load_resources.py
15.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# -*- coding:utf-8 -*-
import re
import sys
import time
import jsonpickle
from django.core.management.base import BaseCommand, make_option
from multiservice.facade import Multiservice
from multiservice.facade.ttypes import *
from multiservice.types.ttypes import *
from lxml import etree
from thrift.transport import TSocket
from webapp.models import Expression, Segment, Source, \
SourceLink, get_or_create_meaning
PORT = 20000
HOST = 'multiservice.nlp.ipipan.waw.pl'
PROCESS_CHAIN = ['Concraft', 'Spejd', 'Nerf', 'MentionDetector']
EXPR_DELIMITERS = [',']
class Command(BaseCommand):
help = 'Load target resource to Periphraser.'
option_list = BaseCommand.option_list + (
make_option('--path',
action='store',
dest='path',
type='str',
default='',
help='Path to resource xml'),) + (
make_option('--source',
action='store',
dest='source',
type='str',
default='',
help='Resource name'),) + (
make_option('--preprocessed',
action='store_true',
dest='preprocessed',
default=False,
help='Use if input data is already preprocessed'),)
def handle(self, *args, **options):
load_sources_data()
load_resource(options['source'], options['path'], options['preprocessed'])
def load_sources_data():
Source.objects.get_or_create(key='sjp', name='SJP', url='http://sjp.pl/',
description=u'Słownik języka polskiego, ortograficzny, wyrazów obcych i słownik do gier w jednym.')
Source.objects.get_or_create(key='szarada', name='szarada.net', url='http://szarada.net/',
description=u'Internetowy świat krzyżówek')
Source.objects.get_or_create(key='plwn', name=u'Słowosieć', url='http://plwordnet.pwr.wroc.pl/',
description=u'Słowosieć (z ang. wordnet) – to słownik semantyczny, który odzwierciedla system leksykalny języka polskiego.')
Source.objects.get_or_create(key='wikidata', name=u'Wikidane', url='https://www.wikidata.org/',
description=u'Wikidane, w języku angielskim Wikidata – projekt internetowy mający na celu stworzenie wolnej, otwartej, wielojęzycznej bazy różnorodnych danych. Głównym zastosowaniem tej bazy danych jest używanie jej w projektach Wikimedia Foundation, przede wszystkim w Wikipedii.')
Source.objects.get_or_create(key='wiz', name=u'Wiedza i Życie', url='http://archiwum.wiz.pl/',
description=u'Archiwum czasopisma "Wiedza i Życie"')
Source.objects.get_or_create(key='kpwr', name=u'KPWr', url='http://nlp.pwr.wroc.pl/narzedzia-i-zasoby/zasoby/kpwr/',
description=u'KPWr (Korpus Języka Polskiego Politechniki Wrocławskiej, ang. Polish Corpus of Wrocław University of Technology) jest zbiorem dokumentów tekstowych dostępnych na licencji Creative Commons. Dokumenty zostały otagowane przy pomocy narzędzia wcrft2 i opisane różnymi typami informacji takimi jak jednostki identyfikacyjne, wyrażenia temporalne, frazy składniowe, znaczenie słów (pełna lista znajduje się w sekcji Indeksy i statystyki elementów).')
Source.objects.get_or_create(key='1M', name=u'NKJP 1M', url='http://clip.ipipan.waw.pl/NationalCorpusOfPolish/',
description=u'Ręcznie anotowany milionowy podkorpus NKJP, dostępny na licencji GNU GPL v.3')
Source.objects.get_or_create(key='RP', name=u'Rzeczpospolita', url='http://www.cs.put.poznan.pl/dweiss/rzeczpospolita/',
description=u'Korpus "Rzeczpospolitej" jest zbiorem artykułów prasowych (w formacie HTML) pobranych z internetowego serwisu gazety o tym samym tytule. Proces zbierania danych był przeprowadzony w roku 2001 i obejmuje zasoby od roku 1993 do marca 2002, przy czym nie wszystkie lata są reprezentowane równie licznie.')
Source.objects.get_or_create(key='PSC', name=u'Polski Korpus Sejmowy',
url='http://clip.ipipan.waw.pl/PSC/',
description=u'Polski Korpus Sejmowy')
def load_resource(name, path, preprocessed):
source = Source.objects.get(key=name)
for _, element in etree.iterparse(path):
if element.tag == 'entry' and descriptions_exists(element):
load_entry(source, element, preprocessed)
def descriptions_exists(entry):
return len(entry.getchildren()) > 1
def load_entry(source, entry, preprocessed):
wikilink = ''
plwn_synset = 0
for desc in entry.getchildren():
if 'wikilink' in desc.attrib and desc.attrib['wikilink']:
wikilink = desc.attrib['wikilink']
if 'synset' in desc.attrib and desc.attrib['synset']:
plwn_synset = int(desc.attrib['synset'])
meaning, _ = get_or_create_meaning(plwn_synset, wikilink)
for desc in entry.getchildren():
if desc_is_label(desc, source):
continue
print desc.attrib['text']
if preprocessed:
load_preprocessed_expression(source, meaning, desc)
else:
parse_and_load_expression(source, meaning, desc)
if meaning.expressions.count() < 2:
meaning.delete()
def desc_is_label(desc, source):
if source.key == 'wikidata':
expr = desc.text.lower()
if expr.startswith(u'strona ujednoznaczniająca'):
return True
elif expr.startswith(u'kategoria'):
return True
elif expr.startswith(u'lista projektu'):
return True
elif expr.startswith(u'lista w projekcie'):
return True
return False
def parse_and_load_expression(source, meaning, desc):
transport, client = getThriftTransportAndClient(HOST, PORT)
expression = desc.text
request = createRequest(expression, PROCESS_CHAIN)
try:
token = client.putObjectRequest(request)
status = None
while status not in [RequestStatus.DONE, RequestStatus.FAILED]:
status = client.getRequestStatus(token)
time.sleep(0.1)
if status == RequestStatus.DONE:
result = client.getResultObject(token)
load_expression(source, desc, meaning, result)
else:
print >> sys.stderr, client.getException(token)
sys.exit("Stopped loading data!")
finally:
transport.close()
def getThriftTransportAndClient(host, port):
transport = TSocket.TSocket(host, port)
try:
transport = TTransport.TBufferedTransport(transport)
protocol = TBinaryProtocol.TBinaryProtocol(transport)
client = Multiservice.Client(protocol)
transport.open()
return (transport, client)
except:
transport.close()
raise
def createRequest(text, serviceNames):
ttext = TText(paragraphs=[TParagraph(text=chunk)
for chunk in re.split(r'\n\n+', text)])
chain = [RequestPart(serviceName=name) for name in serviceNames]
request = ObjectRequest(ttext, chain)
return request
def load_expression(source, desc, meaning, result):
jsonStr = jsonpickle.encode(result, unpicklable=False)
jsonObj = jsonpickle.decode(jsonStr)
simpler_exprs = []
detected_mentions = get_detected_mentions(jsonObj)
if detected_mentions:
simpler_exprs = split_expr(jsonObj)
if simpler_exprs:
for expr in simpler_exprs:
save_expression(source=source, desc=desc, meaning=meaning,
nerf_category=expr['category'],
expr_segs=expr['tokens'],
biggest_mention_tokens=expr['tokens'],
head=expr['head'])
else:
main_category, expr_segs, head, biggest_mention_tokens = get_expr_info(jsonObj)
save_expression(source, desc, meaning, main_category,
expr_segs, biggest_mention_tokens, head)
def get_detected_mentions(jsonObj):
mentions = []
for para in jsonObj['paragraphs']:
for sent in para['sentences']:
for mnt in sent['mentions']:
mentions.append(mnt)
return mentions
def split_expr(jsonObj):
mentions = []
for para in jsonObj['paragraphs']:
expr_tokens = []
for sent in para['sentences']:
for tok in sent['tokens']:
if tok['orth'] in EXPR_DELIMITERS:
match = get_matching_mention(sent, expr_tokens)
if match:
tokens, head, category = parse_mention_info(sent, match)
mentions.append({'tokens': tokens,
'head': head,
'category': category})
else:
return []
expr_tokens = []
elif not tok['chosenInterpretation']['ctag'] == 'interp':
expr_tokens.append(tok)
if expr_tokens:
match = get_matching_mention(sent, expr_tokens)
if match:
tokens, head, category = parse_mention_info(sent, match)
mentions.append({'tokens': tokens,
'head': head,
'category': category})
else:
return []
return mentions
def get_matching_mention(sent, tokens_to_match):
tokens_to_match_ids = get_tokens_ids(tokens_to_match)
for mention in sent['mentions']:
tokens, _, _ = parse_mention_info(sent, mention)
tokens_ids = get_tokens_ids(tokens)
if set(tokens_ids) == set(tokens_to_match_ids):
return mention
return None
def get_tokens_ids(tokens):
return [tok['id'] for tok in tokens if not tok['chosenInterpretation']['ctag'] == 'interp']
def get_expr_info(jsonObj):
biggest_mention = None
biggest_mention_tokens = []
main_category = ''
expr_segs = []
head = None
for para in jsonObj['paragraphs']:
for sent in para['sentences']:
expr_segs.extend(sent['tokens'])
for mention in sent['mentions']:
if (biggest_mention == None or
len(mention['childIds']) > len(biggest_mention['childIds'])):
biggest_mention = mention
biggest_mention_tokens, head, category = parse_mention_info(sent, mention)
if category:
main_category = category
return main_category, expr_segs, head, biggest_mention_tokens
def parse_mention_info(sentence, mention):
tokens = []
for token_id in mention['childIds']:
tokens.append((token for token in sentence['tokens'] if token["id"] == token_id).next())
head = (token for token in sentence['tokens'] if token["id"] == mention['headIds'][0]).next()
category = get_category(sentence, head)
return tokens, head, category
def get_category(sentence, mention_head):
for name in sentence['names']:
if mention_head['id'] in name['childIds']:
return name['type']
return ''
def save_expression(source, desc, meaning, nerf_category,
expr_segs, biggest_mention_tokens, head):
expression = get_expr_text(expr_segs)
expression_base = get_base_text(expr_segs)
expression_upper = expression.upper()
categories = []
if desc.attrib['categories']:
categories = desc.attrib['categories'].split(';')
if nerf_category and (len(expr_segs) > 1 or expression[0].isupper()):
categories.append(nerf_category)
meaning.add_domains(categories)
if not meaning.expressions.filter(text=expression_upper).exists():
exact_link = u''
if 'entrylink' in desc.attrib:
exact_link = desc.attrib['entrylink']
is_catchword = str2boolean(desc.attrib['catchword'])
expr_obj = Expression.objects.create(text=expression_upper, orth_text=expression,
base_text=expression_base, meaning=meaning,
score=0.0, NKJP_freq=0, is_catchword=is_catchword)
add_segments(expr_obj, expr_segs, head)
SourceLink.objects.create(source=source, exact_link=exact_link, expression=expr_obj)
def get_expr_text(tokens):
expr = ''
for tok in tokens:
if tok['noPrecedingSpace']:
expr += tok['orth']
else:
expr += ' %s' % tok['orth']
return expr.strip()
def get_base_text(tokens):
expr = ''
for tok in tokens:
if tok['noPrecedingSpace']:
expr += tok['chosenInterpretation']['base']
else:
expr += ' %s' % tok['chosenInterpretation']['base']
return expr.strip()
def str2boolean(bool_str):
if bool_str == 'true':
return True
return False
def add_segments(expr_obj, tokens, head):
position = 0
for seg in tokens:
is_head = False
if seg == head:
is_head = True
Segment.objects.create(position_in_expr=position, expression=expr_obj,
orth=seg['orth'], base=seg['chosenInterpretation']['base'],
ctag=seg['chosenInterpretation']['ctag'],
msd=seg['chosenInterpretation']['msd'], is_head=is_head,
has_nps=str2boolean(seg['noPrecedingSpace']))
position += 1
def load_preprocessed_expression(source, meaning, desc):
expression = get_text_using_pred(desc)
expression_base = get_base_text_using_pred(desc)
expression_upper = expression.upper()
categories = []
if desc.attrib['categories']:
categories = desc.attrib['categories'].split(';')
meaning.add_domains(categories)
if not meaning.expressions.filter(text=expression_upper).exists():
exact_link = u''
if 'entrylink' in desc.attrib:
exact_link = desc.attrib['entrylink']
is_catchword = str2boolean(desc.attrib['catchword'])
expr_obj = Expression.objects.create(text=expression_upper, orth_text=expression,
base_text=expression_base, meaning=meaning,
score=0.0, NKJP_freq=0, is_catchword=is_catchword)
add_preprocessed_segments(expr_obj, desc)
SourceLink.objects.create(source=source, exact_link=exact_link, expression=expr_obj)
def get_text_using_pred(desc):
expr = ''
for tok in desc:
if tok.attrib['hasnps'] == 'true':
expr += tok.text
else:
expr += ' %s' % tok.text
return expr.strip()
def get_base_text_using_pred(desc):
expr = ''
for tok in desc:
if tok.attrib['hasnps'] == 'true':
expr += tok.attrib['base']
else:
expr += ' %s' % tok.attrib['base']
return expr.strip()
def add_preprocessed_segments(expr_obj, desc):
position = 0
for tok in desc:
Segment.objects.create(position_in_expr=position, expression=expr_obj,
orth=tok.text, base=tok.attrib['base'],
ctag=tok.attrib['ctag'],
msd=tok.attrib['msd'], is_head=str2boolean(tok.attrib['ishead']),
has_nps=str2boolean(tok.attrib['hasnps']))
position += 1