descriptions.py
27.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
from itertools import chain, combinations, product
from django.utils import translation
from django.utils.translation import gettext as _
from importer.Phrase import *
from .polish_strings import *
from .utils import *
def powerset(iterable):
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1))
def powerset_nonempty(iterable):
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(1, len(s) + 1))
# keeps the element order
def uniq_list(iterable):
u = []
for element in iterable:
if element not in u:
u.append(element)
return u
def position_prop_description(prop):
return POSITION_PROP()[prop]
def phrase_description2(phrase, position, negativity, lang):
curr_lang = translation.get_language()
translation.activate(lang)
function = position._function._value if position._function else None
negativity = negativity.name if negativity else '_'
try:
desc = phrase_description(phrase, function, negativity)
except:
return '???'
translation.activate(curr_lang)
return desc
def phrase_description(phrase, function, negativity, desc_case='nom', inside_lex=False):
#print('******', function, '***', negativity, '***', str(phrase))
if str(phrase) in (
# malowany -> ppas in in Morfeusz
#'lex(adjp(agr),agr,agr,pos,malować,natr)',
#'lex(compar(jak),lex(np(nom),sg,wół,natr),lex(prepnp(na,acc),pl,wrota,ratr1({lex(adjp(agr),agr,agr,pos,malować,natr)})),natr)',
# oszalały -> adj in Morfeusz
#'lex(compar(jak),lex(ppasp(agr),agr,agr,aff,oszaleć,natr),natr)',
# OR
#'lex(np(str),_,uwaga,ratr({adjp(agr)}+{or}))',
#'lex(xp(mod[prepnp(z,gen)]),sg,góry,natr)', 'lex(np(str),_,uwaga,atr({adjp(agr)}+{or}))',
# „jak” nie ma wśród modyfikacyj
#'lex(cp(int[jak]),aff,dziękować,,atr)',
# „na jakim świecie żyje” – element pytajny zagnieżdżony w prepnp
#'lex(cp(int[jaki]),aff,żyć,,ratr1({lex(prepnp(na,loc),sg,świat,ratr1({lex(adjp(agr),agr,agr,pos,jaki,natr)}))}))',
# „co” nie ma wśród modyfikacyj
#'lex(xp(mod[cp(rel[co])]),aff,wyskoczyć,,ratr1(subj{lex(np(str),sg,koń,natr)}))',
#'lex(cp(rel[co]),aff,XOR(przynieść,przynosić),,ratr(subj{lex(np(str),sg,ślina,natr)}+{lex(np(dat),_,XOR(ja,my,on,ty,wy),natr)}+{lex(prepnp(na,acc),_,język,natr)}))',
#'lex(cp(rel[co]),_,XOR(przychodzić,przyjść),,ratr({lex(np(dat),_,XOR(ja,my,on,ty,wy),natr)}+{lex(prepnp(na,acc),sg,myśl,natr)}))',
#'lex(np(str),sg,wszystko,ratr(subj{lex(np(str),sg,co,natr)}+{lex(cp(rel[co]),aff,być,,ratr1({lex(prepnp(w,loc),sg,moc,atr({lex(adjp(agr),agr,agr,pos,ludzki,natr)}))}))}))',
#'lex(np(str),sg,wszystko,ratr(subj{lex(np(str),sg,co,natr)}+{lex(cp(rel[co]),aff,być,,ratr1({lex(prepnp(w,loc),sg,moc,atr({possp}))}))}))',
#'lex(cp(rel[co]),aff,być,,ratr1({lex(prepnp(w,loc),sg,moc,atr({lex(adjp(agr),agr,agr,pos,ludzki,natr)}))}))',
#'lex(cp(rel[co]),aff,być,,ratr1({lex(prepnp(w,loc),sg,moc,atr({possp}))}))',
# „jakby” nie ma wśród modyfikacyj
#'lex(xp(mod[cp(rel[jakby])]),aff,strzelić,,ratr({prepnp(w,acc)}+{lex(np(str),sg,XOR(grom,piorun),natr)}))',
):
return '???'
if str(phrase).startswith('lex'):
return lex_phrase_description(phrase, function, negativity, desc_case)
return make_phrase_description(phrase, function, negativity, desc_case, inside_lex=inside_lex)
def get_phrase_type(lex_phrase):
ptype = type(lex_phrase)
if ptype == LexNP:
return lex_phrase._np
if ptype == LexNumP:
return lex_phrase._nump
if ptype == LexAdjP:
return lex_phrase._adjp
if ptype == LexPPasP:
return lex_phrase._ppasp
if ptype == LexPActP:
return lex_phrase._pactp
if ptype == LexPrepNP:
return lex_phrase._prepnp
if ptype == LexPrepGerP:
return lex_phrase._prepgerp
if ptype == LexPrepNumP:
return lex_phrase._prepnump
if ptype == LexPrepAdjP:
return lex_phrase._prepadjp
if ptype == LexPrepPPasP:
return lex_phrase._prepppasp
if ptype == LexInfP:
return lex_phrase._infp
if ptype == LexCP:
return lex_phrase._cp
if ptype == LexNCP:
return lex_phrase._ncp
if ptype == LexXP:
return lex_phrase._xp
if ptype == LexAdvP:
return lex_phrase._advp
if ptype == LexCompar:
return lex_phrase._compar
if ptype == LexQub:
return lex_phrase._qub
print(ptype)
1/0
def postprocess_phraseologism(p):
return p.replace(' ,', ',')
def lex_phrase_description(phrase, function, negativity, desc_case='nom'):
phrase2 = get_phrase_type(phrase)
desc = make_phrase_description(phrase2, function, negativity, 'inst', inside_lex=True)
phraseo = uniq_list(map(postprocess_phraseologism, make_phraseologisms(phrase, function, negativity)))
return _('frazeologizm będący ') + desc + _(' postaci') + make_ul(map('<i>{}</i>'.format, phraseo))
def make_phrase_description(phrase, function, negativity, desc_case, inside_lex=False):
ptype = type(phrase)
if ptype == NP:
case = phrase._case._value
if function == 'subj' and case == 'str':
case = 'str_subj'
return make_inflected_string(NP_(), desc_case).format(case=CASE_FOR_NP()[case])
if ptype == NumP:
case = phrase._case._value
return make_inflected_string(NUMP(), desc_case).format(case=CASE_FOR_NP()[case])
if ptype == AdjP:
return make_inflected_string(ADJP(), desc_case).format(case=CASE_FOR_ADJP()[phrase._case._value])
if ptype == PPasP:
return make_inflected_string(PPASP(), desc_case).format(case=CASE_FOR_ADJP()[phrase._case._value])
if ptype == PActP:
return make_inflected_string(PACTP(), desc_case).format(case=CASE_FOR_ADJP()[phrase._case._value])
if ptype == PrepNP:
prep, case = phrase._prep._value, phrase._prep._case._value
return make_inflected_string(PREPNP(), desc_case).format(prep=prep, case=CASE_FOR_PREPNP()[case])
if ptype == PrepGerP:
prep, case = phrase._prep._value, phrase._prep._case._value
return make_inflected_string(PREPGERP(), desc_case).format(prep=prep, case=CASE_FOR_PREPNP()[case])
if ptype == PrepNumP:
prep, case = phrase._prep._value, phrase._prep._case._value
return make_inflected_string(PREPNUMP(), desc_case).format(prep=prep, case=CASE_FOR_PREPNP()[case])
if ptype == PrepAdjP:
prep, case = phrase._prep._value, phrase._prep._case._value
return make_inflected_string(PREPADJP(), desc_case).format(prep=prep, case=CASE_FOR_PREPNP()[case])
if ptype == PrepPPasP:
prep, case = phrase._prep._value, phrase._prep._case._value
return make_inflected_string(PREPPPASP(), desc_case).format(prep=prep, case=CASE_FOR_PREPNP()[case])
if ptype == ComPrepNP:
return make_inflected_string(COMPREPNP(), desc_case).format(prep=phrase._prep)
if ptype == InfP:
aspect = phrase._aspect._value
return make_inflected_string(INFP(), desc_case).format(aspect=make_inflected_string(ASPECT()[aspect], desc_case))
if ptype == CP:
typ = phrase._type._value
if phrase._type._realisations:
typ_str = make_inflected_string(CP_TYPE().get(typ + '_r', CP_CONJ()), desc_case).format(
conj='/'.join(phrase._type._realisations))
else:
typ_str = make_inflected_string(CP_TYPE().get(typ, CP_CONJ()), desc_case).format(conj=typ)
return make_inflected_string(CP_(), desc_case).format(typ=typ_str)
if ptype == NCP:
case, typ = phrase._case._value, phrase._type._value
if case == 'part':
case = 'gen'
to = TO[case]
if phrase._type._realisations:
typ_str = make_inflected_string(NCP_TYPE().get(typ + '_r', NCP_CONJ()), desc_case).format(
to=to, conj='/'.join(phrase._type._realisations))
else:
typ_str = make_inflected_string(NCP_TYPE().get(typ, NCP_CONJ()), desc_case).format(to=to, conj=typ)
return make_inflected_string(NCP_(), desc_case).format(typ=typ_str)
if ptype == PrepNCP:
prep, case, typ = phrase._prep._value, phrase._prep._case._value, phrase._type._value
to = TO[case]
if phrase._type._realisations:
typ_str = make_inflected_string(PREPNCP_TYPE().get(typ + '_r', PREPNCP_CONJ()), desc_case).format(
prep=prep, to=to, conj='/'.join(phrase._type._realisations))
else:
typ_str = make_inflected_string(PREPNCP_TYPE().get(typ, PREPNCP_CONJ()), desc_case).format(prep=prep, to=to, conj=typ)
# we use NCP here as it’s the same (fraza zdaniowa wprowadzana przez...)
return make_inflected_string(NCP_(), desc_case).format(typ=typ_str)
if ptype in (XP, AdvP):
sem, realisations = phrase._category._value, phrase._category._limitations
if ptype == AdvP and sem == 'misc':
return make_inflected_string(ADVP_MISC(), desc_case)
if ptype == AdvP and sem == 'pron':
return make_inflected_string(ADVP_PRON(), desc_case)
b = (bool(realisations) or inside_lex)
#desc = make_inflected_string(XP_()[b] if ptype == XP else ADVP(), desc_case)
#ret = '{desc} {sem}'.format(desc=desc, sem=make_inflected_string(XP_SEM()[sem], desc_case))
ret = make_inflected_string(XP_(b)[sem] if ptype == XP else ADVP()[sem], desc_case)
# don’t describe realisations for fixed/lexicalised phrases
if realisations and not inside_lex:
rs = make_ul(map(lambda r: phrase_description(r, function, negativity, 'nom', inside_lex=inside_lex), realisations))
if len(realisations) == 1:
ret += _(' z dopuszczalną realizacją: ') + rs
else:
ret += _(' z dopuszczalnymi realizacjami: ') + rs
return ret
# TODO opis?
if ptype == Compar:
prep = phrase._category._value
return make_inflected_string(COMPAR(), desc_case).format(prep=prep)
if ptype == Nonch:
return make_inflected_string(NONCH(), desc_case)
if ptype == OR:
return make_inflected_string(OR_(), desc_case)
if ptype == Refl:
return make_inflected_string(REFL(), desc_case)
if ptype == Recip:
return make_inflected_string(RECIP(), desc_case)
if ptype == E:
return make_inflected_string(E_(), desc_case)
if ptype == PossP:
return make_inflected_string(POSSP(), desc_case)
if ptype == DistrP:
return make_inflected_string(DISTRP(), desc_case)
if ptype == Fixed:
assert (desc_case == 'nom')
phrase, phraseo = phrase._phrase, phrase._text
return _('frazeologizm w postaci {phrase} zamrożony w postaci <i>{phraseo}</i>').format(
phrase=make_phrase_description(phrase, function, negativity, 'gen', inside_lex=True),
phraseo=phraseo.strip('\''))
# TODO nie było w dokumentacji
if ptype == Qub:
return make_inflected_string(QUB(), desc_case)
print(ptype)
1/0
return 'fraza TODO'
def combine(phrase, texts):
assert (len(texts) == len(phrase._words._lemmas))
if len(texts) == 1:
return texts[0]
if phrase._words._selection == 'xor':
return list(chain.from_iterable(texts))
else:
joiner = ' ' if phrase._words._cooccur == 'concat' else ' i/lub '
return list(chain.from_iterable(map(joiner.join, powerset_nonempty(x)) for x in product(*texts)))
def make_phraseologisms(phrase, function, negativity, attrs={}):
# TODO wok versions of preposisions, e.g. ze skóry
ptype = type(phrase)
if ptype in (NP, PrepNP, ComPrepNP):
# “any ((com)prep)np”
if ptype == NP:
case = phrase._case._value
else:
case = phrase._prep._case._value if ptype == PrepNP else 'gen'
CASE = correct_case(case, function, negativity)
prep = (phrase._prep._value + ' ') if ptype != NP else ''
feats = ['subst', CASE]
forms = [get_form(lemma, feats) for lemma in ('ktoś', 'coś')]
return ['{}‹{}›'.format(prep, '/'.join(o for o, t in forms))]
# TODO merge LexNP with LexPrepNP/LexPrepGerP?
if ptype == LexNP:
case = phrase._np._case._value
POS = lambda lemma: correct_pos(lemma, 'subst')
NUM = lambda lemma: correct_num(lemma, phrase._number)
CASE = correct_case(case, function, negativity)
feats = [POS, NUM, CASE]
nps = []
for lemma in phrase._words._lemmas:
lemma = correct_lemma(lemma)
for orth, tag in get_forms(lemma, correct_feats(lemma, feats)):
mod_attrs = get_subst_attrs(lemma, tag)
nps += make_modified_phrases(phrase, orth, NP, function, negativity, mod_attrs)
return nps
if ptype in (LexPrepNP, LexPrepGerP):
phrase2 = phrase._prepnp if ptype == LexPrepNP else phrase._prepgerp
prep, case = phrase2._prep._value, phrase2._prep._case._value
POS = lambda lemma: correct_pos(lemma, 'subst') if ptype == LexPrepNP else 'ger'
NUM = lambda lemma: correct_num(lemma, phrase._number)
CASE = correct_case(case, function)
feats = [POS, NUM, CASE]
if ptype == LexPrepGerP:
feats += ['aff']
nps = []
for lemma in phrase._words._lemmas:
lemma = correct_lemma(lemma)
for orth, tag in get_forms(lemma, correct_feats(lemma, feats, praep=True)):
mod_attrs = get_subst_attrs(lemma, tag)
nps += make_modified_phrases(phrase, orth, NP, function, negativity, mod_attrs)
return ['{} {}'.format(prep, np) for np in nps]
if ptype in (LexNumP, LexPrepNumP):
case = (phrase._nump if ptype == LexNumP else phrase._prepnump._prep)._case._value
prep = (phrase._prepnump._prep._value + ' ') if ptype != LexNumP else ''
CASE = correct_case(case, function)
phrs = []
words = []
for word in phrase._words._lemmas:
if word.startswith('E('):
if word == 'E(_)':
word = 'E(f.m1.m2.m3.n)'
words += ['E({})'.format(gend) for gend in word.strip('E()').split('.')]
else:
words.append(word)
for num in phrase._nums._lemmas:
POS = correct_pos(num, 'num')
for word in words:
# wiele wody
NUM = correct_num(num, 'pl') if word != 'woda' else 'sg'
gend = get_gender(word)
# gender before congr/rec to avoid empty result due to filtering priority
feats = [POS, NUM, CASE] + gend + [correct_congr(num)]
num_form = get_form(correct_num_lemma(num), feats)
congr = num_form[1].split(':')[4]
word_case = CASE if congr == 'congr' else 'gen'
word_form = get_form(word, ['subst', NUM, word_case])
# back to digits if this is the case
num_form = (num, num_form[1]) if num in NUM_LEMMA else num_form
phr = '{} {}'.format(num_form[0], word_form[0]) if word_form[0] else num_form[0]
mod_attrs = { 'num': NUM, 'case': CASE, 'gend' : gend }
phrs += make_modified_phrases(phrase, phr, NumP, function, negativity, mod_attrs)
return ['{}{}'.format(prep, phr) for phr in phrs]
if ptype == AdjP:
feats = ['adj', attrs['num'], attrs['case'], attrs['gend'], 'pos']
return ['‹{}›'.format(get_form('jakiś', feats)[0])]
if ptype in (LexAdjP, LexPPasP, LexPActP):
if ptype == LexAdjP:
phrase2 = phrase._adjp
POS = lambda lemma: correct_pos(lemma, 'adj')
elif ptype == LexPPasP:
phrase2 = phrase._ppasp
POS = 'ppas'
else:
phrase2 = phrase._pactp
POS = 'pact'
if phrase._number == 'agr' and 'num' in attrs:
num = attrs['num']
assert (num != 'agr')
NUM = lambda lemma: correct_num(lemma, num)
else:
NUM = lambda lemma: correct_num(lemma, phrase._number)
if phrase2._case._value == 'agr' and 'case' in attrs:
case = attrs['case']
assert (case != 'agr')
CASE = correct_case(case, function)
else:
CASE = correct_case(phrase2._case._value, function)
if phrase._gender == 'agr' and 'gend' in attrs:
gend = attrs['gend']
assert (gend != 'agr')
GEND = gend
else:
GEND = correct_gend(phrase._gender)
DEG = correct_deg(phrase._degree) if ptype == LexAdjP else ''
feats = [POS, NUM, CASE, GEND, DEG]
if ptype != LexAdjP:
feats.append('aff')
adjps = []
for lemma in phrase._words._lemmas:
lemma_adjps = []
for orth, tag in get_forms(lemma, correct_feats(lemma, feats)):
mod_attrs = get_subst_attrs(lemma, tag)
lemma_adjps += make_modified_phrases(phrase, orth, AdjP, function, negativity, mod_attrs)
adjps.append(lemma_adjps)
return combine(phrase, adjps)
if ptype in (LexPrepAdjP, LexPrepPPasP):
phrase2 = phrase._prepadjp if ptype == LexPrepAdjP else phrase._prepppasp
prep, case = phrase2._prep._value, phrase2._prep._case._value
NUM = lambda lemma: correct_num(lemma, phrase._number)
GEND = correct_gend(phrase._gender)
CASE = correct_case(case, function)
DEG = correct_deg(phrase._degree) if ptype == LexPrepAdjP else ''
feats_adjp = ['adjp', CASE]
feats_adj = ['adj', NUM, CASE, GEND, DEG] if ptype == LexPrepAdjP else ['ppas', NUM, CASE, GEND, DEG, correct_aff(phrase._negativity)]
adjps = []
for lemma in phrase._words._lemmas:
if case == 'postp':
assert (ptype == LexPrepAdjP)
try:
orth, tag = get_form(lemma, feats_adjp)
mod_attrs = {}
except:
orth, tag = get_form(lemma, feats_adj)
mod_attrs = get_subst_attrs(lemma, tag)
adjps = make_modified_phrases(phrase, orth, AdjP, function, negativity, mod_attrs)
else:
for orth, tag in get_forms(lemma, feats_adj):
mod_attrs = get_subst_attrs(lemma, tag)
adjps += make_modified_phrases(phrase, orth, AdjP, function, negativity, mod_attrs)
return ['{} {}'.format(prep, adjp) for adjp in adjps]
if ptype == LexInfP:
aspect = phrase._infp._aspect._value
neg = correct_neg(phrase._negativity)
sie = correct_sie(phrase._inherent_sie)
POS = 'inf'
feats = [POS]
infps = []
for lemma in phrase._words._lemmas:
for orth, tag in get_forms(lemma, feats):
head = '{}{}{}'.format(neg, orth, sie)
infps += make_modified_phrases(phrase, head, InfP, function, negativity, {})
return infps
if ptype in (CP, NCP, PrepNCP):
typ = phrase._type._value
to = TO[phrase._case._value] if ptype == NCP else ''
prep = '{} '.format(phrase._prep._value) if ptype == PrepNCP else ''
conj = None
if typ == 'żeby2':
conj = 'że' if negativity != 'neg' else 'że/żeby'
elif typ in ('int', 'rel') and phrase._type._realisations:
conj = '/'.join(phrase._type._realisations)
elif typ == 'int':
conj = 'co/czy/ile/kto…'
elif typ == 'rel':
#ktory = get_form('który', ['adj', attrs['num'], 'nom', attrs['gend'], 'pos'])[0]
#conj = '{}/co'.format(ktory)
conj = 'co/gdzie/kto…'
elif typ in ('gdy', 'jak', 'kiedy', 'że', 'żeby',):
conj = typ
if conj is not None:
return ['{}{}, {} …'.format(prep, to, conj)]
print('===========', typ)
1/0
# TODO order (się)
if ptype in (LexCP, LexNCP):
print(phrase)
typ = (phrase._cp if ptype == LexCP else phrase._ncp)._type._value
to = '' if ptype == LexCP else '{}, '.format(TO[phrase._ncp._case._value])
comp = ''
if typ == 'żeby2':
comp = 'żeby '
elif typ == 'gdy':
comp = 'gdy '
elif typ not in ('int', 'rel',):
comp = typ + ' '
neg = correct_neg(phrase._negativity)
sie = correct_sie(phrase._inherent_sie)
subj = None
# dependent like „co”, „na kogo”, „który” – should go first
first = []
# then pronouns: mi, ci etc., generic NP: ktoś/coś, LexQub: tylko etc.
pron = []
rest = []
#print()
realisations = (phrase._cp if ptype == LexCP else phrase._ncp)._type._realisations
realisations = set(realisations) if realisations else set()
for position in phrase._modification._dependents:
#print('---')
assert(len(position._phrases) == 1)
dep_phrase = position._phrases[0]
func = position._function._value if position._function else None
dep_phr = (dep_phrase, make_phraseologisms(dep_phrase, func, phrase._negativity, {}))
if func == 'subj':
subj = dep_phr
words = None
if type(dep_phrase) == LexNumP:
words = dep_phrase._nums._lemmas
elif type(dep_phrase) == LexXP:
words = dep_phrase._lex._words._lemmas
elif hasattr(dep_phrase, '_words'):
words = dep_phrase._words._lemmas
#print(words)
if words:
realisations.difference_update(words)
if words and {'co', 'gdzie', 'ile', 'jak', 'skąd', 'dokąd', 'który',}.intersection(words):
first.append(dep_phr)
elif func != 'subj':
if (words and {'ja', 'ty', 'on', 'my', 'wy'}.intersection(words)) or type(dep_phrase) in (NP, LexQub):
pron.append(dep_phr)
else:
rest.append(dep_phr)
# all realisations should have been matched by modifications
assert (not realisations)
#print()
#print('--- FIRST:', list(map(str, first)))
#print('--- SUBJ:', subj)
#print('--- REST:', list(map(str, rest)))
#print(typ)
assert (len(first) == 1 or typ not in ('int',))
#print()
deps1 = [d[1] for d in first] + [d[1] for d in pron]
if subj and subj not in first + rest:
deps1.append(subj[1])
deps2 = [d[1] for d in rest]
# TODO: always ter? sg/m1 if no subj?
# TODO separate numbers/genders for subject realisations?
subj_num = 'sg'
if subj and hasattr(subj[0], '_number'):
subj_num = correct_num('', subj[0]._number)
if typ != 'jakby':
feats = ['fin', subj_num, 'ter']
else:
subj_gend = 'm1'
if subj:
subj_gends = set(get_gender(w)[0] for w in subj[0]._words._lemmas)
assert (len(subj_gends) == 1)
subj_gend = subj_gends.pop()
feats = ['praet', subj_num, subj_gend]
phrs = []
for lemma in phrase._words._lemmas:
for dps1 in product(*deps1):
for dps2 in product(*deps2):
verb_form = get_form(lemma, feats)[0]
phrs.append('{}{}{}{}{}{}{}{}{}'.format(to, comp, ' '.join(dps1), ' ' if dps1 else '', sie, neg, verb_form, ' ' if dps2 else '', ' '.join(dps2)))
for phr in phrs:
print(' ===>', phr)
return phrs
if ptype in (XP, AdvP):
if phrase._category._limitations:
return chain.from_iterable(make_phraseologisms(phr, function, negativity, {}) for phr in phrase._category._limitations)
else:
return [XP_SEM_PHRASEO[phrase._category._value]]
if ptype == LexXP:
return make_phraseologisms(phrase._lex, function, negativity, {})
if ptype == LexAdvP:
POS = 'adv'
DEG = correct_deg(phrase._degree)
feats = [POS, DEG]
advps = []
for lemma in phrase._words._lemmas:
for orth, tag in get_forms(lemma, feats):
advps += make_modified_phrases(phrase, orth, AdvP, function, negativity, {})
return advps
if ptype == Compar:
return ['{} …'.format(phrase._category._value)]
if ptype == LexCompar:
comp = phrase._compar._category._value
lex_phrs = []
for lex in phrase._lexes:
# TODO case (determined by function?) will depend on the control
phrs = make_phraseologisms(lex, 'subj', negativity, {})
lex_phrs.append(phrs)
return ['{} {}'.format(comp, ' '.join(phrs)) for phrs in product(*lex_phrs)]
if ptype == PossP:
feats = ['adj', attrs['num'], attrs['case'], attrs['gend'], 'pos']
forms = [get_form(lemma, feats) for lemma in ('mój', 'pański')]
return ['/'.join(o for o, t in forms) + '/Piotra/…']
#if ptype == OR:
if ptype == Fixed:
return [phrase._text]
if ptype == LexQub:
qubs = []
for orth in phrase._words._lemmas:
qubs += make_modified_phrases(phrase, orth, Qub, function, negativity, {})
return qubs
print(ptype)
1/0
return ['TODO']
def make_modified_phrases(phrase, head, head_type, function, negativity, mod_attrs):
texts = []
if phrase._modification is not None and phrase._modification._atr != 'natr':
for mod_list in make_modifications(phrase._modification, function, negativity, mod_attrs):
if phrase._modification._atr == 'ratr1':
for mod_ptype, mod in mod_list:
texts.append(build_phrase(head, mod, head_type, mod_ptype))
elif phrase._modification._atr == 'atr1':
for mod_ptype, mod in mod_list:
texts.append(build_phrase(head, '({})'.format(mod), head_type, mod_ptype))
elif phrase._modification._atr == 'ratr':
#for mod_list2 in powerset_nonempty(mod_list):
# p = head
# for mod_ptype, mod in mod_list2:
# p = build_phrase(p, '{}'.format(mod), head_type, mod_ptype)
# texts.append(p)
p = head
for mod_ptype, mod in mod_list:
p = build_phrase(p, '{}'.format(mod), head_type, mod_ptype)
texts.append(p)
elif phrase._modification._atr == 'atr':
p = head
for mod_ptype, mod in mod_list:
p = build_phrase(p, '({})'.format(mod), head_type, mod_ptype)
texts.append(p)
else:
print(phrase._modification._atr)
1/0
else:
texts.append(head)
return uniq_list(texts)
# TODO is the ‘first’ heuristic for choosing phrase type enough?
def make_coordinations(mods):
ptype = mods[0][0]
ret = [(ptype, ' i/lub '.join(text for _, text in x)) for x in powerset_nonempty(mods)]
return ret
def make_modifications(modification, function, negativity, attrs):
mods = []
for position in modification._dependents:
position_mods = []
for p in position._phrases:
mod = make_phraseologisms(p, function, negativity, attrs=attrs)
# pass the mod phrase’s type for determining text order
position_mods.append([(type(p), m) for m in mod])
if len(position_mods) > 1:
mods.append(chain.from_iterable(make_coordinations(mds) for mds in product(*position_mods)))
else:
mods.append(position_mods[0])
return list(product(*mods))
def make_ul(items):
return '<ul>{}</ul>'.format(''.join(map('<li>{}</li>'.format, items)))