RealizationDescriptions.py
46.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
import datetime
import logging
import os
from collections import Counter, defaultdict
from itertools import chain
from shellvalier.settings import BASE_DIR, DEBUG
from meanings.models import LexicalUnit, Synset
from semantics.models import SemanticRole, RoleAttribute
from entries.phrase_descriptions.utils import get_form
from entries.phrase_descriptions.polish_strings import TO
from entries.phrase_descriptions.descriptions import make_phraseologisms
from importer.Phrase import Case, Preposition, Modification, Words, LexPhrase, Fixed, NP, LexNP, LexNumP, PrepNP, LexPrepNP, LexPrepGerP, AdjP, LexAdjP, LexPrepAdjP, PActP, LexPActP
from importer.RealizationDescriptionUtils import *
def get_prefs_list(argument):
return sorted(
map(str, argument.predefined.all())
) + sorted(
map(str, argument.synsets.all())
) + sorted(
map(str, argument.relations.all())
)
LOCATION_ROLES = {'Location', 'Path'}
def select_predefined(predefs):
if len(predefs) == 1:
return predefs[0]
return 'ALL'
# TODO inne heurystyki?
raise RealisationDescriptionError('couldn’t choose predef lemma: {}'.format('/'.join(predefs)))
def select_predefined_for_xp(predefs, role):
if predefs == ['ISTOTY']:
return 'ISTOTY'
return 'ALL'
# TODO heurystyki?
raise RealisationDescriptionError('couldn’t choose predef lemma for XP: {}'.format('/'.join(predefs)))
def get_predefined_lemma(argument, xp=False):
predefined = argument.predefined.all()
if not predefined:
return None
predefs = sorted(p.key for p in predefined)
role = argument.role.role.role
if role not in LOCATION_ROLES and {'LUDZIE', 'PODMIOTY'}.intersection(predefs):
return ['LUDZIE']
if xp:
return [select_predefined_for_xp(predefs, role)]
else:
return [select_predefined(predefs)]
def get_hyponyms(synset, seen=None, tab=' '):
if seen is None:
seen = set()
hyponyms = set()
for hypo in synset.hyponyms.all():
if hypo not in seen:
seen.add(hypo)
hyponyms.add(hypo)
hyponyms.update(get_hyponyms(hypo, seen, tab=tab + ' '))
return hyponyms
# for benchmarking
BENCH3 = defaultdict(list)
# precalculated for the largest ones
HYPONYM_CACHE = {
# sklep-1
4747 : 46,
# obiekt budowlany-1
53426 : 590,
# konstrukcja-1
7218 : 614,
# cecha człowieka-1
36347 : 676,
# aberracja-1 nieprawidłowość-1 zaburzenie-2 zakłócenie-3
4127 : 700,
# znak-1
7416 : 732,
# coś na ząb-1 jedzenie-2 pokarm-1 pożywienie-3 żywność-1
10738 : 766,
# materiał-1 tworzywo-1
1612 : 879,
# jednostka miary-1 jednostka-4 miano-2 miara-3
1161 : 881,
# związek chemiczny-1 związek-1
19589 : 882,
# zjawisko naturalne-1
5351 : 901,
# dzieło-2 praca-6
7469 : 927,
# część-1
462 : 957,
# cecha czynności-1 cecha działania-1
5953 : 1033,
# część-3
104936 : 1056,
# cecha fizyczna-1
5464 : 1056,
# wypowiedź-1
3998 : 1062,
# proces-1
54253 : 1103,
# ciąg wydarzeń-1 ciąg zdarzeń-1
47401 : 1107,
# grupa-2 zespół ludzi-1 zespół-2
7653 : 1176,
# człowiek charakteryzowany ze względu na kwalifikacje-1
6779 : 1188,
# substancja chemiczna-1
5233 : 1206,
# przyrząd-1
7425 : 1260,
# ilość-1
1078 : 1427,
# grupa ludzi-1 grupa-5 ludzie-1
7702 : 1510,
# kategoria-3 pojęcie-2
8170 : 1522,
# urządzenie-5
7446 : 1524,
# historia-3 wydarzenie-1 wypadek-3 zdarzenie-2
6526 : 1533,
# grupa istot-1
103330 : 1585,
# miejsce-1
4750 : 1632,
# stan-1
3243 : 1761,
# narzędzie-1
7610 : 1800,
# roślina-1
4603 : 1928,
# artefakt-1 twór-5 wytwór-2
2605 : 2029,
# człowiek ze względu na swoje zajęcie-1
6797 : 2184,
# nazwa człowieka uwzględniająca jego cechy-1 nosiciel cechy-1
6778 : 2308,
# płód-3 wytwór umysłu-1
8137 : 2599,
# człowiek ze względu na relacje społeczne-1
6775 : 2642,
# fenomen-1 zjawisko-1
5371 : 2674,
# środek-1
28294 : 2793,
# człowiek, który coś robi-1
241977 : 2828,
# substancja-1
5236 : 2871,
# zwierzę-1
5621 : 2966,
# materia-3
247979 : 2970,
# spowodowanie-1 sprawienie-1
102579 : 4255,
# atrybut-1 cecha-1 przymiot-1 własność-2 właściwość-1
323 : 4579,
# grupa-4 zbiór-1
1282 : 4587,
# uczynienie-1 zrobienie-1
102576 : 4851,
# całość-1 ogół-1
2129 : 5668,
# człowiek-1 istota ludzka-1 jednostka-2 osoba-1
6047 : 6151,
# osoba-4
28688 : 6170,
# wytwór-1
2903 : 7230,
# efekt-1 rezultat-1 skutek-1 wynik-1
5195 : 7915,
# przedmiot-1
2646 : 7552,
# istota żywa-1 stworzenie-5 twór-1
6045 : 8448,
# istota-1
1027 : 8536,
# czynność-1
10765 : 8653,
# rzecz-4
103156 : 9480,
# egzemplarz-1 indywiduum-1 jednostka-3 organizm-1 osobnik-2
6731 : 10609,
# obiekt-2
234224 : 21435,
}
def select_synsets(synsets):
by_num_hyponyms = defaultdict(set)
for synset in synsets:
sid = synset.id
if sid not in HYPONYM_CACHE:
#-------
t1 = datetime.datetime.now()
#-------
hyponyms = get_hyponyms(synset)
HYPONYM_CACHE[sid] = len(hyponyms)
#-------
t2 = datetime.datetime.now()
# deciseconds :)
d = round((t2 - t1).total_seconds() * 10)
if DEBUG:
BENCH3[d].append((HYPONYM_CACHE[sid], sid, synset))
# ----
N = HYPONYM_CACHE[sid]
by_num_hyponyms[N].add(synset)
M = max(by_num_hyponyms.keys())
return list(by_num_hyponyms[M])
FREQ = Counter()
with open(os.path.join(BASE_DIR, 'data/freq/sgjp-freq-23032021.tab')) as f:
for l in f:
lemma, pos, freq = l.strip('\n').split('\t')
if pos not in ('adj', 'subst'):
continue
freq = int(freq)
if freq < 10:
continue
# this is inaccurate, but conflate multiple occurrences
FREQ[lemma] += freq
def rank_units(units, ranker):
buckets = defaultdict(set)
for unit in units:
buckets[ranker(unit)].add(unit)
ranked = dict()
for rank, (n, unts) in enumerate(sorted(buckets.items())):
for unit in unts:
ranked[unit] = rank
return ranked
meaning_no_ranker = lambda unit: int(unit.sense)
# TODO lepiej mniej znaczeń (bardziej specyficzne -> precyzyjniejsze?) czy więcej (częstsze -> bardziej zrozumiałe?)
num_meanings_ranker = lambda unit: LexicalUnit.objects.filter(base=unit.base).count()
# w ten sposób nadajemy też najniższy priorytet wielowyrazowym, jeśli istnieje 1-wyrazowa notowana na liście frek.
freq_ranker = lambda unit: -FREQ.get(unit.base, 0)
words_ranker = lambda unit: len(unit.base.split())
# różnice przejrzane oczami na próbce dla:
# [meaning_no_ranker, freq_ranker, num_meanings_ranker]
# [freq_ranker, meaning_no_ranker, num_meanings_ranker] -> [freq_ranker, num_meanings_ranker, meaning_no_ranker] -> takie same wyniki na próbce, TODO sugestia Eli: druga opcja brzmi intuicyjniej
# [num_meanings_ranker, meaning_no_ranker, freq_ranker]
# [meaning_no_ranker, num_meanings_ranker, freq_ranker]
def select_units(units, rankers=[freq_ranker, num_meanings_ranker, meaning_no_ranker, words_ranker]):
units = [unit for unit in units if (unit.base, unit.sense) not in UNIT_KILL_LIST]
unit2rank = defaultdict(lambda: [0 for i in range(len(rankers))])
for i, ranker in enumerate(rankers):
for unit, rank in rank_units(units, ranker).items():
unit2rank[unit][i] = rank
by_rank = defaultdict(set)
for unit, rank in unit2rank.items():
by_rank[tuple(rank)].add(unit)
#for rank, units in sorted(by_rank.items()):
# print(' ***', rank, units)
return sorted(by_rank.items())[0][1]
LEMMA_CACHE = dict()
#returns [lemmata], is_predef
def get_synsets_lemma(argument, pos):
synsets = argument.synsets.filter(lexical_units__pos=pos).distinct()
synsets = [(Synset.objects.get(id=SYNSET_MAP[s.id]) if s.id in SYNSET_MAP else s) for s in synsets if s.id not in SYNSET_KILL_LIST]
if not synsets:
return None
key = tuple(sorted(map(str, synsets)))
if key in LEMMA_CACHE:
return LEMMA_CACHE[key]
synsets = synsets if len(synsets) == 1 else select_synsets(synsets)
for synset in synsets:
if synset.id in SYNSET2LEMMA:
return [SYNSET2LEMMA[synset.id]], True
units = list(chain.from_iterable(synset.lexical_units.all() for synset in synsets))
units = [units[0]] if len(units) == 1 else select_units(units)
ret = (sorted(unit.base for unit in units), False)
if ret[0] == ['cecha czynności', 'cecha działania']:
return (['cecha'], False)
LEMMA_CACHE[key] = ret
return ret
# for benchmarking
BENCH2 = defaultdict(list)
def get_argument_lemma(argument, xp=False):
t1 = datetime.datetime.now()
ret = get_argument_lemma2(argument, xp=xp)
t2 = datetime.datetime.now()
# deciseconds :)
d = round((t2 - t1).total_seconds() * 10)
if DEBUG:
BENCH2[d].append((argument.predefined.all(), argument.synsets.all(), ret))
return ret
def get_argument_lemma2(argument, xp=False):
lemma = get_predefined_lemma(argument, xp=xp)
if lemma:
return lemma, True
lemma = get_synsets_lemma(argument, 'noun')
if lemma:
# get_synsets_lemma returns [lemmata], is_predef
return lemma
lemma = get_synsets_lemma(argument, 'adj')
if lemma:
return lemma
# TODO!!! np. akuratność
return ['ALL'], True
lemma = get_relations_lemma(argument)
assert(lemma)
return lemma, False
# nie powinny występować razem:
# * LUDZIE + PODMIOTY
# * MIEJSCE + OTOCZENIE + POŁOŻENIE
def process_lemma(lemma, phrase_type):
mod = NATR
if lemma in PREDEF2LEMMA:
lemma, gend, num, pos, mod = PREDEF2LEMMA[lemma].get(phrase_type, PREDEF2LEMMA[lemma]['_'])
return lemma, gend, num, pos, mod
if ' ' in lemma:
# eg. ‹środki pieniężne›
words = lemma.split(' ')
tags = []
for i, word in enumerate(words):
tags.append(sorted(get_simplified_tags(word)))
if len(words) == 2 and 'subst:nom' in tags[0] and 'subst:gen' in tags[1]:
# np. ‹dziedzina wiedzy›
lemma = words[0]
mod = make_npgen_mod(words[1])
elif len(words) == 2 and 'subst:nom' in tags[0] and 'adj' in tags[1]:
# np. ‹środki pieniężne›
# ‹napój wyskokowy› -> ‹napój› również impt,
# ‹stan psychiczny› -> ‹psychiczny› również subst,
lemma = words[0]
mod = make_adjp_mod(words[1])
mod._order = 'post'
elif len(words) == 2 and 'subst:nom' in tags[1] and 'adj' in tags[0]:
# np. ‹zły uczynek›
lemma = words[1]
mod = make_adjp_mod(words[0])
elif len(words) == 2 and 'subst:nom' in tags[0] and 'pact' in tags[1]:
# np. ‹pojazd latający›
lemma = words[0]
mod = make_pactp_mod(words[1])
mod._order = 'post'
elif len(words) == 2 and 'subst:nom' in tags[0] and 'ger:gen' in tags[1]:
# np. ‹język programowania›
lemma = words[0]
# nie mamy lexgerp, więc używamy fixed
mod = make_fixed_mod(words[1])
mod._order = 'post'
elif len(words) == 3 and 'subst:nom' in tags[0] and 'prep:gen' in tags[1] and 'subst:gen' in tags[2]:
# np. ‹maszyna do szycia›
lemma = words[0]
mod = make_prepnp_mod(words[2], words[1], 'gen')
else:
raise RealisationDescriptionError('couldn’t parse lemma: {} {}'.format(lemma, tags))
if lemma == 'lata':
return 'rok', 'm3', 'pl', 'subst', mod
if lemma in GERUNDS:
return lemma, 'n', 'sg', 'subst', mod
subst_sg_interps = get_interps(lemma, lemma=lemma, tag_constraints=['subst', 'sg', 'nom'])
if subst_sg_interps:
return lemma, get_gender(subst_sg_interps), 'sg', 'subst', mod
subst_pl_interps = get_interps(lemma, lemma=lemma, tag_constraints=['subst', 'pl', 'nom'])
if subst_pl_interps:
# lemat „mnogi” notowany w Morfeuszu jako plurale tantum, np. ‹środki›
return lemma, get_gender(subst_pl_interps), 'pl', 'subst', mod
pt_interps = get_interps(lemma, tag_constraints=['subst', 'pl', 'nom'])
if pt_interps:
# lemat „mnogi” nie notowany w Morfeuszu, jako plurale tantum, np. ‹pieniądze›
lemmata = set(lemma for lemma, tag in pt_interps)
if len(lemmata) == 1:
return lemmata.pop(), get_gender(pt_interps), 'pl', 'subst', mod
if get_interps(lemma, lemma=lemma, tag_constraints=['adj', 'sg', 'nom', 'm1']):
# przymiotnik
return lemma, None, 'sg', 'adj', mod
ger_interps = get_interps(lemma, tag_constraints=['ger', 'sg', 'nom'])
if ger_interps:
# gerundium
lemmata = set(lemma for lemma, tag in ger_interps)
if len(lemmata) == 1:
return lemmata.pop(), 'n', 'sg', 'ger', mod
raise RealisationDescriptionError('couldn’t process lemma: {} {}'.format(lemma, get_interps(lemma)))
'''
# TODO rodzaj w zależności od hiperonimów?
if lemma == 'członek':
return lemma, 'sg', 'subst', mod
try:
get_form(lemma, ['subst', 'sg', 'nom'])
return lemma, 'sg', 'subst', mod
except:
pass
try:
# lemat „mnogi” notowany w Morfeuszu jako plurale tantum, np. ‹środki›
get_form(lemma, ['subst', 'pl', 'nom'])
return lemma, 'pl', 'subst', mod
except:
pass
try:
# przymiotnik
get_form(lemma, ['adj', 'sg', 'nom', 'm1'])
return lemma, 'sg', 'adj', mod
except:
# lemat „mnogi” nie notowany w Morfeuszu, jako plurale tantum, np. ‹pieniądze›
subst_pl_nom_lemmata = set(interp[2][1].split(':')[0] for interp in morfeusz.analyse(lemma) if interp[2][2].startswith('subst:pl:nom'))
if len(subst_pl_nom_lemmata) == 1:
return subst_pl_nom_lemmata.pop(), 'pl', 'subst', mod
print('============', lemma)
print('============', subst_pl_nom_lemmata)
raise
'''
PREP_2GRAMS = Counter()
with open(os.path.join(BASE_DIR, 'data/freq/2grams_prep_nkjp')) as f:
for l in f:
digram, freq = l.strip('\n').split('\t')
freq = int(freq)
PREP_2GRAMS[digram] = freq
XP2PREPNP = {
'abl' : (('z', 'gen'),),
# do domu / na basen
'adl' : (('do', 'gen'), ('na', 'acc'),),
# w mieście, na wsi, u Janka
'locat' : (('w', 'loc'), ('na', 'loc',), ('u', 'gen'),),
'perl' : (('przez', 'acc'),),
'temp' : (('podczas', 'gen'),),
'dur' : (('przez', 'acc'),),
}
def xp2prepnp(advcat, lemma, num):
if advcat in XP2PREPNP:
preps = XP2PREPNP[advcat]
if len(preps) == 1:
return preps[0]
else:
ranked = []
for prep, case in preps:
form = get_form(lemma, ['subst', num, case])[0]
digram = '{} {}'.format(prep, form)
ranked.append((-PREP_2GRAMS[digram], (prep, case)))
return sorted(ranked)[0][1]
else:
return None, None
XP2COMPREPNP = {
'caus' : 'z powodu',
# TODO: ożywione: dla ..., nieożywione: w celu ...
'dest' : 'w celu',
'instr' : 'za pomocą',
}
def generate_phrases(function, negativity, phrase, lemma, is_predef, head_gender, controller=None, controller_grammar=None):
phrase_type = phrase._name
dummy_id = None
# jak dotąd tylko jeden przypadek zagnieżdżonej frazy lex:
# zależeć: _: : imperf: subj{np(str);ncp(str,int)} + {prepnp(od,gen);prepncp(od,gen,int)} + {xp(mod[comprepnp(na sposób);advp(mod);lex(prepnp(w,acc),sg,'sposób',atr({adjp(agr)}))])}
if isinstance(phrase, LexPhrase):
return make_phraseologisms(phrase, function, negativity, controller=controller, controller_grammar=controller_grammar), None, None
if is_predef and phrase_type == 'xp' and not phrase._category._limitations:
advcat = phrase._category._value
# np. „komuś podobało się gdzieś”
return [PREDEFXP[advcat][lemma]], 'n', 'sg'
distrp = False
processed_lemma, gend, num, pos, mod = process_lemma(lemma, phrase_type)
if phrase_type in ('adjp', 'prepadjp') and pos != 'adj':
# np. aborcja - Manner - lek - adjp(agr)/xp(instr) -> ‹jakaś aborcja›
processed_lemma, gend, pos, mod = 'jakiś', None, 'adj', NATR
if phrase_type == 'nonch':
phrase_type = 'np'
phrase = NP(Case('nom'), dummy_id)
# bo nonch może być realizowana wyłącznie przez ‹coś› itp.
processed_lemma, gend, pos, mod = 'coś', 'n', 'subst', NATR
# i przetwarzanie dalej jako np
if phrase_type == 'distrp':
# ‘po jabłku’ byłoby OK, ale np. ‘po pieniądzach’ brMzmi idiotycznie, więc
# robimy np(gen) i potem dokleimy ‘po ileś’ (czegoś)
distrp = True
phrase_type = 'np'
phrase = NP(Case('gen'), dummy_id)
# i przetwarzanie dalej jako np
#print('PHRASE TYPE:', phrase_type, 'LEMMA:', processed_lemma, 'MODIFICATION:', mod, 'FUNCTION:', function)
words = Words('concat', 'xor', [processed_lemma])
# TODO
if phrase_type in ('cp', 'ncp', 'prepncp'):
cptype = phrase._type._value
assert(cptype in ('int', 'rel') or not phrase._type._realisations)
phr = None
if cptype == 'int':
if phrase._type._realisations:
phr = '/'.join(phrase._type._realisations) + ' …'
else:
phr = 'kto/co/czy/… robi/się dzieje/…'
elif cptype == 'rel':
if phrase._type._realisations:
phr = '/'.join(phrase._type._realisations) + ' …'
else:
phr = 'kto co robi/co się dzieje/…'
elif cptype == 'żeby2':
comp = 'że' if negativity != 'neg' else 'żeby'
phr = 'że coś się stało'
elif cptype in ('żeby', 'jakoby', 'jakby',):
phr = '{} coś się stało'.format(cptype)
elif cptype in ('że', 'bo', 'gdy', 'jak', 'jeśli', 'kiedy',):
phr = '{} coś się dzieje'.format(cptype)
elif cptype in ('aż', 'zanim',):
phr = '{} coś się stanie'.format(cptype)
else:
print(phrase)
1 / 0
if phrase_type == 'cp':
return [phr], 'n', 'sg'
if phrase_type == 'ncp':
return ['{}, {}'.format(TO[phrase._case._value], phr)], 'n', 'sg'
if phrase_type == 'prepncp':
return ['{} {}, {}'.format(phrase._prep._value, TO[phrase._prep._case._value], phr)], 'n', 'sg'
if phrase_type == 'or':
# TODO? absurd „coś się dzieje”? absurd: coś się dzieje?
return ['„coś się dzieje”'], 'n', 'sg'
if phrase_type in ('refl', 'recip'):
# TODO?
return ['się'], None, None
if phrase_type == 'advp':
# TODO!
if pos == 'adj':
return [adj2adv(processed_lemma)], None, None
# dla nie-przymiotników i tak nic nie wymyślimy
return ['jakoś'], None, None
if phrase_type == 'infp':
# TODO?
return ['coś robić' if negativity != 'neg' else 'czegoś robić'], 'n', 'sg'
if phrase_type == 'E':
# TODO?
return ['∅'], 'n', 'sg'
if pos == 'adj' and phrase_type not in ('possp', 'adjp', 'prepadjp',):
# TODO? np. aktualizacja - Manner - automatyczny - xp(instr)
# TODO źle się generuje dla chlastać, ale tam Instrument ma pref. przymiotnikową ‹ostry›, powinno być raczej ‹ostrze›
phrase_type = 'adjp'
phrase = AdjP(Case('agr'), dummy_id)
# i przetwarzanie dalej jako adjp
if phrase_type == 'possp' and processed_lemma == 'czyjś':
return [get_form(processed_lemma, ['sg', 'nom', head_gender, 'pos'])[0]], None, None
if phrase_type == 'comprepnp':
# TODO wielowyrazowe! ‹abonament w wysokości środków pieniężnych›
# TODO może ładniej by było „w czyjejś sprawie”, „na czyjąś rzecz”, ale
# to trochę trudniejsze
return make_comprepnp(phrase._prep._value, words, num, mod), None, None
#return ['{} {}'.format(phrase._prep._value, get_form(lemma, [num, 'gen'])[0])]
lex_phrases = []
phrases = []
if phrase_type == 'np':
# gerundium; TODO? lista wyjątków jeśli więcej
if (processed_lemma, function, phrase._case._value) == ('przyrządzanie', 'subj', 'str'):
return ['przyrządzanie'], 'n', 'sg'
if (processed_lemma, function, phrase._case._value) == ('szarpnięcie', None, 'inst'):
return ['szarpnięciem'], 'n', 'sg'
lex_phrases.append(LexNP(phrase, num, words, mod, dummy_id))
if phrase_type == 'possp':
np = NP(Case('gen'), dummy_id)
lex_phrases.append(LexNP(np, num, words, mod, dummy_id))
if phrase_type == 'prepnp':
# gerundium; TODO? lista wyjątków jeśli więcej
if (processed_lemma, phrase._prep._case._value, phrase._prep._value) == ('przyrządzanie', 'gen', 'do'):
return ['do przyrządzania'], None, None
if phrase._prep._value in ('między', 'pomiędzy', 'wśród', 'pośród') and processed_lemma not in ('ktoś', 'coś'):
num = 'pl'
if pos == 'subst':
lex_phrases.append(LexPrepNP(phrase, num, words, mod, dummy_id))
if pos == 'ger':
lex_phrases.append(LexPrepGerP(phrase, num, 'aff', words, '', mod, dummy_id))
if phrase_type == 'adjp':
# TODO! gender & control
lex_phrases.append(LexAdjP(phrase, 'sg', head_gender if head_gender else 'm1', 'pos', words, mod, dummy_id))
if phrase_type == 'prepadjp':
lex_phrases.append(LexPrepAdjP(phrase, 'sg', 'm1', 'pos', words, mod, dummy_id))
if phrase_type == 'compar':
lex_phrases.append(make_compar(phrase, words, num, mod, controller))
if phrase_type == 'xp':
if phrase._category._limitations:
for realisation in phrase._category._limitations:
phrs, g, n = generate_phrases(function, negativity, realisation, lemma, is_predef, head_gender)
for phr in phrs:
if phr not in phrases:
phrases.append(phr)
return phrases, 'n', 'sg'
else:
advcat = phrase._category._value
if advcat == 'mod':
phrase2 = NP(Case('inst'), dummy_id)
lex_phrases.append(LexNP(phrase2, num, words, mod, dummy_id))
prep, case = xp2prepnp(advcat, processed_lemma, num)
if prep:
phrase2 = PrepNP(Preposition(prep, Case(case)), dummy_id)
lex_phrases.append(LexPrepNP(phrase2, num, words, mod, dummy_id))
if advcat in XP2COMPREPNP:
if pos == 'subst':
comprep = XP2COMPREPNP[advcat]
return make_comprepnp(comprep, words, num, mod), None, None
if pos == 'ger':
assert(mod == NATR)
return ['{} {}'.format(comprep, get_form(processed_lemma, ['ger', num, 'gen', head_gender])[0])], 'n', 'sg'
for lex_phrase in lex_phrases:
for phr in make_phraseologisms(lex_phrase, function, negativity, controller=controller, controller_grammar=controller_grammar):
if phr not in phrases:
# TODO? porządna lista wyjątków, jeśli będzie więcej
if phr == 'na członek rodziny':
phr = 'na członka rodziny'
if distrp:
# po iluś facetów/po ileś dziewczyn/kotów...
phr = 'po {} {}'.format('iluś' if gend == 'm1' else 'ileś', phr)
phrases.append(phr)
assert(phrases)
return phrases, gend if phrase_type == 'np' else None, num if phrase_type == 'np' else None
def get_lex_gender_number(phrase):
if isinstance(phrase, LexNP):
number = phrase._number
# take the first lemma since first expansion is taken for whole meaning description
lemma = phrase._words._lemmas[0]
if lemma == 'siebie':
gender = 'm1'
elif lemma == 'łupień':
gender = 'm2'
else:
interps = get_interps(lemma, lemma=lemma, tag_constraints=['subst', 'nom'])
gender = get_gender(interps)
return gender, number if number != '_' else 'sg'
'''
genders = list()
for lemma in phrase._words._lemmas:
if lemma == 'siebie':
genders.append('m1')
elif lemma == 'łupień':
genders.append('m2')
else:
interps = get_interps(lemma, lemma=lemma, tag_constraints=['subst', 'nom'])
genders.append(get_gender(interps))
return genders[0], number if number != '_' else 'sg'
'''
if isinstance(phrase, LexNumP):
# take the first lemma since first expansion is taken for whole meaning description
lemma = phrase._words._lemmas[0]
interps = get_interps(lemma, lemma=lemma, tag_constraints=['subst', 'nom'])
gender = get_gender(interps)
lemma = phrase._nums._lemmas[0]
recs = set()
if lemma == '2':
recs.add('congr')
else:
for interp in get_interps(lemma, lemma=lemma, tag_constraints=['num', 'nom']):
recs.add(interp[1].split(':')[-1])
assert(len(recs) == 1)
rec = recs.pop()
if rec == 'rec':
# wiele/pięciu/trzydzieści osiem kotów/facetów/kobiet przyszło
return 'n', 'sg'
else:
# trzy kobiety/koty przyszły/trzej faceci przyszli
return gender, 'pl'
return None, None
PHRASE_CACHE = dict()
PHRASE_SEP = ' / '
# for benchmarking
BENCH = defaultdict(list)
def get_phrase_description(subentry, argument, position, phrase, controller_grammar=None):
t1 = datetime.datetime.now()
ret = get_phrase_description2(subentry, argument, position, phrase, controller_grammar=controller_grammar)
t2 = datetime.datetime.now()
# deciseconds :)
d = round((t2 - t1).total_seconds() * 10)
if DEBUG:
BENCH[d].append((subentry.entry.name, argument.role.role.role, ret[0]))
return ret
# subentry, argument: DB model objects
# schema, phrase: importer objects
def get_phrase_description2(subentry, argument, position, phrase, controller_grammar=None):
#print()
#print(argument)
#print(phrase)
gender, number = None, None
function = position._function._value if position._function else None
control = None
if position._control:
#assert(len(position._control) == 1)
#control = position._control[0]._function
ee = [c._function for c in position._control if c._function.endswith('controllee')]
er = [c._function for c in position._control if c._function.endswith('controller')]
assert(len(ee) <= 1)
assert(len(er) <= 1)
# e.g. ‹uznać› — controllee and pred_controller on the same position, take controllee
if ee:
control = ee[0]
else:
control = er[0]
negativity = subentry.negativity.name if subentry.negativity else '_'
head_lemma, head_gender = subentry.entry.name, None
controller, controller_features, controller_function = None, None, None
if control and control.endswith('controllee'):
controller = position._schema.getController(control)
try:
controller_features = controller_grammar[controller]
except KeyError:
controller_features = ('m1', 'sg')
logging.warning('{} couldn’t determine grammar features for {}: {} {}; assuming m1 sg'.format(subentry.entry.name, ' '.join(map(str, argument.frame.lexical_units.all())), control, phrase))
controller_function = controller._function._value if controller._function else None
if subentry.entry.pos.tag == 'noun':
interps = get_interps(head_lemma, lemma=head_lemma, tag_constraints=['subst', 'nom'])
head_gender = get_gender(interps)
# TODO
# TODO gender, number
# TODO (‹jakieś›) oko * (‹jakieś›) oczy *błyszczy* z powodu substancji
if isinstance(phrase, LexPhrase) or isinstance(phrase, Fixed):
phrs = []
# TODO to powinny być tylko brakujące [...] w lex(cp)
try:
for phr in make_phraseologisms(phrase, function, negativity, controller=controller, controller_grammar=controller_features):
if phr not in phrs:
phrs.append(phr)
except:
phrs.append('!!!???')
gender, number = get_lex_gender_number(phrase)
return PHRASE_SEP.join(phrs), gender, number
lemmata, is_predef = get_argument_lemma(argument, xp=(phrase._name == 'xp' and not phrase._category._limitations))
if len(lemmata) != 1:
raise RealisationDescriptionError('couldn’t choose single lemma: {}'.format('/'.join(lemmata)))
phrases = []
# TODO since there’s one lemma, drop the loop
for lemma in lemmata:
key = (function, negativity, str(phrase), lemma, str(head_gender), control, controller_features, controller_function)
if key in PHRASE_CACHE:
lemma_phrases, gender, number = PHRASE_CACHE[key]
else:
lemma_phrases, gender, number = generate_phrases(function, negativity, phrase, lemma, is_predef, head_gender, controller=controller, controller_grammar=controller_features)
PHRASE_CACHE[key] = (lemma_phrases, gender, number)
phrases += lemma_phrases
return PHRASE_SEP.join(phrases), gender, number
def get_only_value(d):
return list(d.values())[0]
PRIORITY, ATTR, SUBPRIORITY = 'priority', 'attr', 'subpriority'
LOW_PRIORITY = 200
CP_PRIO = {
'żeby' : 0, # że
'kiedy' : 0, # gdy, jak
'żeby2' : 1, # jak
'że' : 2, # jak
# prefer phrases introduced by complementisers where present
'int' : LOW_PRIORITY + 1,
}
PHRASE_PRIORITY = {
'xp' : {
PRIORITY : 10,
ATTR : lambda phrase: phrase._category._value,
SUBPRIORITY : {
'adl' : 0, # nawigacja xp(adl)/xp(locat)
'locat' : 1, # powycierać xp(abl)/xp(locat)
'caus' : 2, # ucierpieć xp(caus)/xp(temp)
},
},
'np' : {
PRIORITY : 20,
ATTR : lambda phrase: phrase._case._value,
SUBPRIORITY : {
'str' : 0,
},
},
'prepnp' : {
PRIORITY : 22,
ATTR : lambda phrase: (phrase._prep._value, phrase._prep._case._value),
SUBPRIORITY : {
('do', 'gen') : 0, # adekwatny do/dla; kolejka do/za
('za', 'inst') : 1, # agitować za/przeciw
('o', 'acc') : 1, # apel o/przeciw
('w', 'acc') : 1, # całować w/po
('w', 'loc') : 1, # defilada w/na pojeździe
('między', 'inst') : 2, # debata między/z/wśród
('o', 'loc') : 2, # debata o/wokół/nad
('wobec', 'gen') : 2, # dług wobec/względem, konsekwentny wobec/dla
('dla', 'gen') : 3, # certyfikat dla/za
('z', 'gen') : 2, # dochód z/za/od
('o', 'acc') : 3, # kampania o/za
('pod', 'inst') : 4, # kruszyć się pod/od
('o', 'loc') : 4, # książka o czymś/z czegoś
('po', 'loc') : 5, # odlatywać od/po
('od', 'gen') : 6, # podatek od/za
('przeciw', 'dat') : 7, # przestępstwo z/przeciw
('na', 'loc') : 7, # skoncentrować się na/nad
('za', 'acc') : 7, # zabulić na/za
('z', 'acc') : LOW_PRIORITY + 1, # mandat – błąd w danych, jest tam też za:acc
},
},
'comprepnp' : {
PRIORITY : 24,
ATTR : lambda phrase: phrase._prep._value,
SUBPRIORITY : {
'w sprawie' : 0, # w kwestii
'w zakresie' : 0, # dyletant w zakresie/w kwestii
'w kwestii' : 1, # dyskrecja co do/w kwestii
'z dziedziny' : 1, # referat w dziedzinie/z dziedziny
},
},
'cp' : {
PRIORITY : 30,
ATTR : lambda phrase: phrase._type._value,
SUBPRIORITY : CP_PRIO,
},
'ncp' : {
PRIORITY : 32,
ATTR : lambda phrase: phrase._type._value,
SUBPRIORITY : CP_PRIO,
},
'prepncp' : {
PRIORITY : 34,
ATTR : lambda phrase: phrase._type._value,
SUBPRIORITY : CP_PRIO,
},
}
def get_phrase_priority(phrase):
lex = False
if isinstance(phrase, LexPhrase):
lex = True
phrase = phrase._lex_phrase()
phrase_type = phrase._name
if phrase_type == 'xp' and phrase._category._limitations:
# TODO? heurystyka: bierzemy pierwszą
phrase, phrase_type = phrase._category._limitations[0], phrase._category._limitations[0]._name
if phrase_type not in PHRASE_PRIORITY:
return (LOW_PRIORITY, LOW_PRIORITY)
attr = PHRASE_PRIORITY[phrase_type][ATTR](phrase)
# lower the priority by 1 for lexes, eg. dostępność prepnp(dla, gen)/lex(prepnp(‹dla kieszeni›))
return (PHRASE_PRIORITY[phrase_type][PRIORITY] + (1 if lex else 0), PHRASE_PRIORITY[phrase_type][SUBPRIORITY].get(attr, LOW_PRIORITY))
# position: importer object
# phrase_descriptions: dict
# key: phrase importer object
# value: (description, gender, number)
# result: phrase description to use in the realisation description
def select_phrase_description(position, phrase_descriptions):
#print(type(position))
#print(phrase_descriptions)
if len(phrase_descriptions) == 1:
desc = get_only_value(phrase_descriptions)
assert(desc[0] != '???')
return desc
by_priority = defaultdict(set)
for p, d in phrase_descriptions.items():
by_priority[get_phrase_priority(p)].add((p, d))
min_priority_phrases = by_priority[min(by_priority.keys())]
if len(min_priority_phrases) == 1:
p, desc = min_priority_phrases.pop()
assert (desc[0] != '???')
return desc
else:
# all are lex phrases
assert(all(isinstance(p, LexPhrase) for p, d in min_priority_phrases))
# all have the same grammatical type
assert(len(set(str(p._lex_phrase()) for p, d in min_priority_phrases)) == 1)
# heuristic: return first lexicographically
return sorted(min_priority_phrases, key=lambda x: x[1][0])[0][1]
#raise RealisationDescriptionError('couldn’t select phrase description: {}'.format(' * '.join(desc[0] for desc in phrase_descriptions.values())))
FUNCTION_RANK = {
'subj' : 0,
'head' : 0,
'obj' : 2,
None : 4,
}
def is_np(phrase, case):
if phrase._name != 'np':
return False
if isinstance(phrase, LexPhrase):
return phrase._np._case._value == case
else:
return phrase._case._value == case
# TODO: possp na początku tylko, jeśli jest przymiotnikowe
def get_argument_realisation_priority(ar, entry_pos):
position = ar._position
function = position._function._value if position._function else None
# first rank by subj or possp, obj, rest
rank1 = FUNCTION_RANK[function]
phrase_types = set(phrase._name for phrase in position._phrases)
if (phrase_types == {'adjp'} and entry_pos == 'noun') or phrase_types == {'possp'}:
# jakieś COŚ, ale UCZYNIĆ kogoś jakimś
rank1 = 0
# np(dat) after verb ‹ktoś daje komuś coś›
if [p for p in ar._position._phrases if is_np(p, 'dat')]:
rank1 = 1
# np(str) without function (TODO? error in data, e.g. chwytać ustami *powietrze* – should be obj?)
if function is None and [p for p in ar._position._phrases if is_np(p, 'str')]:
rank1 = 3
# clauses at the end
if {'cp', 'ncp', 'prepncp'}.issuperset(phrase_types):
rank1 = 5
# then rank by phrase type: refl/recip, then nominal, then rest
rank2 = 2
if {'refl', 'recip'}.intersection(phrase_types):
rank2 = 0
elif 'np' in phrase_types:
rank2 = 1
# finally rank by semantic argument priority
sem_role = ar._argument._semantic_role
role_prio = SemanticRole.objects.get(role=sem_role._value).priority
attribute_prio = RoleAttribute.objects.get(attribute=sem_role._attribute).priority if sem_role._attribute else 0
rank3 = (role_prio, attribute_prio)
return [rank1, rank2, rank3]
# jeśli nie ma nic na początku, a jest np(dat), to przesuwamy na początek
def rerank(ars):
#print(ars)
before, after, np_dat = [], [], []
for rank, fallback, ar in ars:
if rank[0] == 0:
before.append((rank, fallback, ar))
elif [p for p in ar._position._phrases if is_np(p, 'dat')]:
np_dat.append((rank, fallback, ar))
else:
after.append((rank, fallback, ar))
if before:
return ars
else:
#assert(len(np_dat) <= 1) #TODO? hasło: daleki
return [([0] + rank[1:], fallback, ar) for rank, fallback, ar in np_dat] + after
# for multi-position Lemma arguments, e.g. dostać się z deszczu pod rynnę
FALLBACK = {
'z deszczu' : 1,
'pod rynnę' : 2,
'od ściany' : 1,
'do ściany' : 2,
'żywcem' : 1,
'ze skóry' : 2,
'pięknym' : 1,
'za nadobne' : 2,
'od Annasza' : 1,
'do Kajfasza' : 2,
'z (brudnymi) buciorami / z (swoimi) buciorami / z (brudnymi swoimi) buciorami / z (brudnymi) butami / z (swoimi) butami / z (brudnymi swoimi) butami' : 1,
'do łóżka / do łóżek' : 2,
'samego' : 1,
'w (‹jakieś›) ręce' : 2,
'z (‹jakiejś›) radości / z (‹jakiegoś›) szczęścia' : 1,
'pod sufit' : 2,
'z jednej skrajności' : 1,
'w drugą' : 2,
'ze skrajności' : 1,
'w skrajność' : 2,
'z motyką' : 1,
'na słońce' : 2,
'z nogi' : 1,
'na nogę' : 2,
'z pustego' : 1,
'w próżne' : 2,
'z (‹jakiejś›) klasy' : 1,
'do (‹jakiejś›) klasy' : 2,
'z (‹jakiegoś›) kwiatka' : 1,
'na (‹jakiś›) kwiatek' : 2,
'w dno' : 1,
'od spodu' : 2,
'po rozum' : 1,
'do głowy' : 2,
'z pazurami / z pięściami' : 1,
'do oczu' : 2,
'na ziemię' : 1,
'z obłoków' : 2,
'prosto' : 1,
'w (‹jakieś›) serce / w (‹jakieś›) serca' : 2,
'z rąk' : 1,
'do rąk' : 2,
'z ręki' : 1,
'do ręki' : 2,
'o pomstę' : 1,
'do nieba' : 2,
'ze zbiornika' : 1,
'do zbiornika' : 2,
'samo' : 1,
'do (‹jakiejś›) ręki / do (‹jakichś›) rąk' : 2,
'sama' : 1,
'w (moje/pańskie/Anny/…) (‹jakieś›) ręce' : 2,
'sam' : 1,
'przed (moje/pańskie/Anny/…) (‹jakieś›) oczy' : 2,
'sama' : 1,
'do (mojej/pańskiej/Anny/…) (‹jakiejś›) ręki / do (moich/pańskich/Anny/…) (‹jakichś›) rąk' : 2,
}
def fallback(description):
return FALLBACK.get(description, 0)
WINIEN = ('powinien', 'winien',)
# realisation: importer object
# subentry: DB model object
# TODO wszystkie lex-y chyba powinny wejść do tej reprezentacji,
# np. ktoś babrze ‹sobie› ‹rączki›: ‹sobie› nie jest powiązane z argumentem...
def get_realisation_description(realisation, subentry, aspect):
entry = subentry.entry
ars = [(get_argument_realisation_priority(ar, entry.pos.tag), fallback(ar._description), ar) for ar in realisation._argument_realizations]
#print([(p1, p2, ar._description) for p1, p2, ar in ars])
try:
ars = sorted(ars)
except:
raise RealisationDescriptionError('couldn’t order argument realisations: {}'.format(' * '.join('{}{} {}'.format(ar._argument._semantic_role._value, ar._argument._semantic_role._attribute, ar._description) for ar in realisation._argument_realizations)))
if entry.pos.tag == 'verb':
# dla innych nie przesuwamy np(dat): bliski *komuś*
ars = rerank(ars)
before = [('<b>{}</b>' if ar._argument._semantic_role._value == 'Lemma' else '{}').format(ar._description.split(PHRASE_SEP)[0]) for rank, fallback, ar in ars if rank[0] == 0]
after = [('<b>{}</b>' if ar._argument._semantic_role._value == 'Lemma' else '{}').format(ar._description.split(PHRASE_SEP)[0]) for rank, fallback, ar in ars if rank[0] > 0]
subj_ars = [ar for ar in realisation._argument_realizations if ar._position._function and ar._position._function._value == 'subj']
if len(subj_ars) > 1:
raise RealisationDescriptionError('> 1 subject argument realisations: {}'.format(' * '.join('{}{} {}'.format(ar._argument._semantic_role._value, ar._argument._semantic_role._attribute, ar._description) for ar in subj_ars)))
subj_ar = subj_ars[0] if subj_ars else None
head_ars = [ar for ar in realisation._argument_realizations if ar._position._function and ar._position._function._value == 'head']
if len(head_ars) > 1:
raise RealisationDescriptionError('> 1 head argument realisations: {}'.format(' * '.join('{}{} {}'.format(ar._argument._semantic_role._value, ar._argument._semantic_role._attribute, ar._description) for ar in head_ars)))
head_ar = head_ars[0] if head_ars else None
entry_form = entry.name
if entry.name == 'naleźć':
#TODO błąd w słowniku
aspect = 'perf'
if entry.pos.tag == 'adj' and head_ar:
entry_form = get_form(entry.name, ['adj', head_ar._number, 'nom', head_ar._gender, 'pos'])[0]
elif entry.name == 'bootować':
# nienotowane w Morfeuszu
entry_form = 'bootuje'
elif entry.name == 'wtyczkować':
# nienotowane w Morfeuszu
entry_form = 'wtyczkuje'
elif entry.pos.tag == 'verb':
assert(aspect)
entry_base = entry.name
if entry_base == 'doprząc':
entry_base = 'doprzęgnąć'
if aspect == '_':
# eg. aresztować
aspect = 'imperf'
try:
subj_num = subj_ar._number if subj_ar else 'sg'
if subj_ar and (aspect == 'perf' or entry_base in WINIEN):
# potrzebne tylko dla dokonanych (zrobił/a/o) i winien/na
if subj_ar._gender:
subj_gend = subj_ar._gender
else:
raise RealisationDescriptionError('couldn’t determine subject’s gender: {} {} {}'.format(subj_ar, subj_ar._position._phrases, subj_ar._argument))
else:
# no subject: ‹jestem kotem — olśniło kogoś›
subj_gend = 'n'
if entry_base in WINIEN:
entry_form = get_form(entry_base, ['winien', subj_num, subj_gend, 'imperf'])[0]
elif aspect == 'imperf':
# niedokonane: fin (cz. teraźnieszy)
# TODO? lista wyjątków, jeśli będzie więcej
if entry_base == 'sparować' and subj_num == 'sg':
# bokser sparuje — imperf nienotowane w Morfeuszu
entry_form = 'sparuje'
else:
entry_form = get_form(entry_base, ['fin', subj_num, 'ter', 'imperf'])[0]
else:
# dokonane: praet (cz. przeszły)
# TODO? lista wyjątków, jeśli będzie więcej
if entry_base == 'nasuwać' and (subj_num, subj_gend) == ('sg', 'm1'):
# „Nasuwał się mebli przy odnawianiu mieszkania.” — perf nienotowane w Morfeuszu
entry_form = 'nasuwał'
elif entry_base == 'wybzykać' and (subj_num, subj_gend) == ('sg', 'm1'):
# nienotowane w Morfeuszu
entry_form = 'wybzykał'
elif entry_base == 'wytuszować' and (subj_num, subj_gend) == ('sg', 'm1'):
# nienotowane w Morfeuszu
entry_form = 'wytuszował'
elif entry_base == 'zależeć' and (subj_num, subj_gend) == ('sg', 'm2'):
# nienotowane w Morfeuszu
entry_form = 'zależał'
elif entry_base == 'zemdlić' and (subj_num, subj_gend) == ('sg', 'f'):
# formy inne niż „zemdliło” nienotowane w Morfeuszu
entry_form = 'zemdliła'
else:
entry_form = get_form(entry_base, ['praet', subj_num, subj_gend, 'perf', ['nagl', '']])[0]
except:
entry_form = get_form(entry_base, ['pred'])[0]
if entry.name == 'napaść' and {'wal_69620-mng', 'wal_80242-mng', 'wal_174604-mng', 'wal_174605-mng', 'wal_174603-mng', 'wal_174606-mng'}.issuperset(realisation._frame._meanings):
# znaczenie ‹napaść (się) jedzeniem›
entry_form = entry_form.replace('dł', 'sł')
if entry.name == 'oblec' and {'wal_85605-mng', 'wal_85615-mng'}.issuperset(realisation._frame._meanings):
# znaczenie ‹oblec twierdzę›
entry_form = entry_form.replace('kł', 'gł')
if entry.name == 'odpaść' and {'wal_68230-mng', 'wal_68225-mng', 'wal_79689-mng'}.issuperset(realisation._frame._meanings):
# znaczenie ‹odpaść (się) jedzeniem›
entry_form = entry_form.replace('dł', 'sł')
if entry.name == 'podpaść' and {'wal_86356-mng', 'wal_86350-mng', 'wal_174582-mng', 'wal_174584-mng', 'wal_174585-mng', 'wal_174586-mng'}.issuperset(realisation._frame._meanings):
# znaczenie ‹podpaść (się) jedzeniem›
entry_form = entry_form.replace('dł', 'sł')
if entry.name == 'popaść' and {'wal_174529-mng', 'wal_174530-mng'}.issuperset(realisation._frame._meanings):
# znaczenie ‹popaść (się) jedzeniem›
entry_form = entry_form.replace('dł', 'sł')
if subentry.negativity and subentry.negativity.name == 'neg':
entry_form = 'nie ' + entry_form
if subentry.inherent_sie.name == 'true':
entry_form += ' się'
elements = before + ['<b>{}</b>'.format(entry_form)] + after
if entry_form[0] > 'z':
#-------
for t in sorted(BENCH3.keys()):
if t > 4:
print(' ************', t, len(BENCH3[t]), BENCH3[t][:10])
for n, sid, synset in BENCH3[t]:
print(' ************', synset)
print(' ************', sid, ':', n)
#for t in sorted(BENCH2.keys()):
# if t > 4:
# print(' ********', t, len(BENCH2[t]), BENCH2[t][:10])
#for t in sorted(BENCH.keys()):
# if t > 4:
# print(' ****', t, len(BENCH[t]), BENCH[t][:10])
#-------
return ' '.join(elements)