(user_stats__user=user,
paid=False).aggregate(Sum('prop_frames'))['prop_frames__sum']
if prop_frames == None:
prop_frames = 0
wrong_frames = RealizedLemma.objects.filter(user_stats__user=user,
paid=False).aggregate(Sum('wrong_frames'))['wrong_frames__sum']
if wrong_frames == None:
wrong_frames = 0
corr_frames = RealizedLemma.objects.filter(user_stats__user=user,
paid=False).aggregate(Sum('corr_frames'))['corr_frames__sum']
if corr_frames == None:
corr_frames = 0
ncorr_frames = RealizedLemma.objects.filter(user_stats__user=user,
paid=False).aggregate(Sum('ncorr_frames'))['ncorr_frames__sum']
if ncorr_frames == None:
ncorr_frames = 0
made_frames = RealizedLemma.objects.filter(user_stats__user=user,
paid=False).aggregate(Sum('made_frames'))['made_frames__sum']
if made_frames == None:
made_frames = 0
efficacy = 0.0
if prop_frames+wrong_frames > 0:
efficacy = float(prop_frames)/float(prop_frames+wrong_frames)*100.0
lex_work_stats = {'earned_cash': round(earned_cash, 2),
'bonus_cash' : round(bonus_cash, 2),
'lemmas_to_erase_cash': round(lemmas_to_erase_cash, 2),
'prop_frames': prop_frames,
'wrong_frames': wrong_frames,
'corr_frames': corr_frames,
'checked_frames': ncorr_frames+corr_frames,
'made_frames' : made_frames,
'efficacy' : round(efficacy, 2)}
return lex_work_stats
def get_phraseology_stats(user):
added_bindings = RealizedPhraseologyBinding.objects.filter(user_stats__user=user)
used_bindings = get_used_bindings(added_bindings)
earned_cash_frames = RealizedPhraseology.objects.filter(user_stats__user=user).aggregate(Sum('cash'))['cash__sum']
if earned_cash_frames == None:
earned_cash_frames = 0.0
earned_cash_bindings = used_bindings.aggregate(Sum('cash'))['cash__sum']
if earned_cash_bindings == None:
earned_cash_bindings = 0.0
earned_cash = earned_cash_frames+earned_cash_bindings
bonus_cash = RealizedPhraseology.objects.filter(user_stats__user=user,
bonus=True).aggregate(Sum('cash'))['cash__sum']
if bonus_cash == None:
bonus_cash = 0.0
prop_frames = RealizedPhraseology.objects.filter(user_stats__user=user,
paid=False).aggregate(Sum('prop_frames'))['prop_frames__sum']
if prop_frames == None:
prop_frames = 0
wrong_frames = RealizedPhraseology.objects.filter(user_stats__user=user,
paid=False).aggregate(Sum('wrong_frames'))['wrong_frames__sum']
if wrong_frames == None:
wrong_frames = 0
corr_frames = RealizedPhraseology.objects.filter(user_stats__user=user,
paid=False).aggregate(Sum('corr_frames'))['corr_frames__sum']
if corr_frames == None:
corr_frames = 0
ncorr_frames = RealizedPhraseology.objects.filter(user_stats__user=user,
paid=False).aggregate(Sum('ncorr_frames'))['ncorr_frames__sum']
if ncorr_frames == None:
ncorr_frames = 0
new_frames = RealizedPhraseology.objects.filter(user_stats__user=user,
paid=False).aggregate(Sum('new_frames'))['new_frames__sum']
if new_frames == None:
new_frames = 0
reused_frames = RealizedPhraseology.objects.filter(user_stats__user=user,
paid=False).aggregate(Sum('reused_frames'))['reused_frames__sum']
if reused_frames == None:
reused_frames = 0
efficacy = 0.0
if prop_frames+wrong_frames > 0:
efficacy = float(prop_frames)/float(prop_frames+wrong_frames)*100.0
phraseologic_empty_frame_value = 1.0
made_phraseologic_empty_entries = user.user_stats.made_phraseologic_empty_entries_count()
checked_phraseologic_empty_entries = user.user_stats.checked_phraseologic_empty_entries_count()
earned_cash += phraseologic_empty_frame_value*float(made_phraseologic_empty_entries+checked_phraseologic_empty_entries)
phraseology_work_stats = {'earned_cash': round(earned_cash, 2),
'bonus_cash' : round(bonus_cash, 2),
'prop_frames': prop_frames,
'wrong_frames': wrong_frames,
'corr_frames': corr_frames,
'checked_frames': ncorr_frames+corr_frames,
'new_frames' : new_frames,
'reused_frames': reused_frames,
'added_bindings': added_bindings.count(),
'used_bindings': used_bindings.count(),
'made_phraseologic_empty_entries': made_phraseologic_empty_entries,
'checked_phraseologic_empty_entries': checked_phraseologic_empty_entries,
'efficacy' : round(efficacy, 2)}
return phraseology_work_stats
def get_used_bindings(added_bindings):
unused_bindings = []
for added_binding in added_bindings.all():
binded_entry = added_binding.binded_entry
act_binded_lemma = binded_entry.lemmas.get(old=False)
if act_binded_lemma.status.type.sym_name == 'erase':
unused_bindings.append(added_binding.pk)
else:
added_frame = added_binding.phraseologic_frame
act_lemma_phras_frames = act_binded_lemma.frames.filter(phraseologic=True)
act_lemma_phras_frames = act_lemma_phras_frames.annotate(positions_count=Count('positions'))
act_lemma_phras_frames = act_lemma_phras_frames.filter(positions_count=added_frame.positions.count())
for pos in added_frame.positions.all():
act_lemma_phras_frames = act_lemma_phras_frames.filter(positions__text_rep=pos.text_rep)
if not act_lemma_phras_frames.exists():
unused_bindings.append(added_binding.pk)
break
return added_bindings.exclude(pk__in=unused_bindings)
def get_semantics_stats(user):
earned_cash = RealizedSemantics.objects.filter(user_stats__user=user).aggregate(Sum('cash'))['cash__sum']
if earned_cash == None:
earned_cash = 0.0
bonus_cash = RealizedSemantics.objects.filter(user_stats__user=user,
bonus=True).aggregate(Sum('cash'))['cash__sum']
if bonus_cash == None:
bonus_cash = 0.0
prop_frames = RealizedSemantics.objects.filter(user_stats__user=user).aggregate(Sum('prop_frames'))['prop_frames__sum']
if prop_frames == None:
prop_frames = 0
part_prop_frames = RealizedSemantics.objects.filter(user_stats__user=user).aggregate(Sum('part_prop_frames'))['part_prop_frames__sum']
if part_prop_frames == None:
part_prop_frames = 0
wrong_frames = RealizedSemantics.objects.filter(user_stats__user=user).aggregate(Sum('wrong_frames'))['wrong_frames__sum']
if wrong_frames == None:
wrong_frames = 0
corr_frames = RealizedSemantics.objects.filter(user_stats__user=user).aggregate(Sum('corr_frames'))['corr_frames__sum']
if corr_frames == None:
corr_frames = 0
part_corr_frames = RealizedSemantics.objects.filter(user_stats__user=user).aggregate(Sum('part_corr_frames'))['part_corr_frames__sum']
if part_corr_frames == None:
part_corr_frames = 0
ncorr_frames = RealizedSemantics.objects.filter(user_stats__user=user).aggregate(Sum('ncorr_frames'))['ncorr_frames__sum']
if ncorr_frames == None:
ncorr_frames = 0
related_frames = RealizedSemantics.objects.filter(user_stats__user=user).aggregate(Sum('related_frames'))['related_frames__sum']
if related_frames == None:
related_frames = 0
made_frames = RealizedSemantics.objects.filter(user_stats__user=user).aggregate(Sum('made_frames'))['made_frames__sum']
if made_frames == None:
made_frames = 0
added_connections = RealizedSemantics.objects.filter(user_stats__user=user).aggregate(Sum('added_connections'))['added_connections__sum']
if added_connections == None:
added_connections = 0
efficacy = 0.0
if prop_frames+wrong_frames > 0:
efficacy = float(prop_frames)/float(prop_frames+wrong_frames)*100.0
sem_work_stats = {'earned_cash': round(earned_cash, 2),
'bonus_cash': round(bonus_cash, 2),
'prop_frames': prop_frames,
'part_prop_frames': part_prop_frames,
'wrong_frames': wrong_frames,
'corr_frames': corr_frames,
'part_corr_frames': part_corr_frames,
'checked_frames': ncorr_frames+corr_frames+part_corr_frames,
'related_frames': related_frames,
'made_frames': made_frames,
'efficacy': round(efficacy, 2),
'added_connections' : added_connections}
return sem_work_stats