get_examples.py 33.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
#-*- coding:utf-8 -*-

import codecs
import operator
import os
import re
from subprocess import call
from tempfile import mkdtemp, mkstemp

from django.core.management.base import BaseCommand
from django.utils.encoding import smart_str
from django.db.models import Q

#import corpus2
from common.morfeusz import analyse

from dictionary.models import Argument, Lemma
from settings import PROJECT_PATH

BASE_PATH = os.path.join(PROJECT_PATH, 'data')
#['gotowe', 'sprawdzone', 'tymczasowy']
STATUSES_LS = [u'zalążkowe', u'gotowe', u'sprawdzone',
               u'(F) w obróbce', u'(F) gotowe', u'(F) sprawdzone',
               u'(S) w obróbce', u'(S) gotowe', u'(S) sprawdzone']

NOUN_TAGS = ['subst', 'ger']

#VERBTAGLIST = ['fin', 'praet', 'bedzie', 'inf', 'imps', 'impt', 
#               'winien', 'pred']
#ADJTAGLIST = ['adj', 'pact', 'ppas']
#INTERPTAGLIST = ['interp']
#NUMERALTAGLIST = ['num', 'numcol']

XCES_HEADER = """<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE cesAna  SYSTEM 'xcesAnaIPI.dtd'><cesAna type="pre_morph" version="WROC-1.0" xmlns:xlink="http://www.w3.org/1999/xlink">
<chunkList xml:base="text.xml">
"""
XCES_FOOTER = """</chunkList>
</cesAna>
"""

WCRFT_CONFIG = 'nkjp_s2.ini'

LABELS = ('haslo', 
          'status hasla',
          'identyfikator schematu',
          'schemat', 
          'opinia o schemacie',
          'przyklad',
          'otagowany przyklad',
          'fragmenty przykladu',
          'opinia o przykladzie',
          'zrodlo przykladu',
          'wybor argumentow')


ARG_TYPES_BY_PRIORITY = ['fixed', 
                    # frazy przyimkowe
                    'preplexnp', 'comprepnp', 'prepnp', 'prepncp', 'prepadjp',
                    # frazy rzeczownikowe
                    'lexnp', 'np',
                    # frazy rzeczownikowo-zdaniowe
                    'ncp', 'cp',
                    # adjp
                    'adjp',
                    # bezokoliczniki
                    'infp',
                    # refl
                    'refl',
                    # xp
                    'xp',
                    # advp
                    'advp',
                    # nonch
                    'nonch',
                    # lemma - nie jest sortowane chyba, bo dodawane na innym etapie niz reszta argumentow
                    'lemma',
                    # xp
                    'xp'
                    ]

class Command(BaseCommand):
    help = 'Get pinned examples from Slowal.'

    def handle(self, **options):
        get_examples()  

def write_examples(q_statuses):
    try:       
        examples_file = codecs.open(os.path.join(BASE_PATH, 
                                                 'examples_gotowe_plus.txt'), 'wt', 'utf-8')  
        for lemma in Lemma.objects.filter(old=False).filter(reduce(operator.or_, q_statuses)).order_by('entry').all():
            print lemma
            examples_file.write(lemma.entry+'\n')
            for frame in lemma.frames.order_by('text_rep').all():
                if lemma.frame_opinions.get(frame=frame).value.value != u'zła':
                    examples_file.write('\t%s\n' % frame.text_rep)
                    for example in lemma.nkjp_examples.filter(frame=frame):
                        examples_file.write('\t\t--> %s\n' % example.sentence)
            examples_file.write('\n\n')
    finally:
        examples_file.close()

def write_xces_opening(outfile):
    outfile.write(XCES_HEADER)
    
def write_xces_closing(outfile):
    outfile.write(XCES_FOOTER)
    
def write_paragraph(what, outfile):
    if len(what) > 0 and not what.isspace():
        outfile.write(u'<chunk type="p" id="p1">')
        outfile.write(what)
        outfile.write(u'</chunk>\n')

def sentence_to_xces(sentence):
    try:
        tmp_folder = mkdtemp()
        os.chdir(tmp_folder)
        tmp_file, tmpfilename = mkstemp(dir=tmp_folder)
        os.close(tmp_file)
        outfile = codecs.open(tmpfilename, 'wt', 'utf-8')
        write_xces_opening(outfile)
        write_paragraph(sentence, outfile)
        write_xces_closing(outfile)
    finally:
        outfile.close()
        return tmpfilename

def chunks(rdr):
    """Yields subsequent paragraphs from a reader."""
    while True:
        chunk = rdr.get_next_chunk()
        if not chunk:
            break
        yield chunk

#def tag_sentence(tagged_sentence_path):
#    sentences_count = 0
#    tagged_sentence_chunks = []
#    tagset = corpus2.get_named_tagset('nkjp')
#    rdr = corpus2.TokenReader.create_path_reader('xces', tagset, tagged_sentence_path)
#    for chunk in chunks(rdr):
#        for sent in chunk.sentences():
#            sentences_count += 1
#            for tok in sent.tokens():
#                prefered_lexeme = tok.get_preferred_lexeme(tagset)
#                base_form = prefered_lexeme.lemma_utf8().decode('utf-8')
#                orth_form = tok.orth_utf8().decode('utf-8')
#                tags = tagset.tag_to_string(prefered_lexeme.tag())
#                sentence_chunk = u'%s[%s>%s]' % (orth_form, base_form, tags)
#                tagged_sentence_chunks.append(sentence_chunk)
#    tagged_sentence = ' '.join(tagged_sentence_chunks)
#    if sentences_count > 1:
#        pass
#    return tagged_sentence

#def get_tagged_sentence(sentence):
#    tagged_sentence = 'Error!'
#    try:
#        tmp_folder = mkdtemp()
#        os.chdir(tmp_folder)
#        xces_file, xces_path = mkstemp(dir=tmp_folder)
#        os.close(xces_file)
#        tagged_sentence_file, tagged_sentence_path = mkstemp(dir=tmp_folder)
#        os.close(tagged_sentence_file)
#        xces_file = codecs.open(xces_path, 'wt', 'utf-8')
#        write_xces_opening(xces_file)
#        write_paragraph(sentence, xces_file)
#        write_xces_closing(xces_file)
#        xces_file.close()
#        try:
#            call(['wcrft', WCRFT_CONFIG, xces_path, '-O', tagged_sentence_path, '-C', '-i', 'premorph'])
#            tagged_sentence = tag_sentence(tagged_sentence_path)
#        except:
#            print 'Tagging failed.'
#    finally:
#        xces_file.close()
#        os.remove(xces_path)
#        os.remove(tagged_sentence_path)
#        return tagged_sentence

def write_detailed_examples(q_statuses):
    try:       
        examples_file = codecs.open(os.path.join(BASE_PATH, 
                                                 'detailed_examples_20150616.csv'), 'wt', 'utf-8') 
        examples_file.write(u'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n' % LABELS) 
        for lemma in Lemma.objects.filter(old=False).filter(reduce(operator.or_, q_statuses)).order_by('entry').all():
            print lemma
            lemma_entry = lemma.entry
            lemma_status = lemma.status.status
            for frame in lemma.frames.order_by('text_rep').all():
                frame_text_rep = frame.text_rep
                frame_opinion = lemma.frame_opinions.filter(frame=frame).all()[0].value
                for example in lemma.nkjp_examples.filter(frame=frame):
                    sentence = example.sentence.replace('\n', ' ').replace('\r', '').replace('\t', ' ')
                    #tagged_sentence = get_tagged_sentence(sentence) mozna wlaczyc w razie czego
                    tagged_sentence = ''
                    example_opinion = example.opinion.opinion
                    example_source = example.source.source
                    arguments_selection = u'%s' % u' + '.join([u'%s' % selection.__unicode__() for selection in example.arguments.all()])
                    examples_file.write(u'%s\t%s\t%d\t%s\t%s\t%s\t%s\t\t%s\t%s\t%s\n' % (lemma_entry, 
                                                                                         lemma_status,
                                                                                         frame.id,
                                                                                         frame_text_rep, 
                                                                                         frame_opinion,
                                                                                         sentence,
                                                                                         tagged_sentence,
                                                                                         example_opinion,
                                                                                         example_source,
                                                                                         arguments_selection))
    finally:
        examples_file.close()
        
def get_arguments(arguments_selection):
    arguments = []
    positions = arguments_selection.split('+')
    for position in positions:
        category = ''
        position = position.strip().lstrip('[').rstrip(']')
        if position.startswith('subj'):
            category = 'subj'
        elif position.startswith('obj'):
            category = 'obj'
        selection = re.findall(ur'<.*?>', position)[0]
        for arg in selection.lstrip('<').rstrip('>').split(';'):
            if category:
                arguments.append(u'%s:%s' % (category, arg))
            else:
                arguments.append(arg)
    arguments = sort_arguments(arguments)
    return arguments

def sort_arguments(arguments):
    sorted_arguments = []
    for type in ARG_TYPES_BY_PRIORITY:
        for arg in arguments:
            (arg_type, attributes, category) = arg_from_text_rep(arg)
            if arg_type == type:
                sorted_arguments.append(arg)
    return sorted_arguments

def arg_from_text_rep(argument):
    attributes = []
    category = ''
    if ':' in argument:
        arg_split = argument.split(':')
        category = arg_split[0]
        argument = arg_split[1]
    arg_parts = argument.split('(')
    arg_type = arg_parts[0]
    if len(arg_parts) > 1:
        attributes = arg_parts[1].rstrip(')').replace("'", "").split(',')
    return arg_type, attributes, category

def tokenize_sentence(sentence):
    token_idx = 0
    tokens = []
    chunks = sentence.split('] ')
    for chunk in chunks:
        if chunk.startswith('[[['):
            token = {'idx': token_idx,
                     'orth': '[',
                     'base': '[',
                     'tags': ['interp'],
                     'argument': '',
                     'argument_start': -1,
                     'argument_end': -1,
                     'occupied': False}
        elif chunk.startswith('>'):
            token = {'idx': token_idx,
                     'orth': '>',
                     'base': '>',
                     'tags': ['interp'],
                     'argument': '',
                     'argument_start': -1,
                     'argument_end': -1,
                     'occupied': False}
        else:
            chunk_parts = chunk.split('[')
            (base, tags) = (chunk_parts[1].split('>'))#rstrip(']').)
            orth = chunk_parts[0].lower()
            token = {'idx': token_idx,
                     'orth': orth,
                     'base': base,
                     'tags': tags.split(':'),
                     'argument': '',
                     'argument_start': -1,
                     'argument_end': -1,
                     'occupied': False}
        tokens.append(token)
        token_idx += 1
    return tokens

def case_conversion(case, category):
    if case == 'instr':
        case = 'inst'
    elif case == 'part':
        case = u'gen|acc'
    elif case == 'str' and (category == 'subj' or not category):
        case = 'nom'
    elif case == 'str' and category == 'obj':
        case = 'acc'
    return case

def number_conversion(number):
    if number == '_':
        number = ''
    return number

def aspect_conversion(aspect):
    if aspect == '_':
        aspect = ''
    return aspect

def phrase_type_conversion(phrase_type):
    if phrase_type == u'że':
        phrase_type = u'że|iż'
    elif phrase_type == u'żeby':
        phrase_type = u'żeby|aby|by|iżby|ażeby'
    elif phrase_type == u'żeby2':
        phrase_type = u'że|iż|żeby'  # !!! nie wiem co ma być pod żeby2
    elif phrase_type == u'int':
        phrase_type = u'kiedy|jak|czy' # !!! nie wiem co ma być pod int
    elif phrase_type == u'jakby':
        phrase_type = u'jakby|jak gdyby'
    return phrase_type

def complex_prep_lemma_conversion(lemma):
    if lemma == u'powodu':
        lemma = u'powód'
    elif lemma == u'sprawie':
        lemma = u'sprawa'
    elif lemma == u'kwestii':
        lemma = u'kwestia'
    elif lemma == u'roli':
        lemma = u'rola'
    elif lemma == u'okolicach':
        lemma = u'okolica'
    elif lemma == u'czasie':
        lemma = u'czas'
    elif lemma == u'stronie':
        lemma = u'strona'
    elif lemma == u'początku':
        lemma = u'początek'  
    return lemma

def proper_case(token, case):
    possible_cases = [case]
    proper_case = False
    if '|' in case:
        possible_cases = case.split('|')
    if len(set(token['tags']) & set(possible_cases)) == 1:
        proper_case = True
    return proper_case     

def get_matching_token(tokens, orth='', base='', case='', 
                         number='', phrase_type='', aspect='', 
                         degree='', pos=''):
#    print '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
#    print 'orth: %s, base: %s, case: %s, number: %s, pos: %s' % (orth,
#                                                                 base,
#                                                                 case,
#                                                                 number,
#                                                                 pos)
    matching_token = None
    for token in tokens:
        match = True
        if token['occupied']:
            continue
        if orth and not token['orth'] == orth:
            match = False
        if base and not token['base'] == base:
            match = False
        if case and not proper_case(token, case):
            match = False
        if number and not number in token['tags']:
            match = False
        if aspect and not aspect in token['tags']:
            match = False
        if degree and not degree in token['tags']:
            match = False
        if pos and not pos in token['tags']:
            match = False
        if match:
            matching_token = token 
            break
    return matching_token

def fill_token_data(token, argument, start_idx, end_idx):
    token['argument'] = argument
    token['argument_start'] = start_idx
    token['argument_end'] = end_idx

def mark_fixed(tokens, argument, tresc):
    tresc_idx = 0
    tresc_orths = tresc.split()
    tresc_start = -1 
    tresc_end = -1
    for token in tokens:
        if token['occupied']:
            continue
        if token['orth'] == tresc_orths[tresc_idx]:
            tresc_idx += 1
            if tresc_start == -1:
                tresc_start = tokens.index(token)
        else:
            tresc_idx = 0
            tresc_start = -1
        if tresc_idx == len(tresc_orths):
            tresc_end = tokens.index(token)
            break
    for token in tokens[tresc_start:tresc_end+1]:
        fill_token_data(token, argument, tresc_start, tresc_end)
        token['occupied'] = True

def mark_preplexnp(tokens, argument, preposition, case, number, lemma):
    preposition_token = get_matching_token(tokens, orth='', base=preposition, 
                                           case=case, number='', pos='prep') # !! case nie powinien być zgodny z lematem??    
    start_idx = tokens.index(preposition_token)
    lemma_token = get_matching_token(tokens[start_idx:], orth='', base=lemma, 
                                     case=case, number=number, pos='subst')
    end_idx = tokens.index(lemma_token)
    fill_token_data(preposition_token, argument, start_idx, end_idx)
    fill_token_data(lemma_token, argument, start_idx, end_idx)
    for token in tokens[start_idx:end_idx+1]:
        token['occupied'] = True 
        
def mark_comprepnp(tokens, argument, preposition, lemma):
    if preposition == u'co' and lemma == u'do':
        preposition_token = get_matching_token(tokens, orth='co', base='', 
                                               case='', number='', pos='subst') # !! czy pos nie powinien byc subst  
        start_idx = tokens.index(preposition_token)
        lemma_token = get_matching_token(tokens[start_idx:], orth='do', base='', 
                                         case='', number='', pos='prep')
        end_idx = tokens.index(lemma_token)
    else:
        preposition_token = get_matching_token(tokens, orth='', base=preposition, 
                                               case='', number='', pos='prep') # !! case nie powinien być zgodny z lematem??    
        start_idx = tokens.index(preposition_token)
        lemma_base = complex_prep_lemma_conversion(lemma)
        lemma_token = get_matching_token(tokens[start_idx:], orth='', base=lemma_base, 
                                         case='', number='', pos='subst')
        end_idx = tokens.index(lemma_token)
    noun_token = get_matching_token(tokens[end_idx+1:], orth='', base='', 
                                    case='', number='', pos='subst') # za proste, glupoty wychodza
    end_idx = tokens.index(noun_token)
    fill_token_data(preposition_token, argument, start_idx, end_idx)
    fill_token_data(lemma_token, argument, start_idx, end_idx)
    fill_token_data(noun_token, argument, start_idx, end_idx)
    for token in tokens[start_idx:end_idx+1]:
        token['occupied'] = True
        
def mark_prepnp(tokens, argument, preposition, case):
    preposition_token = get_matching_token(tokens, orth='', base=preposition, 
                                           case=case, number='', pos='prep') # !! case nie powinien być zgodny z lematem??    
    start_idx = tokens.index(preposition_token)
    noun_token = get_matching_token(tokens[start_idx:], orth='', base='', 
                                    case=case, number='', pos='subst')
    end_idx = tokens.index(noun_token)
    fill_token_data(preposition_token, argument, start_idx, end_idx)
    fill_token_data(noun_token, argument, start_idx, end_idx)
    for token in tokens[start_idx:end_idx+1]:
        token['occupied'] = True 
        
def mark_phrase(tokens, start_idx, argument, phrase_type):
    for phrase in phrase_type.split('|'):
        phrase_parts = phrase.split()
        if len(phrase_parts) > 1:
            phrase_token1 = get_matching_token(tokens[start_idx+1:], orth='', base=phrase_parts[0], 
                                              case='', number='', pos='')
            if phrase_token1:
                phrase_start_idx = tokens.index(phrase_token1)
            phrase_token2 = get_matching_token(tokens[phrase_start_idx+1:], orth='', base=phrase_parts[1], 
                                              case='', number='', pos='')
            if phrase_token1 and phrase_token2:
                phrase_end_idx = tokens.index(phrase_token2)
                fill_token_data(phrase_token1, argument, phrase_start_idx, phrase_end_idx)
                fill_token_data(phrase_token2, argument, phrase_start_idx, phrase_end_idx)
                break
        else:
            phrase_token = get_matching_token(tokens[start_idx+1:], base=phrase)
            if phrase_token:
                phrase_end_idx = tokens.index(phrase_token)
                phrase_start_idx = phrase_end_idx
                fill_token_data(phrase_token, argument, phrase_start_idx, phrase_end_idx)
                break
    return phrase_start_idx, phrase_end_idx

def mark_prepncp(tokens, argument, preposition, case, phrase_type):
    preposition_token = get_matching_token(tokens, orth='', base=preposition, 
                                           case=case, number='', pos='prep') # !! case nie powinien być zgodny z lematem??    
    start_idx = tokens.index(preposition_token)
    noun_token = get_matching_token(tokens[start_idx:], orth='', base='', 
                                    case=case, number='', pos='subst')
    end_idx = tokens.index(noun_token)
    xx, end_idx = mark_phrase(tokens, end_idx, argument, phrase_type)
    fill_token_data(preposition_token, argument, start_idx, end_idx)
    fill_token_data(noun_token, argument, start_idx, end_idx)
    for token in tokens[start_idx:end_idx+1]:
        token['occupied'] = True 
        
def mark_prepadjp(tokens, argument, preposition, case):
    preposition_token = get_matching_token(tokens, orth='', base=preposition, 
                                           case=case, number='', pos='prep') # !! case nie powinien być zgodny z lematem??    
    start_idx = tokens.index(preposition_token)
    adj_token = get_matching_token(tokens[start_idx:], orth='', base='', 
                                    case=case, number='', pos='adj')
    end_idx = tokens.index(adj_token)
    fill_token_data(preposition_token, argument, start_idx, end_idx)
    fill_token_data(adj_token, argument, start_idx, end_idx)
    for token in tokens[start_idx:end_idx+1]:
        token['occupied'] = True 
        
def mark_lexnp(tokens, argument, case, number, lemma):
    lemma_token = get_matching_token(tokens, orth='', base=lemma, 
                                     case=case, number=number, pos='subst')
    start_idx = tokens.index(lemma_token)
    end_idx = start_idx
    fill_token_data(lemma_token, argument, start_idx, end_idx)
    for token in tokens[start_idx:end_idx+1]:
        token['occupied'] = True 
        
def mark_np(tokens, argument, case):
    noun_token = get_matching_token(tokens, orth='', base='', 
                                    case=case, number='', pos='subst')
    start_idx = tokens.index(noun_token)
    end_idx = start_idx
    fill_token_data(noun_token, argument, start_idx, end_idx)
    for token in tokens[start_idx:end_idx+1]:
        token['occupied'] = True 
        
def mark_ncp(tokens, argument, case, phrase_type):
    noun_token = get_matching_token(tokens, orth='', base='', 
                                    case=case, number='', pos='subst')
    start_idx = tokens.index(noun_token)
    xx, end_idx = mark_phrase(tokens, start_idx, argument, phrase_type)
    fill_token_data(noun_token, argument, start_idx, end_idx)
    for token in tokens[start_idx:end_idx+1]:
        token['occupied'] = True 
        
def mark_cp(tokens, argument, phrase_type):
    start_idx, end_idx = mark_phrase(tokens, -1, argument, phrase_type)
    for token in tokens[start_idx:end_idx+1]:
        token['occupied'] = True 
        
def mark_adjp(tokens, argument, case):
    adj_token = get_matching_token(tokens, case=case, pos='adj')
    start_idx = tokens.index(adj_token)
    end_idx = start_idx
    fill_token_data(adj_token, argument, start_idx, end_idx)
    for token in tokens[start_idx:end_idx+1]:
        token['occupied'] = True 
        
def mark_infp(tokens, argument, aspect):
    inf_token = get_matching_token(tokens, orth='', base='', 
                                   case='', number='', aspect=aspect, pos='inf')
    start_idx = tokens.index(inf_token)
    end_idx = start_idx
    fill_token_data(inf_token, argument, start_idx, end_idx)
    for token in tokens[start_idx:end_idx+1]:
        token['occupied'] = True 
        
def mark_lemma(tokens, argument, lemma, sie, aspect):
    lemma_token = get_matching_token(tokens, orth='', base=lemma, 
                                     case='', number='', aspect=aspect,
                                     pos='')   
    start_idx = tokens.index(lemma_token)
    if sie:
        sie_token = get_matching_token(tokens[start_idx:], orth='', base=u'się', 
                                        case='', number='', pos='')
        end_idx = tokens.index(sie_token)
        fill_token_data(sie_token, argument, start_idx, end_idx)
    else:
        end_idx = start_idx   
    fill_token_data(lemma_token, argument, start_idx, end_idx)
    
    for token in tokens[start_idx:end_idx+1]:
        token['occupied'] = True 
        
def mark_nonch(tokens, argument, nonch):
    for pronoun in nonch.split('|'):
        pronoun_parts = pronoun.split()
        if len(pronoun_parts) > 1:
            matched_tokens = []
            parts_matched = True
            pronoun_start_idx = 0
            for pronoun_part in pronoun_parts:
                pronoun_token = get_matching_token(tokens[pronoun_start_idx+1:], orth='', base=pronoun_part, 
                                                   case='', number='', pos='')
                if pronoun_token:
                    pronoun_start_idx = tokens.index(pronoun_token)
                    matched_tokens.append(pronoun_token)
                else:
                    parts_matched = False
                    break
            if parts_matched:
                start_idx = tokens.index(matched_tokens[0])
                end_idx = tokens.index(matched_tokens[-1])
                for token in matched_tokens:
                    fill_token_data(token, argument, start_idx, end_idx)
                break
        else:
            pronoun_token = get_matching_token(tokens, orth='', base=pronoun, 
                                              case='', number='', pos='')
            if pronoun_token:
                start_idx = tokens.index(pronoun_token)
                end_idx = start_idx
                fill_token_data(pronoun_token, argument, start_idx, end_idx)
                break
    for token in tokens[start_idx:end_idx+1]:
        token['occupied'] = True 

def mark_advp(tokens, argument, advp_type):
    if advp_type == 'pron':
        possible_bases = ['tak', 'jak']
        for base in possible_bases:
            advp_token = get_matching_token(tokens, base=base, pos='adv')
            if advp_token:
                break
    elif advp_type == 'misc':
        possible_degrees = ['com', 'sup']
        for degree in possible_degrees:
            advp_token = get_matching_token(tokens, degree=degree, pos='adv')
            if advp_token:
                break
    start_idx = tokens.index(advp_token)
    end_idx = start_idx
    fill_token_data(advp_token, argument, start_idx, end_idx)
    for token in tokens[start_idx:end_idx+1]:
        token['occupied'] = True     
        
def count_occupied(tokens):
    occupied_tokens = [token for token in tokens if token['occupied']]
    return len(occupied_tokens)  

def mark_arg_in_sentence(argument, sentence_tokens):
    (arg_type, attributes, category) = arg_from_text_rep(argument)
    if arg_type == 'fixed':
        mark_fixed(sentence_tokens, argument, attributes[0]) 
    elif arg_type == 'preplexnp':
        preposition = attributes[0]
        case = case_conversion(attributes[1], category) 
        number = number_conversion(attributes[2])
        lemma = attributes[3]
        mark_preplexnp(sentence_tokens, argument, preposition, case, number, lemma)  
    elif arg_type == 'comprepnp':
        complex_preposition_parts = attributes[0].split()
        preposition = complex_preposition_parts[0]
        lemma = complex_preposition_parts[1]
        mark_comprepnp(sentence_tokens, argument, preposition, lemma)
    elif arg_type == 'prepnp':
        preposition = attributes[0]
        case = case_conversion(attributes[1], category)
        mark_prepnp(sentence_tokens, argument, preposition, case)
    elif arg_type == 'prepncp':
        preposition = attributes[0]
        case = case_conversion(attributes[1], category)
        phrase_type = phrase_type_conversion(attributes[2])
        mark_prepncp(sentence_tokens, argument, preposition, case, phrase_type)
    elif arg_type == 'prepadjp':
        preposition = attributes[0]
        case = case_conversion(attributes[1], category)
        mark_prepadjp(sentence_tokens, argument, preposition, case)
    elif arg_type == 'lexnp':
        case = case_conversion(attributes[0], category)
        number = number_conversion(attributes[1])
        lemma = attributes[2]
        mark_lexnp(sentence_tokens, argument, case, number, lemma)   
    elif arg_type == 'np':
        case = case_conversion(attributes[0], category)
        mark_np(sentence_tokens, argument, case)    
    elif arg_type == 'ncp':
        case = case_conversion(attributes[0], category)
        phrase_type = phrase_type_conversion(attributes[1])
        mark_ncp(sentence_tokens, argument, case, phrase_type)
    elif arg_type == 'cp':
        phrase_type = phrase_type_conversion(attributes[0])
        mark_cp(sentence_tokens, argument, phrase_type)
    elif arg_type == 'adjp':
        case = case_conversion(attributes[0], category)
        mark_adjp(sentence_tokens, argument, case)
    elif arg_type == 'infp':
        aspect = aspect_conversion(attributes[0])
        mark_infp(sentence_tokens, argument, aspect)
    elif arg_type == u'nonch':
        nonch = u'co|coś|nic|to|to samo co'
        mark_nonch(sentence_tokens, argument, nonch)
    elif arg_type == 'lemma':
        lemma = attributes[0]
        sie = attributes[1]
        aspect = aspect_conversion(attributes[2])
        mark_lemma(sentence_tokens, argument, lemma, sie, aspect)
    elif arg_type == 'advp':
        advp_type = attributes[0]
        mark_advp(sentence_tokens, argument, advp_type)
#    elif arg_type == 'xp':
#        argument_obj = Argument.objects.get(text_rep=argument)
#        realizations = [realization.argument.text_rep for realization in argument_obj.realizations.all()]
#        start_occupacy = count_occupied(sentence_tokens)
#        for realization in sort_arguments(realizations):
#            mark_arg_in_sentence(realization, sentence_tokens)
#            if count_occupied(sentence_tokens) > start_occupacy:
#                break


def cut_sentence_chunks(sentence_tokens):
    endpoint = -1
    ignore = False
    sentence_chunks = []
    for token in sentence_tokens:
        if token['argument'] and not ignore:
            orths = [tok['orth'] for tok in sentence_tokens[token['argument_start']:token['argument_end']+1] if tok['argument']]
            arg_realization = u'%s (%s)' % (u' '.join(orths), token['argument'])
            endpoint = token['argument_end']
            sentence_chunks.append(arg_realization)
            ignore = True
        if token['idx'] == endpoint:
            ignore = False     
    return u' '.join(sentence_chunks)  

def get_sentence_chunk(arguments, sentence_tokens):
    for arg in arguments:
        mark_arg_in_sentence(arg, sentence_tokens)
    return cut_sentence_chunks(sentence_tokens)  

def create_lemma_argument(lemma_entry, frame_text_rep):
    frame_parts = frame_text_rep.split(':')
    sie = frame_parts[0]
    aspect = frame_parts[2]
    frame_structure = frame_parts[3]
    if not sie and u'refl' in frame_structure:
        sie = u'się'
    argument = u'lemma(%s,%s,%s)' % (lemma_entry, sie, aspect)
    return argument
        
def get_arguments_coverage():
    try:     
        first_line = True  
        examples_file = codecs.open(os.path.join(BASE_PATH, 
                                                 'detailed_examples_v2.csv'), 'rt', 'utf-8')
        output_file = codecs.open(os.path.join(BASE_PATH, 
                                                 'detailed_examples_cover_v2.csv'), 'wt', 'utf-8')
        output_file.write(u'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n' % LABELS)
        for line in examples_file:
            if first_line:
                first_line = False
                continue
            if 'Error!!!' in line:
                continue
            line = line.strip()
            example_data = line.split('\t')
            lemma_entry = example_data[0]
            lemma_status = example_data[1]
            frame_text_rep = example_data[2]
            frame_opinion = example_data[3]
            sentence = example_data[4]
            tagged_sentence = example_data[5]
            example_opinion = example_data[6]
            example_source = example_data[7]
            arguments_selection = example_data[8]
            if not tagged_sentence:
                sentence_chunk = u'Error!!! Błąd tagowania.'
            else:
#                print '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
#                print sentence
                lemma_argument = create_lemma_argument(lemma_entry, frame_text_rep)
                arguments = [lemma_argument]
                arguments.extend(get_arguments(arguments_selection))
                sentence_tokens = tokenize_sentence(tagged_sentence)
                try:
                    sentence_chunk = get_sentence_chunk(arguments, sentence_tokens)
                except:
                    sentence_chunk = u'Error!!! Nie dopasowano wszystkich argumentów.'
            output_file.write(u'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n' % (lemma_entry, 
                                                                             lemma_status,
                                                                             frame_text_rep, 
                                                                             frame_opinion,
                                                                             sentence,
                                                                             tagged_sentence,
                                                                             sentence_chunk,
                                                                             example_opinion,
                                                                             example_source,
                                                                             arguments_selection))
    finally:
        examples_file.close()
        output_file.close()
        
def get_examples():
    q_statuses = []
    for status in STATUSES_LS:
        q_statuses.append(Q(status__status=status))
    write_detailed_examples(q_statuses)
#    write_examples(q_statuses)
#    get_arguments_coverage()