ParseValAndTrain.ipynb 113 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "aabfb24b",
   "metadata": {},
   "outputs": [],
   "source": [
    "COMBO = '/home/kkrasnowska/anaconda3/envs/combo_p39/bin/combo'"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "787fff78",
   "metadata": {},
   "source": [
    "Main model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "1d9daaa9",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "I0407 10:49:31.448594 140072765682752 archival.py:184] loading archive file model-pdbc/model.tar.gz\n",
      "I0407 10:49:31.449148 140072765682752 archival.py:263] extracting archive file model-pdbc/model.tar.gz to temp dir /tmp/tmp_htckuhc\n",
      "I0407 10:49:48.075045 140072765682752 params.py:248] dataset_reader.type = conllu\n",
      "I0407 10:49:48.075561 140072765682752 params.py:248] dataset_reader.lazy = False\n",
      "I0407 10:49:48.075693 140072765682752 params.py:248] dataset_reader.cache_directory = None\n",
      "I0407 10:49:48.075764 140072765682752 params.py:248] dataset_reader.max_instances = None\n",
      "I0407 10:49:48.075832 140072765682752 params.py:248] dataset_reader.manual_distributed_sharding = False\n",
      "I0407 10:49:48.075901 140072765682752 params.py:248] dataset_reader.manual_multi_process_sharding = False\n",
      "I0407 10:49:48.076193 140072765682752 params.py:248] dataset_reader.token_indexers.char.type = characters_const_padding\n",
      "I0407 10:49:48.076388 140072765682752 params.py:248] dataset_reader.token_indexers.char.namespace = token_characters\n",
      "I0407 10:49:48.076621 140072765682752 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:49:48.076697 140072765682752 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:49:48.076790 140072765682752 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:49:48.076939 140072765682752 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:49:48.077063 140072765682752 params.py:248] dataset_reader.token_indexers.char.start_tokens = None\n",
      "I0407 10:49:48.077118 140072765682752 params.py:248] dataset_reader.token_indexers.char.end_tokens = None\n",
      "I0407 10:49:48.077185 140072765682752 params.py:248] dataset_reader.token_indexers.char.min_padding_length = 32\n",
      "I0407 10:49:48.077238 140072765682752 params.py:248] dataset_reader.token_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:49:48.077383 140072765682752 params.py:248] dataset_reader.token_indexers.feats.type = feats_indexer\n",
      "I0407 10:49:48.077555 140072765682752 params.py:248] dataset_reader.token_indexers.feats.namespace = feats\n",
      "I0407 10:49:48.077628 140072765682752 params.py:248] dataset_reader.token_indexers.feats.feature_name = feats_\n",
      "I0407 10:49:48.077702 140072765682752 params.py:248] dataset_reader.token_indexers.feats.token_min_padding_length = 0\n",
      "I0407 10:49:48.077838 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.type = characters_const_padding\n",
      "I0407 10:49:48.078031 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.namespace = token_characters\n",
      "I0407 10:49:48.078231 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.byte_encoding = None\n",
      "I0407 10:49:48.078300 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:49:48.078378 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:49:48.078666 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:49:48.078786 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.start_tokens = None\n",
      "I0407 10:49:48.078862 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.end_tokens = None\n",
      "I0407 10:49:48.078916 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.min_padding_length = 32\n",
      "I0407 10:49:48.078969 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.token_min_padding_length = 0\n",
      "I0407 10:49:48.079103 140072765682752 params.py:248] dataset_reader.token_indexers.token.type = pretrained_transformer_mismatched_fixed\n",
      "I0407 10:49:48.079328 140072765682752 params.py:248] dataset_reader.token_indexers.token.token_min_padding_length = 0\n",
      "I0407 10:49:48.079406 140072765682752 params.py:248] dataset_reader.token_indexers.token.model_name = allegro/herbert-large-cased\n",
      "I0407 10:49:48.079461 140072765682752 params.py:248] dataset_reader.token_indexers.token.namespace = tags\n",
      "I0407 10:49:48.079525 140072765682752 params.py:248] dataset_reader.token_indexers.token.max_length = None\n",
      "I0407 10:49:48.079628 140072765682752 params.py:384] dataset_reader.token_indexers.token.tokenizer_kwargs.use_fast = False\n",
      "I0407 10:49:51.185825 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.type = single_id\n",
      "I0407 10:49:51.186234 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.namespace = upostag\n",
      "I0407 10:49:51.186336 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.lowercase_tokens = False\n",
      "I0407 10:49:51.186398 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.start_tokens = None\n",
      "I0407 10:49:51.186465 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.end_tokens = None\n",
      "I0407 10:49:51.186517 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.feature_name = pos_\n",
      "I0407 10:49:51.186579 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:49:51.186631 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.token_min_padding_length = 0\n",
      "I0407 10:49:51.186791 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.type = single_id\n",
      "I0407 10:49:51.186975 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.namespace = xpostag\n",
      "I0407 10:49:51.187041 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.lowercase_tokens = False\n",
      "I0407 10:49:51.187107 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.start_tokens = None\n",
      "I0407 10:49:51.187170 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.end_tokens = None\n",
      "I0407 10:49:51.187220 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.feature_name = tag_\n",
      "I0407 10:49:51.187275 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:49:51.187334 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.token_min_padding_length = 0\n",
      "I0407 10:49:51.187556 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.type = characters_const_padding\n",
      "I0407 10:49:51.187731 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.namespace = lemma_characters\n",
      "I0407 10:49:51.187935 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:49:51.187995 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:49:51.188073 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:49:51.188217 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:49:51.188334 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.start_tokens = None\n",
      "I0407 10:49:51.188398 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.end_tokens = None\n",
      "I0407 10:49:51.188460 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.min_padding_length = 32\n",
      "I0407 10:49:51.188522 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:49:51.188614 140072765682752 params.py:248] dataset_reader.features = ['token', 'char']\n",
      "I0407 10:49:51.188712 140072765682752 params.py:248] dataset_reader.targets = ['head', 'deprel']\n",
      "I0407 10:49:51.188802 140072765682752 params.py:248] dataset_reader.use_sem = False\n",
      "I0407 10:49:51.188952 140072765682752 params.py:248] dataset_reader.type = conllu\n",
      "I0407 10:49:51.189191 140072765682752 params.py:248] dataset_reader.lazy = False\n",
      "I0407 10:49:51.189266 140072765682752 params.py:248] dataset_reader.cache_directory = None\n",
      "I0407 10:49:51.189324 140072765682752 params.py:248] dataset_reader.max_instances = None\n",
      "I0407 10:49:51.189382 140072765682752 params.py:248] dataset_reader.manual_distributed_sharding = False\n",
      "I0407 10:49:51.189436 140072765682752 params.py:248] dataset_reader.manual_multi_process_sharding = False\n",
      "I0407 10:49:51.189675 140072765682752 params.py:248] dataset_reader.token_indexers.char.type = characters_const_padding\n",
      "I0407 10:49:51.189843 140072765682752 params.py:248] dataset_reader.token_indexers.char.namespace = token_characters\n",
      "I0407 10:49:51.190060 140072765682752 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:49:51.190128 140072765682752 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:49:51.190197 140072765682752 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:49:51.190324 140072765682752 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:49:51.190443 140072765682752 params.py:248] dataset_reader.token_indexers.char.start_tokens = None\n",
      "I0407 10:49:51.190508 140072765682752 params.py:248] dataset_reader.token_indexers.char.end_tokens = None\n",
      "I0407 10:49:51.190564 140072765682752 params.py:248] dataset_reader.token_indexers.char.min_padding_length = 32\n",
      "I0407 10:49:51.190627 140072765682752 params.py:248] dataset_reader.token_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:49:51.190772 140072765682752 params.py:248] dataset_reader.token_indexers.feats.type = feats_indexer\n",
      "I0407 10:49:51.190932 140072765682752 params.py:248] dataset_reader.token_indexers.feats.namespace = feats\n",
      "I0407 10:49:51.191003 140072765682752 params.py:248] dataset_reader.token_indexers.feats.feature_name = feats_\n",
      "I0407 10:49:51.191065 140072765682752 params.py:248] dataset_reader.token_indexers.feats.token_min_padding_length = 0\n",
      "I0407 10:49:51.191206 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.type = characters_const_padding\n",
      "I0407 10:49:51.191369 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.namespace = token_characters\n",
      "I0407 10:49:51.191561 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.byte_encoding = None\n",
      "I0407 10:49:51.191629 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:49:51.191706 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:49:51.191827 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:49:51.191938 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.start_tokens = None\n",
      "I0407 10:49:51.191999 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.end_tokens = None\n",
      "I0407 10:49:51.192067 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.min_padding_length = 32\n",
      "I0407 10:49:51.192142 140072765682752 params.py:248] dataset_reader.token_indexers.lemma.token_min_padding_length = 0\n",
      "I0407 10:49:51.192281 140072765682752 params.py:248] dataset_reader.token_indexers.token.type = pretrained_transformer_mismatched_fixed\n",
      "I0407 10:49:51.192501 140072765682752 params.py:248] dataset_reader.token_indexers.token.token_min_padding_length = 0\n",
      "I0407 10:49:51.192575 140072765682752 params.py:248] dataset_reader.token_indexers.token.model_name = allegro/herbert-large-cased\n",
      "I0407 10:49:51.192638 140072765682752 params.py:248] dataset_reader.token_indexers.token.namespace = tags\n",
      "I0407 10:49:51.192698 140072765682752 params.py:248] dataset_reader.token_indexers.token.max_length = None\n",
      "I0407 10:49:51.192795 140072765682752 params.py:384] dataset_reader.token_indexers.token.tokenizer_kwargs.use_fast = False\n",
      "I0407 10:49:51.194080 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.type = single_id\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "I0407 10:49:51.194318 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.namespace = upostag\n",
      "I0407 10:49:51.194404 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.lowercase_tokens = False\n",
      "I0407 10:49:51.194471 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.start_tokens = None\n",
      "I0407 10:49:51.194532 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.end_tokens = None\n",
      "I0407 10:49:51.194586 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.feature_name = pos_\n",
      "I0407 10:49:51.194648 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:49:51.194708 140072765682752 params.py:248] dataset_reader.token_indexers.upostag.token_min_padding_length = 0\n",
      "I0407 10:49:51.194854 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.type = single_id\n",
      "I0407 10:49:51.195033 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.namespace = xpostag\n",
      "I0407 10:49:51.195105 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.lowercase_tokens = False\n",
      "I0407 10:49:51.195167 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.start_tokens = None\n",
      "I0407 10:49:51.195222 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.end_tokens = None\n",
      "I0407 10:49:51.195280 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.feature_name = tag_\n",
      "I0407 10:49:51.195338 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:49:51.195398 140072765682752 params.py:248] dataset_reader.token_indexers.xpostag.token_min_padding_length = 0\n",
      "I0407 10:49:51.195601 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.type = characters_const_padding\n",
      "I0407 10:49:51.195774 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.namespace = lemma_characters\n",
      "I0407 10:49:51.195971 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:49:51.196039 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:49:51.196113 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:49:51.196244 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:49:51.196364 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.start_tokens = None\n",
      "I0407 10:49:51.196430 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.end_tokens = None\n",
      "I0407 10:49:51.196492 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.min_padding_length = 32\n",
      "I0407 10:49:51.196552 140072765682752 params.py:248] dataset_reader.lemma_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:49:51.196640 140072765682752 params.py:248] dataset_reader.features = ['token', 'char']\n",
      "I0407 10:49:51.196732 140072765682752 params.py:248] dataset_reader.targets = ['head', 'deprel']\n",
      "I0407 10:49:51.196815 140072765682752 params.py:248] dataset_reader.use_sem = False\n",
      "I0407 10:49:51.197346 140072765682752 params.py:248] vocabulary.type = from_instances_extended\n",
      "I0407 10:49:51.197421 140072765682752 vocabulary.py:323] Loading token dictionary from /tmp/tmp_htckuhc/vocabulary.\n",
      "I0407 10:49:51.197736 140072765682752 filelock.py:254] Lock 140069359832176 acquired on /tmp/tmp_htckuhc/vocabulary/.lock\n",
      "I0407 10:49:51.198361 140072765682752 filelock.py:317] Lock 140069359832176 released on /tmp/tmp_htckuhc/vocabulary/.lock\n",
      "I0407 10:49:51.198865 140072765682752 params.py:248] model.type = semantic_multitask\n",
      "I0407 10:49:51.199399 140072765682752 params.py:248] model.text_field_embedder.type = basic\n",
      "I0407 10:49:51.199762 140072765682752 params.py:248] model.text_field_embedder.token_embedders.char.type = char_embeddings_from_config\n",
      "I0407 10:49:51.199955 140072765682752 params.py:248] model.text_field_embedder.token_embedders.char.embedding_dim = 64\n",
      "I0407 10:49:51.200206 140072765682752 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.input_dim = 64\n",
      "I0407 10:49:51.200286 140072765682752 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.filters = [512, 256, 64]\n",
      "I0407 10:49:51.200380 140072765682752 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.kernel_size = [3, 3, 3]\n",
      "I0407 10:49:51.200467 140072765682752 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.stride = [1, 1, 1]\n",
      "I0407 10:49:51.200556 140072765682752 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.padding = [1, 2, 4]\n",
      "I0407 10:49:51.200649 140072765682752 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.dilation = [1, 2, 4]\n",
      "I0407 10:49:51.200745 140072765682752 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.activations = ['relu', 'relu', 'linear']\n",
      "I0407 10:49:51.200886 140072765682752 params.py:248] type = relu\n",
      "I0407 10:49:51.201073 140072765682752 params.py:248] type = relu\n",
      "I0407 10:49:51.201222 140072765682752 params.py:248] type = linear\n",
      "I0407 10:49:51.208180 140072765682752 params.py:248] model.text_field_embedder.token_embedders.char.vocab_namespace = token_characters\n",
      "I0407 10:49:51.208718 140072765682752 params.py:248] model.text_field_embedder.token_embedders.token.type = transformers_word_embeddings\n",
      "I0407 10:49:51.208946 140072765682752 params.py:248] model.text_field_embedder.token_embedders.token.model_name = allegro/herbert-large-cased\n",
      "I0407 10:49:51.209028 140072765682752 params.py:248] model.text_field_embedder.token_embedders.token.projection_dim = 100\n",
      "I0407 10:49:51.209110 140072765682752 params.py:248] model.text_field_embedder.token_embedders.token.projection_activation = <function TransformersWordEmbedder.<lambda> at 0x7f646dd85280>\n",
      "I0407 10:49:51.209182 140072765682752 params.py:248] model.text_field_embedder.token_embedders.token.projection_dropout_rate = 0.0\n",
      "I0407 10:49:51.209239 140072765682752 params.py:248] model.text_field_embedder.token_embedders.token.freeze_transformer = True\n",
      "I0407 10:49:51.209295 140072765682752 params.py:248] model.text_field_embedder.token_embedders.token.last_layer_only = True\n",
      "I0407 10:49:51.209401 140072765682752 params.py:384] model.text_field_embedder.token_embedders.token.tokenizer_kwargs.use_fast = False\n",
      "I0407 10:49:51.209471 140072765682752 params.py:248] model.text_field_embedder.token_embedders.token.transformer_kwargs = None\n",
      "I0407 10:49:58.747374 140072765682752 params.py:248] model.seq_encoder.type = combo_encoder\n",
      "I0407 10:49:58.747746 140072765682752 params.py:248] model.seq_encoder.stacked_bilstm.input_size = 164\n",
      "I0407 10:49:58.747819 140072765682752 params.py:248] model.seq_encoder.stacked_bilstm.hidden_size = 512\n",
      "I0407 10:49:58.747869 140072765682752 params.py:248] model.seq_encoder.stacked_bilstm.num_layers = 2\n",
      "I0407 10:49:58.747919 140072765682752 params.py:248] model.seq_encoder.stacked_bilstm.recurrent_dropout_probability = 0.33\n",
      "I0407 10:49:58.747966 140072765682752 params.py:248] model.seq_encoder.stacked_bilstm.layer_dropout_probability = 0.33\n",
      "I0407 10:49:58.748013 140072765682752 params.py:248] model.seq_encoder.stacked_bilstm.use_highway = False\n",
      "I0407 10:49:59.084017 140072765682752 params.py:248] model.seq_encoder.layer_dropout_probability = 0.33\n",
      "I0407 10:49:59.084280 140072765682752 params.py:248] model.use_sample_weight = True\n",
      "I0407 10:49:59.084377 140072765682752 params.py:248] model.lemmatizer = None\n",
      "I0407 10:49:59.084436 140072765682752 params.py:248] model.upos_tagger = None\n",
      "I0407 10:49:59.084487 140072765682752 params.py:248] model.xpos_tagger = None\n",
      "I0407 10:49:59.084537 140072765682752 params.py:248] model.semantic_relation = None\n",
      "I0407 10:49:59.084585 140072765682752 params.py:248] model.morphological_feat = None\n",
      "I0407 10:49:59.084832 140072765682752 params.py:248] model.dependency_relation.type = combo_dependency_parsing_from_vocab\n",
      "I0407 10:49:59.085025 140072765682752 params.py:248] model.dependency_relation.vocab_namespace = deprel_labels\n",
      "I0407 10:49:59.085301 140072765682752 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.in_features = 1024\n",
      "I0407 10:49:59.085365 140072765682752 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.out_features = 512\n",
      "I0407 10:49:59.085421 140072765682752 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.activation = tanh\n",
      "I0407 10:49:59.085520 140072765682752 params.py:248] type = tanh\n",
      "I0407 10:49:59.085608 140072765682752 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.dropout_rate = 0.0\n",
      "I0407 10:49:59.089095 140072765682752 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.in_features = 1024\n",
      "I0407 10:49:59.089183 140072765682752 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.out_features = 512\n",
      "I0407 10:49:59.089244 140072765682752 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.activation = tanh\n",
      "I0407 10:49:59.089346 140072765682752 params.py:248] type = tanh\n",
      "I0407 10:49:59.089423 140072765682752 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.dropout_rate = 0.0\n",
      "I0407 10:49:59.092701 140072765682752 params.py:248] model.dependency_relation.head_predictor.cycle_loss_n = 0\n",
      "I0407 10:49:59.092917 140072765682752 params.py:248] model.dependency_relation.head_projection_layer.in_features = 1024\n",
      "I0407 10:49:59.092972 140072765682752 params.py:248] model.dependency_relation.head_projection_layer.out_features = 128\n",
      "I0407 10:49:59.093022 140072765682752 params.py:248] model.dependency_relation.head_projection_layer.activation = tanh\n",
      "I0407 10:49:59.093108 140072765682752 params.py:248] type = tanh\n",
      "I0407 10:49:59.093183 140072765682752 params.py:248] model.dependency_relation.head_projection_layer.dropout_rate = 0.25\n",
      "I0407 10:49:59.094336 140072765682752 params.py:248] model.dependency_relation.dependency_projection_layer.in_features = 1024\n",
      "I0407 10:49:59.094411 140072765682752 params.py:248] model.dependency_relation.dependency_projection_layer.out_features = 128\n",
      "I0407 10:49:59.094463 140072765682752 params.py:248] model.dependency_relation.dependency_projection_layer.activation = tanh\n",
      "I0407 10:49:59.094551 140072765682752 params.py:248] type = tanh\n",
      "I0407 10:49:59.094618 140072765682752 params.py:248] model.dependency_relation.dependency_projection_layer.dropout_rate = 0.25\n",
      "I0407 10:49:59.095806 140072765682752 params.py:248] model.enhanced_dependency_relation = None\n",
      "I0407 10:49:59.096206 140072765682752 params.py:248] model.regularizer.regexes.0.1.type = l2\n",
      "I0407 10:49:59.096345 140072765682752 params.py:248] model.regularizer.regexes.0.1.alpha = 1e-06\n",
      "I0407 10:49:59.096471 140072765682752 params.py:248] model.regularizer.regexes.1.1.type = l2\n",
      "I0407 10:49:59.096584 140072765682752 params.py:248] model.regularizer.regexes.1.1.alpha = 1e-06\n",
      "I0407 10:49:59.096696 140072765682752 params.py:248] model.regularizer.regexes.2.1.type = l2\n",
      "I0407 10:49:59.096809 140072765682752 params.py:248] model.regularizer.regexes.2.1.alpha = 1e-06\n",
      "I0407 10:49:59.096917 140072765682752 params.py:248] model.regularizer.regexes.3.1.type = l2\n",
      "I0407 10:49:59.097025 140072765682752 params.py:248] model.regularizer.regexes.3.1.alpha = 1e-05\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "I0407 10:50:01.854557 140072765682752 archival.py:211] removing temporary unarchived model dir at /tmp/tmp_htckuhc\n",
      "reading instances: 2211it [01:52, 19.69it/s]\n"
     ]
    }
   ],
   "source": [
    "! {COMBO} --mode predict \\\n",
    "    --cuda_device 0 \\\n",
    "    --model_path model-pdbc/model.tar.gz \\\n",
    "    --input_file connlu/pdbc-validation.conllu \\\n",
    "    --output_file connlu/pdbc-validation-pred.conllu"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "11f1b7b1",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# text = Dwie dziewczynki opierają się o dach kapliczki , chłopiec wspina się na niego , a trzecia dziewczynka stoi obok .\r\n",
      "1\tDwie\tdwa\t_\t_\t_\t3\tsubj\t3:subj\t_\r\n",
      "2\tdziewczynki\tdziewczynka\t_\t_\t_\t1\tcomp\t1:comp\t_\r\n",
      "3\topierają\topierać\t_\t_\t_\t15\tconjunct\t15:conjunct\t_\r\n",
      "4\tsię\tsię\t_\t_\t_\t3\trefl\t3:refl\t_\r\n",
      "5\to\to\t_\t_\t_\t3\tcomp\t3:comp\t_\r\n",
      "6\tdach\tdach\t_\t_\t_\t5\tcomp\t5:comp\t_\r\n",
      "7\tkapliczki\tkapliczka\t_\t_\t_\t6\tadjunct\t6:adjunct\t_\r\n",
      "8\t,\t,\t_\t_\t_\t15\tpunct\t15:punct\t_\r\n",
      "9\tchłopiec\tchłopiec\t_\t_\t_\t10\tsubj\t10:subj\t_\r\n"
     ]
    }
   ],
   "source": [
    "! head connlu/pdbc-validation.conllu"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "8fa72124",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# text = Dwie dziewczynki opierają się o dach kapliczki , chłopiec wspina się na niego , a trzecia dziewczynka stoi obok .\r\n",
      "1\tDwie\tdwa\t_\t_\t_\t3\tsubj\t3:subj\t_\r\n",
      "2\tdziewczynki\tdziewczynka\t_\t_\t_\t1\tcomp\t1:comp\t_\r\n",
      "3\topierają\topierać\t_\t_\t_\t15\tconjunct\t15:conjunct\t_\r\n",
      "4\tsię\tsię\t_\t_\t_\t3\trefl\t3:refl\t_\r\n",
      "5\to\to\t_\t_\t_\t3\tcomp\t3:comp\t_\r\n",
      "6\tdach\tdach\t_\t_\t_\t5\tcomp\t5:comp\t_\r\n",
      "7\tkapliczki\tkapliczka\t_\t_\t_\t6\tadjunct\t6:adjunct\t_\r\n",
      "8\t,\t,\t_\t_\t_\t15\tpunct\t15:punct\t_\r\n",
      "9\tchłopiec\tchłopiec\t_\t_\t_\t10\tsubj\t10:subj\t_\r\n"
     ]
    }
   ],
   "source": [
    "! head connlu/pdbc-validation-pred.conllu"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "dde6dd31",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "I0407 10:52:00.220404 139754138821696 archival.py:184] loading archive file model-pdbc/model.tar.gz\n",
      "I0407 10:52:00.221079 139754138821696 archival.py:263] extracting archive file model-pdbc/model.tar.gz to temp dir /tmp/tmp2jhqu3i6\n",
      "I0407 10:52:16.996590 139754138821696 params.py:248] dataset_reader.type = conllu\n",
      "I0407 10:52:16.997079 139754138821696 params.py:248] dataset_reader.lazy = False\n",
      "I0407 10:52:16.997236 139754138821696 params.py:248] dataset_reader.cache_directory = None\n",
      "I0407 10:52:16.997326 139754138821696 params.py:248] dataset_reader.max_instances = None\n",
      "I0407 10:52:16.997391 139754138821696 params.py:248] dataset_reader.manual_distributed_sharding = False\n",
      "I0407 10:52:16.997456 139754138821696 params.py:248] dataset_reader.manual_multi_process_sharding = False\n",
      "I0407 10:52:16.997756 139754138821696 params.py:248] dataset_reader.token_indexers.char.type = characters_const_padding\n",
      "I0407 10:52:16.997950 139754138821696 params.py:248] dataset_reader.token_indexers.char.namespace = token_characters\n",
      "I0407 10:52:16.998211 139754138821696 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:52:16.998285 139754138821696 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:52:16.998367 139754138821696 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:52:16.998522 139754138821696 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:52:16.998643 139754138821696 params.py:248] dataset_reader.token_indexers.char.start_tokens = None\n",
      "I0407 10:52:16.998707 139754138821696 params.py:248] dataset_reader.token_indexers.char.end_tokens = None\n",
      "I0407 10:52:16.998770 139754138821696 params.py:248] dataset_reader.token_indexers.char.min_padding_length = 32\n",
      "I0407 10:52:16.998831 139754138821696 params.py:248] dataset_reader.token_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:52:16.998980 139754138821696 params.py:248] dataset_reader.token_indexers.feats.type = feats_indexer\n",
      "I0407 10:52:16.999143 139754138821696 params.py:248] dataset_reader.token_indexers.feats.namespace = feats\n",
      "I0407 10:52:16.999213 139754138821696 params.py:248] dataset_reader.token_indexers.feats.feature_name = feats_\n",
      "I0407 10:52:16.999269 139754138821696 params.py:248] dataset_reader.token_indexers.feats.token_min_padding_length = 0\n",
      "I0407 10:52:16.999412 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.type = characters_const_padding\n",
      "I0407 10:52:16.999578 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.namespace = token_characters\n",
      "I0407 10:52:16.999774 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.byte_encoding = None\n",
      "I0407 10:52:16.999842 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:52:16.999923 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:52:17.000045 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:52:17.000156 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.start_tokens = None\n",
      "I0407 10:52:17.000220 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.end_tokens = None\n",
      "I0407 10:52:17.000282 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.min_padding_length = 32\n",
      "I0407 10:52:17.000344 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.token_min_padding_length = 0\n",
      "I0407 10:52:17.000521 139754138821696 params.py:248] dataset_reader.token_indexers.token.type = pretrained_transformer_mismatched_fixed\n",
      "I0407 10:52:17.000770 139754138821696 params.py:248] dataset_reader.token_indexers.token.token_min_padding_length = 0\n",
      "I0407 10:52:17.000865 139754138821696 params.py:248] dataset_reader.token_indexers.token.model_name = allegro/herbert-large-cased\n",
      "I0407 10:52:17.000947 139754138821696 params.py:248] dataset_reader.token_indexers.token.namespace = tags\n",
      "I0407 10:52:17.001028 139754138821696 params.py:248] dataset_reader.token_indexers.token.max_length = None\n",
      "I0407 10:52:17.001172 139754138821696 params.py:384] dataset_reader.token_indexers.token.tokenizer_kwargs.use_fast = False\n",
      "I0407 10:52:20.459573 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.type = single_id\n",
      "I0407 10:52:20.459947 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.namespace = upostag\n",
      "I0407 10:52:20.460046 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.lowercase_tokens = False\n",
      "I0407 10:52:20.460119 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.start_tokens = None\n",
      "I0407 10:52:20.460172 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.end_tokens = None\n",
      "I0407 10:52:20.460235 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.feature_name = pos_\n",
      "I0407 10:52:20.460288 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:52:20.460351 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.token_min_padding_length = 0\n",
      "I0407 10:52:20.460508 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.type = single_id\n",
      "I0407 10:52:20.460695 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.namespace = xpostag\n",
      "I0407 10:52:20.460773 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.lowercase_tokens = False\n",
      "I0407 10:52:20.460840 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.start_tokens = None\n",
      "I0407 10:52:20.460901 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.end_tokens = None\n",
      "I0407 10:52:20.460962 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.feature_name = tag_\n",
      "I0407 10:52:20.461021 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:52:20.461083 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.token_min_padding_length = 0\n",
      "I0407 10:52:20.461313 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.type = characters_const_padding\n",
      "I0407 10:52:20.461496 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.namespace = lemma_characters\n",
      "I0407 10:52:20.461706 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:52:20.461774 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:52:20.461853 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:52:20.462028 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:52:20.462157 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.start_tokens = None\n",
      "I0407 10:52:20.462226 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.end_tokens = None\n",
      "I0407 10:52:20.462283 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.min_padding_length = 32\n",
      "I0407 10:52:20.462336 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:52:20.462417 139754138821696 params.py:248] dataset_reader.features = ['token', 'char']\n",
      "I0407 10:52:20.462514 139754138821696 params.py:248] dataset_reader.targets = ['head', 'deprel']\n",
      "I0407 10:52:20.462607 139754138821696 params.py:248] dataset_reader.use_sem = False\n",
      "I0407 10:52:20.462767 139754138821696 params.py:248] dataset_reader.type = conllu\n",
      "I0407 10:52:20.463083 139754138821696 params.py:248] dataset_reader.lazy = False\n",
      "I0407 10:52:20.463172 139754138821696 params.py:248] dataset_reader.cache_directory = None\n",
      "I0407 10:52:20.463237 139754138821696 params.py:248] dataset_reader.max_instances = None\n",
      "I0407 10:52:20.463301 139754138821696 params.py:248] dataset_reader.manual_distributed_sharding = False\n",
      "I0407 10:52:20.463361 139754138821696 params.py:248] dataset_reader.manual_multi_process_sharding = False\n",
      "I0407 10:52:20.463605 139754138821696 params.py:248] dataset_reader.token_indexers.char.type = characters_const_padding\n",
      "I0407 10:52:20.463779 139754138821696 params.py:248] dataset_reader.token_indexers.char.namespace = token_characters\n",
      "I0407 10:52:20.463980 139754138821696 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:52:20.464051 139754138821696 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:52:20.464129 139754138821696 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:52:20.464254 139754138821696 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:52:20.464366 139754138821696 params.py:248] dataset_reader.token_indexers.char.start_tokens = None\n",
      "I0407 10:52:20.464429 139754138821696 params.py:248] dataset_reader.token_indexers.char.end_tokens = None\n",
      "I0407 10:52:20.464490 139754138821696 params.py:248] dataset_reader.token_indexers.char.min_padding_length = 32\n",
      "I0407 10:52:20.464552 139754138821696 params.py:248] dataset_reader.token_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:52:20.464691 139754138821696 params.py:248] dataset_reader.token_indexers.feats.type = feats_indexer\n",
      "I0407 10:52:20.464847 139754138821696 params.py:248] dataset_reader.token_indexers.feats.namespace = feats\n",
      "I0407 10:52:20.464918 139754138821696 params.py:248] dataset_reader.token_indexers.feats.feature_name = feats_\n",
      "I0407 10:52:20.464980 139754138821696 params.py:248] dataset_reader.token_indexers.feats.token_min_padding_length = 0\n",
      "I0407 10:52:20.465120 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.type = characters_const_padding\n",
      "I0407 10:52:20.465285 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.namespace = token_characters\n",
      "I0407 10:52:20.465479 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.byte_encoding = None\n",
      "I0407 10:52:20.465544 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:52:20.465618 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:52:20.465741 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:52:20.465851 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.start_tokens = None\n",
      "I0407 10:52:20.465914 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.end_tokens = None\n",
      "I0407 10:52:20.466024 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.min_padding_length = 32\n",
      "I0407 10:52:20.466112 139754138821696 params.py:248] dataset_reader.token_indexers.lemma.token_min_padding_length = 0\n",
      "I0407 10:52:20.466268 139754138821696 params.py:248] dataset_reader.token_indexers.token.type = pretrained_transformer_mismatched_fixed\n",
      "I0407 10:52:20.466485 139754138821696 params.py:248] dataset_reader.token_indexers.token.token_min_padding_length = 0\n",
      "I0407 10:52:20.466559 139754138821696 params.py:248] dataset_reader.token_indexers.token.model_name = allegro/herbert-large-cased\n",
      "I0407 10:52:20.466621 139754138821696 params.py:248] dataset_reader.token_indexers.token.namespace = tags\n",
      "I0407 10:52:20.466682 139754138821696 params.py:248] dataset_reader.token_indexers.token.max_length = None\n",
      "I0407 10:52:20.466777 139754138821696 params.py:384] dataset_reader.token_indexers.token.tokenizer_kwargs.use_fast = False\n",
      "I0407 10:52:20.468071 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.type = single_id\n",
      "I0407 10:52:20.468319 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.namespace = upostag\n",
      "I0407 10:52:20.468404 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.lowercase_tokens = False\n",
      "I0407 10:52:20.468464 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.start_tokens = None\n",
      "I0407 10:52:20.468523 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.end_tokens = None\n",
      "I0407 10:52:20.468573 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.feature_name = pos_\n",
      "I0407 10:52:20.468636 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:52:20.468697 139754138821696 params.py:248] dataset_reader.token_indexers.upostag.token_min_padding_length = 0\n",
      "I0407 10:52:20.468832 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.type = single_id\n",
      "I0407 10:52:20.469012 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.namespace = xpostag\n",
      "I0407 10:52:20.469086 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.lowercase_tokens = False\n",
      "I0407 10:52:20.469144 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.start_tokens = None\n",
      "I0407 10:52:20.469196 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.end_tokens = None\n",
      "I0407 10:52:20.469256 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.feature_name = tag_\n",
      "I0407 10:52:20.469320 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:52:20.469382 139754138821696 params.py:248] dataset_reader.token_indexers.xpostag.token_min_padding_length = 0\n",
      "I0407 10:52:20.469586 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.type = characters_const_padding\n",
      "I0407 10:52:20.469758 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.namespace = lemma_characters\n",
      "I0407 10:52:20.469957 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:52:20.470050 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:52:20.470128 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:52:20.470261 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:52:20.470381 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.start_tokens = None\n",
      "I0407 10:52:20.470448 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.end_tokens = None\n",
      "I0407 10:52:20.470509 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.min_padding_length = 32\n",
      "I0407 10:52:20.470579 139754138821696 params.py:248] dataset_reader.lemma_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:52:20.470668 139754138821696 params.py:248] dataset_reader.features = ['token', 'char']\n",
      "I0407 10:52:20.470764 139754138821696 params.py:248] dataset_reader.targets = ['head', 'deprel']\n",
      "I0407 10:52:20.470849 139754138821696 params.py:248] dataset_reader.use_sem = False\n",
      "I0407 10:52:20.471387 139754138821696 params.py:248] vocabulary.type = from_instances_extended\n",
      "I0407 10:52:20.471461 139754138821696 vocabulary.py:323] Loading token dictionary from /tmp/tmp2jhqu3i6/vocabulary.\n",
      "I0407 10:52:20.471798 139754138821696 filelock.py:254] Lock 139750732975216 acquired on /tmp/tmp2jhqu3i6/vocabulary/.lock\n",
      "I0407 10:52:20.472387 139754138821696 filelock.py:317] Lock 139750732975216 released on /tmp/tmp2jhqu3i6/vocabulary/.lock\n",
      "I0407 10:52:20.472922 139754138821696 params.py:248] model.type = semantic_multitask\n",
      "I0407 10:52:20.473455 139754138821696 params.py:248] model.text_field_embedder.type = basic\n",
      "I0407 10:52:20.473808 139754138821696 params.py:248] model.text_field_embedder.token_embedders.char.type = char_embeddings_from_config\n",
      "I0407 10:52:20.474030 139754138821696 params.py:248] model.text_field_embedder.token_embedders.char.embedding_dim = 64\n",
      "I0407 10:52:20.474286 139754138821696 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.input_dim = 64\n",
      "I0407 10:52:20.474377 139754138821696 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.filters = [512, 256, 64]\n",
      "I0407 10:52:20.474480 139754138821696 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.kernel_size = [3, 3, 3]\n",
      "I0407 10:52:20.474578 139754138821696 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.stride = [1, 1, 1]\n",
      "I0407 10:52:20.474673 139754138821696 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.padding = [1, 2, 4]\n",
      "I0407 10:52:20.474768 139754138821696 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.dilation = [1, 2, 4]\n",
      "I0407 10:52:20.474864 139754138821696 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.activations = ['relu', 'relu', 'linear']\n",
      "I0407 10:52:20.475005 139754138821696 params.py:248] type = relu\n",
      "I0407 10:52:20.475197 139754138821696 params.py:248] type = relu\n",
      "I0407 10:52:20.475347 139754138821696 params.py:248] type = linear\n",
      "I0407 10:52:20.481609 139754138821696 params.py:248] model.text_field_embedder.token_embedders.char.vocab_namespace = token_characters\n",
      "I0407 10:52:20.482178 139754138821696 params.py:248] model.text_field_embedder.token_embedders.token.type = transformers_word_embeddings\n",
      "I0407 10:52:20.482446 139754138821696 params.py:248] model.text_field_embedder.token_embedders.token.model_name = allegro/herbert-large-cased\n",
      "I0407 10:52:20.482533 139754138821696 params.py:248] model.text_field_embedder.token_embedders.token.projection_dim = 100\n",
      "I0407 10:52:20.482632 139754138821696 params.py:248] model.text_field_embedder.token_embedders.token.projection_activation = <function TransformersWordEmbedder.<lambda> at 0x7f1a3e346280>\n",
      "I0407 10:52:20.482703 139754138821696 params.py:248] model.text_field_embedder.token_embedders.token.projection_dropout_rate = 0.0\n",
      "I0407 10:52:20.482769 139754138821696 params.py:248] model.text_field_embedder.token_embedders.token.freeze_transformer = True\n",
      "I0407 10:52:20.482831 139754138821696 params.py:248] model.text_field_embedder.token_embedders.token.last_layer_only = True\n",
      "I0407 10:52:20.482933 139754138821696 params.py:384] model.text_field_embedder.token_embedders.token.tokenizer_kwargs.use_fast = False\n",
      "I0407 10:52:20.483003 139754138821696 params.py:248] model.text_field_embedder.token_embedders.token.transformer_kwargs = None\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "I0407 10:52:28.699278 139754138821696 params.py:248] model.seq_encoder.type = combo_encoder\n",
      "I0407 10:52:28.699747 139754138821696 params.py:248] model.seq_encoder.stacked_bilstm.input_size = 164\n",
      "I0407 10:52:28.699841 139754138821696 params.py:248] model.seq_encoder.stacked_bilstm.hidden_size = 512\n",
      "I0407 10:52:28.699910 139754138821696 params.py:248] model.seq_encoder.stacked_bilstm.num_layers = 2\n",
      "I0407 10:52:28.699976 139754138821696 params.py:248] model.seq_encoder.stacked_bilstm.recurrent_dropout_probability = 0.33\n",
      "I0407 10:52:28.700042 139754138821696 params.py:248] model.seq_encoder.stacked_bilstm.layer_dropout_probability = 0.33\n",
      "I0407 10:52:28.700106 139754138821696 params.py:248] model.seq_encoder.stacked_bilstm.use_highway = False\n",
      "I0407 10:52:29.089101 139754138821696 params.py:248] model.seq_encoder.layer_dropout_probability = 0.33\n",
      "I0407 10:52:29.089426 139754138821696 params.py:248] model.use_sample_weight = True\n",
      "I0407 10:52:29.089556 139754138821696 params.py:248] model.lemmatizer = None\n",
      "I0407 10:52:29.089638 139754138821696 params.py:248] model.upos_tagger = None\n",
      "I0407 10:52:29.089704 139754138821696 params.py:248] model.xpos_tagger = None\n",
      "I0407 10:52:29.089766 139754138821696 params.py:248] model.semantic_relation = None\n",
      "I0407 10:52:29.089827 139754138821696 params.py:248] model.morphological_feat = None\n",
      "I0407 10:52:29.090160 139754138821696 params.py:248] model.dependency_relation.type = combo_dependency_parsing_from_vocab\n",
      "I0407 10:52:29.090409 139754138821696 params.py:248] model.dependency_relation.vocab_namespace = deprel_labels\n",
      "I0407 10:52:29.090762 139754138821696 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.in_features = 1024\n",
      "I0407 10:52:29.090843 139754138821696 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.out_features = 512\n",
      "I0407 10:52:29.090915 139754138821696 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.activation = tanh\n",
      "I0407 10:52:29.091041 139754138821696 params.py:248] type = tanh\n",
      "I0407 10:52:29.091149 139754138821696 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.dropout_rate = 0.0\n",
      "I0407 10:52:29.096003 139754138821696 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.in_features = 1024\n",
      "I0407 10:52:29.096106 139754138821696 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.out_features = 512\n",
      "I0407 10:52:29.096185 139754138821696 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.activation = tanh\n",
      "I0407 10:52:29.096311 139754138821696 params.py:248] type = tanh\n",
      "I0407 10:52:29.096407 139754138821696 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.dropout_rate = 0.0\n",
      "I0407 10:52:29.101276 139754138821696 params.py:248] model.dependency_relation.head_predictor.cycle_loss_n = 0\n",
      "I0407 10:52:29.101581 139754138821696 params.py:248] model.dependency_relation.head_projection_layer.in_features = 1024\n",
      "I0407 10:52:29.101692 139754138821696 params.py:248] model.dependency_relation.head_projection_layer.out_features = 128\n",
      "I0407 10:52:29.101771 139754138821696 params.py:248] model.dependency_relation.head_projection_layer.activation = tanh\n",
      "I0407 10:52:29.101904 139754138821696 params.py:248] type = tanh\n",
      "I0407 10:52:29.102032 139754138821696 params.py:248] model.dependency_relation.head_projection_layer.dropout_rate = 0.25\n",
      "I0407 10:52:29.103649 139754138821696 params.py:248] model.dependency_relation.dependency_projection_layer.in_features = 1024\n",
      "I0407 10:52:29.103747 139754138821696 params.py:248] model.dependency_relation.dependency_projection_layer.out_features = 128\n",
      "I0407 10:52:29.103819 139754138821696 params.py:248] model.dependency_relation.dependency_projection_layer.activation = tanh\n",
      "I0407 10:52:29.103948 139754138821696 params.py:248] type = tanh\n",
      "I0407 10:52:29.104044 139754138821696 params.py:248] model.dependency_relation.dependency_projection_layer.dropout_rate = 0.25\n",
      "I0407 10:52:29.105780 139754138821696 params.py:248] model.enhanced_dependency_relation = None\n",
      "I0407 10:52:29.106371 139754138821696 params.py:248] model.regularizer.regexes.0.1.type = l2\n",
      "I0407 10:52:29.106555 139754138821696 params.py:248] model.regularizer.regexes.0.1.alpha = 1e-06\n",
      "I0407 10:52:29.106724 139754138821696 params.py:248] model.regularizer.regexes.1.1.type = l2\n",
      "I0407 10:52:29.106879 139754138821696 params.py:248] model.regularizer.regexes.1.1.alpha = 1e-06\n",
      "I0407 10:52:29.107035 139754138821696 params.py:248] model.regularizer.regexes.2.1.type = l2\n",
      "I0407 10:52:29.107207 139754138821696 params.py:248] model.regularizer.regexes.2.1.alpha = 1e-06\n",
      "I0407 10:52:29.107368 139754138821696 params.py:248] model.regularizer.regexes.3.1.type = l2\n",
      "I0407 10:52:29.107544 139754138821696 params.py:248] model.regularizer.regexes.3.1.alpha = 1e-05\n",
      "I0407 10:52:32.063793 139754138821696 archival.py:211] removing temporary unarchived model dir at /tmp/tmp2jhqu3i6\n",
      "reading instances: 2205it [01:49, 20.15it/s]\n"
     ]
    }
   ],
   "source": [
    "! {COMBO} --mode predict \\\n",
    "    --cuda_device 0 \\\n",
    "    --model_path model-pdbc/model.tar.gz \\\n",
    "    --input_file connlu/pdbc-test.conllu \\\n",
    "    --output_file connlu/pdbc-test-pred.conllu"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "13748ca1",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# text = Mały chłopiec patrzy w bok po ściągnięciu okularów .\r\n",
      "1\tMały\tmały\t_\t_\t_\t2\tadjunct\t2:adjunct\t_\r\n",
      "2\tchłopiec\tchłopiec\t_\t_\t_\t3\tsubj\t3:subj\t_\r\n",
      "3\tpatrzy\tpatrzeć\t_\t_\t_\t0\troot\t0:root\t_\r\n",
      "4\tw\tw\t_\t_\t_\t3\tadjunct_adl\t3:adjunct_adl\t_\r\n",
      "5\tbok\tbok\t_\t_\t_\t4\tcomp\t4:comp\t_\r\n",
      "6\tpo\tpo\t_\t_\t_\t3\tadjunct_temp\t3:adjunct_temp\t_\r\n",
      "7\tściągnięciu\tściągnąć\t_\t_\t_\t6\tcomp\t6:comp\t_\r\n",
      "8\tokularów\tokulary\t_\t_\t_\t7\tobj\t7:obj\t_\r\n",
      "9\t.\t.\t_\t_\t_\t3\tpunct\t3:punct\t_\r\n"
     ]
    }
   ],
   "source": [
    "! head connlu/pdbc-test.conllu"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "30021124",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# text = Mały chłopiec patrzy w bok po ściągnięciu okularów .\r\n",
      "1\tMały\tmały\t_\t_\t_\t2\tadjunct\t2:adjunct\t_\r\n",
      "2\tchłopiec\tchłopiec\t_\t_\t_\t3\tsubj\t3:subj\t_\r\n",
      "3\tpatrzy\tpatrzeć\t_\t_\t_\t0\troot\t0:root\t_\r\n",
      "4\tw\tw\t_\t_\t_\t3\tcomp\t3:adjunct_adl\t_\r\n",
      "5\tbok\tbok\t_\t_\t_\t4\tcomp\t4:comp\t_\r\n",
      "6\tpo\tpo\t_\t_\t_\t3\tadjunct_temp\t3:adjunct_temp\t_\r\n",
      "7\tściągnięciu\tściągnąć\t_\t_\t_\t6\tcomp\t6:comp\t_\r\n",
      "8\tokularów\tokulary\t_\t_\t_\t7\tobj\t7:obj\t_\r\n",
      "9\t.\t.\t_\t_\t_\t3\tpunct\t3:punct\t_\r\n"
     ]
    }
   ],
   "source": [
    "! head connlu/pdbc-test-pred.conllu"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "99359d8c",
   "metadata": {},
   "source": [
    "Continuous-only model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "30a66da6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "I0407 10:54:27.401382 140321380496448 archival.py:184] loading archive file model-pdbc-cont/model.tar.gz\n",
      "I0407 10:54:27.402150 140321380496448 archival.py:263] extracting archive file model-pdbc-cont/model.tar.gz to temp dir /tmp/tmpuvesoi4q\n",
      "I0407 10:54:43.091615 140321380496448 params.py:248] dataset_reader.type = conllu\n",
      "I0407 10:54:43.092000 140321380496448 params.py:248] dataset_reader.lazy = False\n",
      "I0407 10:54:43.092082 140321380496448 params.py:248] dataset_reader.cache_directory = None\n",
      "I0407 10:54:43.092129 140321380496448 params.py:248] dataset_reader.max_instances = None\n",
      "I0407 10:54:43.092173 140321380496448 params.py:248] dataset_reader.manual_distributed_sharding = False\n",
      "I0407 10:54:43.092208 140321380496448 params.py:248] dataset_reader.manual_multi_process_sharding = False\n",
      "I0407 10:54:43.092409 140321380496448 params.py:248] dataset_reader.token_indexers.char.type = characters_const_padding\n",
      "I0407 10:54:43.092535 140321380496448 params.py:248] dataset_reader.token_indexers.char.namespace = token_characters\n",
      "I0407 10:54:43.092682 140321380496448 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:54:43.092730 140321380496448 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:54:43.092786 140321380496448 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:54:43.092888 140321380496448 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:54:43.092970 140321380496448 params.py:248] dataset_reader.token_indexers.char.start_tokens = None\n",
      "I0407 10:54:43.093014 140321380496448 params.py:248] dataset_reader.token_indexers.char.end_tokens = None\n",
      "I0407 10:54:43.093051 140321380496448 params.py:248] dataset_reader.token_indexers.char.min_padding_length = 32\n",
      "I0407 10:54:43.093093 140321380496448 params.py:248] dataset_reader.token_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:54:43.093198 140321380496448 params.py:248] dataset_reader.token_indexers.feats.type = feats_indexer\n",
      "I0407 10:54:43.093306 140321380496448 params.py:248] dataset_reader.token_indexers.feats.namespace = feats\n",
      "I0407 10:54:43.093353 140321380496448 params.py:248] dataset_reader.token_indexers.feats.feature_name = feats_\n",
      "I0407 10:54:43.093388 140321380496448 params.py:248] dataset_reader.token_indexers.feats.token_min_padding_length = 0\n",
      "I0407 10:54:43.093482 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.type = characters_const_padding\n",
      "I0407 10:54:43.093593 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.namespace = token_characters\n",
      "I0407 10:54:43.093723 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.byte_encoding = None\n",
      "I0407 10:54:43.093769 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:54:43.093816 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:54:43.093899 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:54:43.093993 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.start_tokens = None\n",
      "I0407 10:54:43.094043 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.end_tokens = None\n",
      "I0407 10:54:43.094079 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.min_padding_length = 32\n",
      "I0407 10:54:43.094121 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.token_min_padding_length = 0\n",
      "I0407 10:54:43.094226 140321380496448 params.py:248] dataset_reader.token_indexers.token.type = pretrained_transformer_mismatched_fixed\n",
      "I0407 10:54:43.094377 140321380496448 params.py:248] dataset_reader.token_indexers.token.token_min_padding_length = 0\n",
      "I0407 10:54:43.094430 140321380496448 params.py:248] dataset_reader.token_indexers.token.model_name = allegro/herbert-large-cased\n",
      "I0407 10:54:43.094474 140321380496448 params.py:248] dataset_reader.token_indexers.token.namespace = tags\n",
      "I0407 10:54:43.094522 140321380496448 params.py:248] dataset_reader.token_indexers.token.max_length = None\n",
      "I0407 10:54:43.094592 140321380496448 params.py:384] dataset_reader.token_indexers.token.tokenizer_kwargs.use_fast = False\n",
      "I0407 10:54:45.858621 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.type = single_id\n",
      "I0407 10:54:45.858990 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.namespace = upostag\n",
      "I0407 10:54:45.859087 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.lowercase_tokens = False\n",
      "I0407 10:54:45.859157 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.start_tokens = None\n",
      "I0407 10:54:45.859210 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.end_tokens = None\n",
      "I0407 10:54:45.859268 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.feature_name = pos_\n",
      "I0407 10:54:45.859321 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:54:45.859382 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.token_min_padding_length = 0\n",
      "I0407 10:54:45.859541 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.type = single_id\n",
      "I0407 10:54:45.859729 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.namespace = xpostag\n",
      "I0407 10:54:45.859802 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.lowercase_tokens = False\n",
      "I0407 10:54:45.859875 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.start_tokens = None\n",
      "I0407 10:54:45.859931 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.end_tokens = None\n",
      "I0407 10:54:45.859991 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.feature_name = tag_\n",
      "I0407 10:54:45.860045 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:54:45.860103 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.token_min_padding_length = 0\n",
      "I0407 10:54:45.860332 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.type = characters_const_padding\n",
      "I0407 10:54:45.860523 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.namespace = lemma_characters\n",
      "I0407 10:54:45.860739 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:54:45.860809 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:54:45.860888 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:54:45.861032 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:54:45.861149 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.start_tokens = None\n",
      "I0407 10:54:45.861213 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.end_tokens = None\n",
      "I0407 10:54:45.861277 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.min_padding_length = 32\n",
      "I0407 10:54:45.861337 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:54:45.861427 140321380496448 params.py:248] dataset_reader.features = ['token', 'char']\n",
      "I0407 10:54:45.861522 140321380496448 params.py:248] dataset_reader.targets = ['head', 'deprel']\n",
      "I0407 10:54:45.861611 140321380496448 params.py:248] dataset_reader.use_sem = False\n",
      "I0407 10:54:45.861762 140321380496448 params.py:248] dataset_reader.type = conllu\n",
      "I0407 10:54:45.862029 140321380496448 params.py:248] dataset_reader.lazy = False\n",
      "I0407 10:54:45.862116 140321380496448 params.py:248] dataset_reader.cache_directory = None\n",
      "I0407 10:54:45.862177 140321380496448 params.py:248] dataset_reader.max_instances = None\n",
      "I0407 10:54:45.862234 140321380496448 params.py:248] dataset_reader.manual_distributed_sharding = False\n",
      "I0407 10:54:45.862295 140321380496448 params.py:248] dataset_reader.manual_multi_process_sharding = False\n",
      "I0407 10:54:45.862535 140321380496448 params.py:248] dataset_reader.token_indexers.char.type = characters_const_padding\n",
      "I0407 10:54:45.862701 140321380496448 params.py:248] dataset_reader.token_indexers.char.namespace = token_characters\n",
      "I0407 10:54:45.862900 140321380496448 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:54:45.862966 140321380496448 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:54:45.863043 140321380496448 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:54:45.863168 140321380496448 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:54:45.863281 140321380496448 params.py:248] dataset_reader.token_indexers.char.start_tokens = None\n",
      "I0407 10:54:45.863344 140321380496448 params.py:248] dataset_reader.token_indexers.char.end_tokens = None\n",
      "I0407 10:54:45.863406 140321380496448 params.py:248] dataset_reader.token_indexers.char.min_padding_length = 32\n",
      "I0407 10:54:45.863469 140321380496448 params.py:248] dataset_reader.token_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:54:45.863596 140321380496448 params.py:248] dataset_reader.token_indexers.feats.type = feats_indexer\n",
      "I0407 10:54:45.863752 140321380496448 params.py:248] dataset_reader.token_indexers.feats.namespace = feats\n",
      "I0407 10:54:45.863821 140321380496448 params.py:248] dataset_reader.token_indexers.feats.feature_name = feats_\n",
      "I0407 10:54:45.863883 140321380496448 params.py:248] dataset_reader.token_indexers.feats.token_min_padding_length = 0\n",
      "I0407 10:54:45.864030 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.type = characters_const_padding\n",
      "I0407 10:54:45.864196 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.namespace = token_characters\n",
      "I0407 10:54:45.864392 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.byte_encoding = None\n",
      "I0407 10:54:45.864460 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:54:45.864540 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:54:45.864660 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:54:45.864772 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.start_tokens = None\n",
      "I0407 10:54:45.864835 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.end_tokens = None\n",
      "I0407 10:54:45.864896 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.min_padding_length = 32\n",
      "I0407 10:54:45.864965 140321380496448 params.py:248] dataset_reader.token_indexers.lemma.token_min_padding_length = 0\n",
      "I0407 10:54:45.865104 140321380496448 params.py:248] dataset_reader.token_indexers.token.type = pretrained_transformer_mismatched_fixed\n",
      "I0407 10:54:45.865323 140321380496448 params.py:248] dataset_reader.token_indexers.token.token_min_padding_length = 0\n",
      "I0407 10:54:45.865396 140321380496448 params.py:248] dataset_reader.token_indexers.token.model_name = allegro/herbert-large-cased\n",
      "I0407 10:54:45.865460 140321380496448 params.py:248] dataset_reader.token_indexers.token.namespace = tags\n",
      "I0407 10:54:45.865518 140321380496448 params.py:248] dataset_reader.token_indexers.token.max_length = None\n",
      "I0407 10:54:45.865614 140321380496448 params.py:384] dataset_reader.token_indexers.token.tokenizer_kwargs.use_fast = False\n",
      "I0407 10:54:45.866884 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.type = single_id\n",
      "I0407 10:54:45.867116 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.namespace = upostag\n",
      "I0407 10:54:45.867190 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.lowercase_tokens = False\n",
      "I0407 10:54:45.867258 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.start_tokens = None\n",
      "I0407 10:54:45.867316 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.end_tokens = None\n",
      "I0407 10:54:45.867376 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.feature_name = pos_\n",
      "I0407 10:54:45.867437 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:54:45.867497 140321380496448 params.py:248] dataset_reader.token_indexers.upostag.token_min_padding_length = 0\n",
      "I0407 10:54:45.867640 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.type = single_id\n",
      "I0407 10:54:45.867815 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.namespace = xpostag\n",
      "I0407 10:54:45.867887 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.lowercase_tokens = False\n",
      "I0407 10:54:45.867951 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.start_tokens = None\n",
      "I0407 10:54:45.868006 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.end_tokens = None\n",
      "I0407 10:54:45.868063 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.feature_name = tag_\n",
      "I0407 10:54:45.868122 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:54:45.868181 140321380496448 params.py:248] dataset_reader.token_indexers.xpostag.token_min_padding_length = 0\n",
      "I0407 10:54:45.868388 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.type = characters_const_padding\n",
      "I0407 10:54:45.868559 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.namespace = lemma_characters\n",
      "I0407 10:54:45.868757 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:54:45.868824 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:54:45.868897 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:54:45.869028 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:54:45.869139 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.start_tokens = None\n",
      "I0407 10:54:45.869202 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.end_tokens = None\n",
      "I0407 10:54:45.869256 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.min_padding_length = 32\n",
      "I0407 10:54:45.869315 140321380496448 params.py:248] dataset_reader.lemma_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:54:45.869398 140321380496448 params.py:248] dataset_reader.features = ['token', 'char']\n",
      "I0407 10:54:45.869489 140321380496448 params.py:248] dataset_reader.targets = ['head', 'deprel']\n",
      "I0407 10:54:45.869572 140321380496448 params.py:248] dataset_reader.use_sem = False\n",
      "I0407 10:54:45.870136 140321380496448 params.py:248] vocabulary.type = from_instances_extended\n",
      "I0407 10:54:45.870218 140321380496448 vocabulary.py:323] Loading token dictionary from /tmp/tmpuvesoi4q/vocabulary.\n",
      "I0407 10:54:45.870543 140321380496448 filelock.py:254] Lock 140317974842768 acquired on /tmp/tmpuvesoi4q/vocabulary/.lock\n",
      "I0407 10:54:45.871132 140321380496448 filelock.py:317] Lock 140317974842768 released on /tmp/tmpuvesoi4q/vocabulary/.lock\n",
      "I0407 10:54:45.871641 140321380496448 params.py:248] model.type = semantic_multitask\n",
      "I0407 10:54:45.872183 140321380496448 params.py:248] model.text_field_embedder.type = basic\n",
      "I0407 10:54:45.872548 140321380496448 params.py:248] model.text_field_embedder.token_embedders.char.type = char_embeddings_from_config\n",
      "I0407 10:54:45.872749 140321380496448 params.py:248] model.text_field_embedder.token_embedders.char.embedding_dim = 64\n",
      "I0407 10:54:45.873004 140321380496448 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.input_dim = 64\n",
      "I0407 10:54:45.873091 140321380496448 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.filters = [512, 256, 64]\n",
      "I0407 10:54:45.873195 140321380496448 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.kernel_size = [3, 3, 3]\n",
      "I0407 10:54:45.873291 140321380496448 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.stride = [1, 1, 1]\n",
      "I0407 10:54:45.873384 140321380496448 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.padding = [1, 2, 4]\n",
      "I0407 10:54:45.873478 140321380496448 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.dilation = [1, 2, 4]\n",
      "I0407 10:54:45.873572 140321380496448 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.activations = ['relu', 'relu', 'linear']\n",
      "I0407 10:54:45.873714 140321380496448 params.py:248] type = relu\n",
      "I0407 10:54:45.873904 140321380496448 params.py:248] type = relu\n",
      "I0407 10:54:45.874098 140321380496448 params.py:248] type = linear\n",
      "I0407 10:54:45.880232 140321380496448 params.py:248] model.text_field_embedder.token_embedders.char.vocab_namespace = token_characters\n",
      "I0407 10:54:45.880783 140321380496448 params.py:248] model.text_field_embedder.token_embedders.token.type = transformers_word_embeddings\n",
      "I0407 10:54:45.881011 140321380496448 params.py:248] model.text_field_embedder.token_embedders.token.model_name = allegro/herbert-large-cased\n",
      "I0407 10:54:45.881093 140321380496448 params.py:248] model.text_field_embedder.token_embedders.token.projection_dim = 100\n",
      "I0407 10:54:45.881184 140321380496448 params.py:248] model.text_field_embedder.token_embedders.token.projection_activation = <function TransformersWordEmbedder.<lambda> at 0x7f9e50745280>\n",
      "I0407 10:54:45.881261 140321380496448 params.py:248] model.text_field_embedder.token_embedders.token.projection_dropout_rate = 0.0\n",
      "I0407 10:54:45.881328 140321380496448 params.py:248] model.text_field_embedder.token_embedders.token.freeze_transformer = True\n",
      "I0407 10:54:45.881389 140321380496448 params.py:248] model.text_field_embedder.token_embedders.token.last_layer_only = True\n",
      "I0407 10:54:45.881492 140321380496448 params.py:384] model.text_field_embedder.token_embedders.token.tokenizer_kwargs.use_fast = False\n",
      "I0407 10:54:45.881562 140321380496448 params.py:248] model.text_field_embedder.token_embedders.token.transformer_kwargs = None\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "I0407 10:54:52.911276 140321380496448 params.py:248] model.seq_encoder.type = combo_encoder\n",
      "I0407 10:54:52.911743 140321380496448 params.py:248] model.seq_encoder.stacked_bilstm.input_size = 164\n",
      "I0407 10:54:52.911836 140321380496448 params.py:248] model.seq_encoder.stacked_bilstm.hidden_size = 512\n",
      "I0407 10:54:52.911902 140321380496448 params.py:248] model.seq_encoder.stacked_bilstm.num_layers = 2\n",
      "I0407 10:54:52.911965 140321380496448 params.py:248] model.seq_encoder.stacked_bilstm.recurrent_dropout_probability = 0.33\n",
      "I0407 10:54:52.912029 140321380496448 params.py:248] model.seq_encoder.stacked_bilstm.layer_dropout_probability = 0.33\n",
      "I0407 10:54:52.912090 140321380496448 params.py:248] model.seq_encoder.stacked_bilstm.use_highway = False\n",
      "I0407 10:54:53.279199 140321380496448 params.py:248] model.seq_encoder.layer_dropout_probability = 0.33\n",
      "I0407 10:54:53.279505 140321380496448 params.py:248] model.use_sample_weight = True\n",
      "I0407 10:54:53.279624 140321380496448 params.py:248] model.lemmatizer = None\n",
      "I0407 10:54:53.279695 140321380496448 params.py:248] model.upos_tagger = None\n",
      "I0407 10:54:53.279757 140321380496448 params.py:248] model.xpos_tagger = None\n",
      "I0407 10:54:53.279815 140321380496448 params.py:248] model.semantic_relation = None\n",
      "I0407 10:54:53.279873 140321380496448 params.py:248] model.morphological_feat = None\n",
      "I0407 10:54:53.280155 140321380496448 params.py:248] model.dependency_relation.type = combo_dependency_parsing_from_vocab\n",
      "I0407 10:54:53.280393 140321380496448 params.py:248] model.dependency_relation.vocab_namespace = deprel_labels\n",
      "I0407 10:54:53.280741 140321380496448 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.in_features = 1024\n",
      "I0407 10:54:53.280819 140321380496448 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.out_features = 512\n",
      "I0407 10:54:53.280887 140321380496448 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.activation = tanh\n",
      "I0407 10:54:53.281012 140321380496448 params.py:248] type = tanh\n",
      "I0407 10:54:53.281121 140321380496448 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.dropout_rate = 0.0\n",
      "I0407 10:54:53.285843 140321380496448 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.in_features = 1024\n",
      "I0407 10:54:53.286010 140321380496448 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.out_features = 512\n",
      "I0407 10:54:53.286088 140321380496448 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.activation = tanh\n",
      "I0407 10:54:53.286234 140321380496448 params.py:248] type = tanh\n",
      "I0407 10:54:53.286334 140321380496448 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.dropout_rate = 0.0\n",
      "I0407 10:54:53.290788 140321380496448 params.py:248] model.dependency_relation.head_predictor.cycle_loss_n = 0\n",
      "I0407 10:54:53.291093 140321380496448 params.py:248] model.dependency_relation.head_projection_layer.in_features = 1024\n",
      "I0407 10:54:53.291184 140321380496448 params.py:248] model.dependency_relation.head_projection_layer.out_features = 128\n",
      "I0407 10:54:53.291281 140321380496448 params.py:248] model.dependency_relation.head_projection_layer.activation = tanh\n",
      "I0407 10:54:53.291444 140321380496448 params.py:248] type = tanh\n",
      "I0407 10:54:53.291567 140321380496448 params.py:248] model.dependency_relation.head_projection_layer.dropout_rate = 0.25\n",
      "I0407 10:54:53.293048 140321380496448 params.py:248] model.dependency_relation.dependency_projection_layer.in_features = 1024\n",
      "I0407 10:54:53.293147 140321380496448 params.py:248] model.dependency_relation.dependency_projection_layer.out_features = 128\n",
      "I0407 10:54:53.293218 140321380496448 params.py:248] model.dependency_relation.dependency_projection_layer.activation = tanh\n",
      "I0407 10:54:53.293342 140321380496448 params.py:248] type = tanh\n",
      "I0407 10:54:53.293437 140321380496448 params.py:248] model.dependency_relation.dependency_projection_layer.dropout_rate = 0.25\n",
      "I0407 10:54:53.295091 140321380496448 params.py:248] model.enhanced_dependency_relation = None\n",
      "I0407 10:54:53.295609 140321380496448 params.py:248] model.regularizer.regexes.0.1.type = l2\n",
      "I0407 10:54:53.295784 140321380496448 params.py:248] model.regularizer.regexes.0.1.alpha = 1e-06\n",
      "I0407 10:54:53.295953 140321380496448 params.py:248] model.regularizer.regexes.1.1.type = l2\n",
      "I0407 10:54:53.296107 140321380496448 params.py:248] model.regularizer.regexes.1.1.alpha = 1e-06\n",
      "I0407 10:54:53.296261 140321380496448 params.py:248] model.regularizer.regexes.2.1.type = l2\n",
      "I0407 10:54:53.296412 140321380496448 params.py:248] model.regularizer.regexes.2.1.alpha = 1e-06\n",
      "I0407 10:54:53.296564 140321380496448 params.py:248] model.regularizer.regexes.3.1.type = l2\n",
      "I0407 10:54:53.296715 140321380496448 params.py:248] model.regularizer.regexes.3.1.alpha = 1e-05\n",
      "I0407 10:54:56.194218 140321380496448 archival.py:211] removing temporary unarchived model dir at /tmp/tmpuvesoi4q\n",
      "reading instances: 1980it [01:33, 21.15it/s]\n"
     ]
    }
   ],
   "source": [
    "! {COMBO} --mode predict \\\n",
    "    --cuda_device 0 \\\n",
    "    --model_path model-pdbc-cont/model.tar.gz \\\n",
    "    --input_file connlu/pdbc-cont-validation.conllu \\\n",
    "    --output_file connlu/pdbc-cont-validation-pred.conllu"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "cfe7a3c4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# text = Dwie dziewczynki opierają się o dach kapliczki , chłopiec wspina się na niego , a trzecia dziewczynka stoi obok .\r\n",
      "1\tDwie\tdwa\t_\t_\t_\t3\tsubj\t3:subj\t_\r\n",
      "2\tdziewczynki\tdziewczynka\t_\t_\t_\t1\tcomp\t1:comp\t_\r\n",
      "3\topierają\topierać\t_\t_\t_\t15\tconjunct\t15:conjunct\t_\r\n",
      "4\tsię\tsię\t_\t_\t_\t3\trefl\t3:refl\t_\r\n",
      "5\to\to\t_\t_\t_\t3\tcomp\t3:comp\t_\r\n",
      "6\tdach\tdach\t_\t_\t_\t5\tcomp\t5:comp\t_\r\n",
      "7\tkapliczki\tkapliczka\t_\t_\t_\t6\tadjunct\t6:adjunct\t_\r\n",
      "8\t,\t,\t_\t_\t_\t15\tpunct\t15:punct\t_\r\n",
      "9\tchłopiec\tchłopiec\t_\t_\t_\t10\tsubj\t10:subj\t_\r\n"
     ]
    }
   ],
   "source": [
    "! head connlu/pdbc-cont-validation.conllu"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "7dba9571",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# text = Dwie dziewczynki opierają się o dach kapliczki , chłopiec wspina się na niego , a trzecia dziewczynka stoi obok .\r\n",
      "1\tDwie\tdwa\t_\t_\t_\t3\tsubj\t3:subj\t_\r\n",
      "2\tdziewczynki\tdziewczynka\t_\t_\t_\t1\tcomp\t1:comp\t_\r\n",
      "3\topierają\topierać\t_\t_\t_\t15\tconjunct\t15:conjunct\t_\r\n",
      "4\tsię\tsię\t_\t_\t_\t3\trefl\t3:refl\t_\r\n",
      "5\to\to\t_\t_\t_\t3\tcomp\t3:comp\t_\r\n",
      "6\tdach\tdach\t_\t_\t_\t5\tcomp\t5:comp\t_\r\n",
      "7\tkapliczki\tkapliczka\t_\t_\t_\t6\tadjunct\t6:adjunct\t_\r\n",
      "8\t,\t,\t_\t_\t_\t15\tpunct\t15:punct\t_\r\n",
      "9\tchłopiec\tchłopiec\t_\t_\t_\t10\tsubj\t10:subj\t_\r\n"
     ]
    }
   ],
   "source": [
    "! head connlu/pdbc-cont-validation-pred.conllu"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "679601c2",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "I0407 10:56:35.295660 140254825452608 archival.py:184] loading archive file model-pdbc-cont/model.tar.gz\n",
      "I0407 10:56:35.296370 140254825452608 archival.py:263] extracting archive file model-pdbc-cont/model.tar.gz to temp dir /tmp/tmpdhtf4et1\n",
      "I0407 10:56:52.876630 140254825452608 params.py:248] dataset_reader.type = conllu\n",
      "I0407 10:56:52.877122 140254825452608 params.py:248] dataset_reader.lazy = False\n",
      "I0407 10:56:52.877243 140254825452608 params.py:248] dataset_reader.cache_directory = None\n",
      "I0407 10:56:52.877313 140254825452608 params.py:248] dataset_reader.max_instances = None\n",
      "I0407 10:56:52.877380 140254825452608 params.py:248] dataset_reader.manual_distributed_sharding = False\n",
      "I0407 10:56:52.877446 140254825452608 params.py:248] dataset_reader.manual_multi_process_sharding = False\n",
      "I0407 10:56:52.877737 140254825452608 params.py:248] dataset_reader.token_indexers.char.type = characters_const_padding\n",
      "I0407 10:56:52.877938 140254825452608 params.py:248] dataset_reader.token_indexers.char.namespace = token_characters\n",
      "I0407 10:56:52.878201 140254825452608 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:56:52.878276 140254825452608 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:56:52.878360 140254825452608 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:56:52.878507 140254825452608 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:56:52.878633 140254825452608 params.py:248] dataset_reader.token_indexers.char.start_tokens = None\n",
      "I0407 10:56:52.878702 140254825452608 params.py:248] dataset_reader.token_indexers.char.end_tokens = None\n",
      "I0407 10:56:52.878761 140254825452608 params.py:248] dataset_reader.token_indexers.char.min_padding_length = 32\n",
      "I0407 10:56:52.878825 140254825452608 params.py:248] dataset_reader.token_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:56:52.878969 140254825452608 params.py:248] dataset_reader.token_indexers.feats.type = feats_indexer\n",
      "I0407 10:56:52.879144 140254825452608 params.py:248] dataset_reader.token_indexers.feats.namespace = feats\n",
      "I0407 10:56:52.879218 140254825452608 params.py:248] dataset_reader.token_indexers.feats.feature_name = feats_\n",
      "I0407 10:56:52.879282 140254825452608 params.py:248] dataset_reader.token_indexers.feats.token_min_padding_length = 0\n",
      "I0407 10:56:52.879426 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.type = characters_const_padding\n",
      "I0407 10:56:52.879594 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.namespace = token_characters\n",
      "I0407 10:56:52.879792 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.byte_encoding = None\n",
      "I0407 10:56:52.879862 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:56:52.879944 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:56:52.880068 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:56:52.880184 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.start_tokens = None\n",
      "I0407 10:56:52.880254 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.end_tokens = None\n",
      "I0407 10:56:52.880316 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.min_padding_length = 32\n",
      "I0407 10:56:52.880378 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.token_min_padding_length = 0\n",
      "I0407 10:56:52.880523 140254825452608 params.py:248] dataset_reader.token_indexers.token.type = pretrained_transformer_mismatched_fixed\n",
      "I0407 10:56:52.880748 140254825452608 params.py:248] dataset_reader.token_indexers.token.token_min_padding_length = 0\n",
      "I0407 10:56:52.880829 140254825452608 params.py:248] dataset_reader.token_indexers.token.model_name = allegro/herbert-large-cased\n",
      "I0407 10:56:52.880893 140254825452608 params.py:248] dataset_reader.token_indexers.token.namespace = tags\n",
      "I0407 10:56:52.880957 140254825452608 params.py:248] dataset_reader.token_indexers.token.max_length = None\n",
      "I0407 10:56:52.881069 140254825452608 params.py:384] dataset_reader.token_indexers.token.tokenizer_kwargs.use_fast = False\n",
      "I0407 10:56:55.893562 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.type = single_id\n",
      "I0407 10:56:55.894115 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.namespace = upostag\n",
      "I0407 10:56:55.894256 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.lowercase_tokens = False\n",
      "I0407 10:56:55.894343 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.start_tokens = None\n",
      "I0407 10:56:55.894395 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.end_tokens = None\n",
      "I0407 10:56:55.894465 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.feature_name = pos_\n",
      "I0407 10:56:55.894520 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:56:55.894590 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.token_min_padding_length = 0\n",
      "I0407 10:56:55.894762 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.type = single_id\n",
      "I0407 10:56:55.894958 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.namespace = xpostag\n",
      "I0407 10:56:55.895048 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.lowercase_tokens = False\n",
      "I0407 10:56:55.895111 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.start_tokens = None\n",
      "I0407 10:56:55.895176 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.end_tokens = None\n",
      "I0407 10:56:55.895228 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.feature_name = tag_\n",
      "I0407 10:56:55.895297 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:56:55.895349 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.token_min_padding_length = 0\n",
      "I0407 10:56:55.895593 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.type = characters_const_padding\n",
      "I0407 10:56:55.895786 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.namespace = lemma_characters\n",
      "I0407 10:56:55.896016 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:56:55.896095 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:56:55.896188 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:56:55.896353 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:56:55.896480 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.start_tokens = None\n",
      "I0407 10:56:55.896552 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.end_tokens = None\n",
      "I0407 10:56:55.896607 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.min_padding_length = 32\n",
      "I0407 10:56:55.896675 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:56:55.896760 140254825452608 params.py:248] dataset_reader.features = ['token', 'char']\n",
      "I0407 10:56:55.896864 140254825452608 params.py:248] dataset_reader.targets = ['head', 'deprel']\n",
      "I0407 10:56:55.896962 140254825452608 params.py:248] dataset_reader.use_sem = False\n",
      "I0407 10:56:55.897153 140254825452608 params.py:248] dataset_reader.type = conllu\n",
      "I0407 10:56:55.897414 140254825452608 params.py:248] dataset_reader.lazy = False\n",
      "I0407 10:56:55.897499 140254825452608 params.py:248] dataset_reader.cache_directory = None\n",
      "I0407 10:56:55.897570 140254825452608 params.py:248] dataset_reader.max_instances = None\n",
      "I0407 10:56:55.897637 140254825452608 params.py:248] dataset_reader.manual_distributed_sharding = False\n",
      "I0407 10:56:55.897707 140254825452608 params.py:248] dataset_reader.manual_multi_process_sharding = False\n",
      "I0407 10:56:55.897995 140254825452608 params.py:248] dataset_reader.token_indexers.char.type = characters_const_padding\n",
      "I0407 10:56:55.898183 140254825452608 params.py:248] dataset_reader.token_indexers.char.namespace = token_characters\n",
      "I0407 10:56:55.898398 140254825452608 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:56:55.898473 140254825452608 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:56:55.898542 140254825452608 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:56:55.898677 140254825452608 params.py:248] dataset_reader.token_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:56:55.898799 140254825452608 params.py:248] dataset_reader.token_indexers.char.start_tokens = None\n",
      "I0407 10:56:55.898869 140254825452608 params.py:248] dataset_reader.token_indexers.char.end_tokens = None\n",
      "I0407 10:56:55.898936 140254825452608 params.py:248] dataset_reader.token_indexers.char.min_padding_length = 32\n",
      "I0407 10:56:55.898998 140254825452608 params.py:248] dataset_reader.token_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:56:55.899158 140254825452608 params.py:248] dataset_reader.token_indexers.feats.type = feats_indexer\n",
      "I0407 10:56:55.899337 140254825452608 params.py:248] dataset_reader.token_indexers.feats.namespace = feats\n",
      "I0407 10:56:55.899414 140254825452608 params.py:248] dataset_reader.token_indexers.feats.feature_name = feats_\n",
      "I0407 10:56:55.899485 140254825452608 params.py:248] dataset_reader.token_indexers.feats.token_min_padding_length = 0\n",
      "I0407 10:56:55.899629 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.type = characters_const_padding\n",
      "I0407 10:56:55.899797 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.namespace = token_characters\n",
      "I0407 10:56:55.899995 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.byte_encoding = None\n",
      "I0407 10:56:55.900055 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:56:55.900130 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:56:55.900250 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:56:55.900363 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.start_tokens = None\n",
      "I0407 10:56:55.900426 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.end_tokens = None\n",
      "I0407 10:56:55.900486 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.min_padding_length = 32\n",
      "I0407 10:56:55.900547 140254825452608 params.py:248] dataset_reader.token_indexers.lemma.token_min_padding_length = 0\n",
      "I0407 10:56:55.900689 140254825452608 params.py:248] dataset_reader.token_indexers.token.type = pretrained_transformer_mismatched_fixed\n",
      "I0407 10:56:55.900916 140254825452608 params.py:248] dataset_reader.token_indexers.token.token_min_padding_length = 0\n",
      "I0407 10:56:55.900995 140254825452608 params.py:248] dataset_reader.token_indexers.token.model_name = allegro/herbert-large-cased\n",
      "I0407 10:56:55.901061 140254825452608 params.py:248] dataset_reader.token_indexers.token.namespace = tags\n",
      "I0407 10:56:55.901125 140254825452608 params.py:248] dataset_reader.token_indexers.token.max_length = None\n",
      "I0407 10:56:55.901226 140254825452608 params.py:384] dataset_reader.token_indexers.token.tokenizer_kwargs.use_fast = False\n",
      "I0407 10:56:55.902561 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.type = single_id\n",
      "I0407 10:56:55.902824 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.namespace = upostag\n",
      "I0407 10:56:55.902909 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.lowercase_tokens = False\n",
      "I0407 10:56:55.902969 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.start_tokens = None\n",
      "I0407 10:56:55.903034 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.end_tokens = None\n",
      "I0407 10:56:55.903095 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.feature_name = pos_\n",
      "I0407 10:56:55.903159 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:56:55.903219 140254825452608 params.py:248] dataset_reader.token_indexers.upostag.token_min_padding_length = 0\n",
      "I0407 10:56:55.903364 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.type = single_id\n",
      "I0407 10:56:55.903547 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.namespace = xpostag\n",
      "I0407 10:56:55.903621 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.lowercase_tokens = False\n",
      "I0407 10:56:55.903687 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.start_tokens = None\n",
      "I0407 10:56:55.903748 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.end_tokens = None\n",
      "I0407 10:56:55.903811 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.feature_name = tag_\n",
      "I0407 10:56:55.903868 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.default_value = THIS IS A REALLY UNLIKELY VALUE THAT HAS TO BE A STRING\n",
      "I0407 10:56:55.903931 140254825452608 params.py:248] dataset_reader.token_indexers.xpostag.token_min_padding_length = 0\n",
      "I0407 10:56:55.904146 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.type = characters_const_padding\n",
      "I0407 10:56:55.904325 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.namespace = lemma_characters\n",
      "I0407 10:56:55.904539 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.byte_encoding = None\n",
      "I0407 10:56:55.904611 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.lowercase_characters = False\n",
      "I0407 10:56:55.904691 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.start_tokens = ['__START__']\n",
      "I0407 10:56:55.904827 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.character_tokenizer.end_tokens = ['__END__']\n",
      "I0407 10:56:55.904946 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.start_tokens = None\n",
      "I0407 10:56:55.905013 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.end_tokens = None\n",
      "I0407 10:56:55.905084 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.min_padding_length = 32\n",
      "I0407 10:56:55.905149 140254825452608 params.py:248] dataset_reader.lemma_indexers.char.token_min_padding_length = 0\n",
      "I0407 10:56:55.905237 140254825452608 params.py:248] dataset_reader.features = ['token', 'char']\n",
      "I0407 10:56:55.905334 140254825452608 params.py:248] dataset_reader.targets = ['head', 'deprel']\n",
      "I0407 10:56:55.905422 140254825452608 params.py:248] dataset_reader.use_sem = False\n",
      "I0407 10:56:55.906047 140254825452608 params.py:248] vocabulary.type = from_instances_extended\n",
      "I0407 10:56:55.906157 140254825452608 vocabulary.py:323] Loading token dictionary from /tmp/tmpdhtf4et1/vocabulary.\n",
      "I0407 10:56:55.906635 140254825452608 filelock.py:254] Lock 140251419626896 acquired on /tmp/tmpdhtf4et1/vocabulary/.lock\n",
      "I0407 10:56:55.907354 140254825452608 filelock.py:317] Lock 140251419626896 released on /tmp/tmpdhtf4et1/vocabulary/.lock\n",
      "I0407 10:56:55.907914 140254825452608 params.py:248] model.type = semantic_multitask\n",
      "I0407 10:56:55.908506 140254825452608 params.py:248] model.text_field_embedder.type = basic\n",
      "I0407 10:56:55.908878 140254825452608 params.py:248] model.text_field_embedder.token_embedders.char.type = char_embeddings_from_config\n",
      "I0407 10:56:55.909080 140254825452608 params.py:248] model.text_field_embedder.token_embedders.char.embedding_dim = 64\n",
      "I0407 10:56:55.909353 140254825452608 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.input_dim = 64\n",
      "I0407 10:56:55.909446 140254825452608 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.filters = [512, 256, 64]\n",
      "I0407 10:56:55.909554 140254825452608 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.kernel_size = [3, 3, 3]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "I0407 10:56:55.909654 140254825452608 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.stride = [1, 1, 1]\n",
      "I0407 10:56:55.909750 140254825452608 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.padding = [1, 2, 4]\n",
      "I0407 10:56:55.909847 140254825452608 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.dilation = [1, 2, 4]\n",
      "I0407 10:56:55.909946 140254825452608 params.py:248] model.text_field_embedder.token_embedders.char.dilated_cnn_encoder.activations = ['relu', 'relu', 'linear']\n",
      "I0407 10:56:55.910176 140254825452608 params.py:248] type = relu\n",
      "I0407 10:56:55.910410 140254825452608 params.py:248] type = relu\n",
      "I0407 10:56:55.910567 140254825452608 params.py:248] type = linear\n",
      "I0407 10:56:55.917278 140254825452608 params.py:248] model.text_field_embedder.token_embedders.char.vocab_namespace = token_characters\n",
      "I0407 10:56:55.917941 140254825452608 params.py:248] model.text_field_embedder.token_embedders.token.type = transformers_word_embeddings\n",
      "I0407 10:56:55.918267 140254825452608 params.py:248] model.text_field_embedder.token_embedders.token.model_name = allegro/herbert-large-cased\n",
      "I0407 10:56:55.918358 140254825452608 params.py:248] model.text_field_embedder.token_embedders.token.projection_dim = 100\n",
      "I0407 10:56:55.918458 140254825452608 params.py:248] model.text_field_embedder.token_embedders.token.projection_activation = <function TransformersWordEmbedder.<lambda> at 0x7f8ed1745280>\n",
      "I0407 10:56:55.918541 140254825452608 params.py:248] model.text_field_embedder.token_embedders.token.projection_dropout_rate = 0.0\n",
      "I0407 10:56:55.918609 140254825452608 params.py:248] model.text_field_embedder.token_embedders.token.freeze_transformer = True\n",
      "I0407 10:56:55.918674 140254825452608 params.py:248] model.text_field_embedder.token_embedders.token.last_layer_only = True\n",
      "I0407 10:56:55.918785 140254825452608 params.py:384] model.text_field_embedder.token_embedders.token.tokenizer_kwargs.use_fast = False\n",
      "I0407 10:56:55.918858 140254825452608 params.py:248] model.text_field_embedder.token_embedders.token.transformer_kwargs = None\n",
      "I0407 10:57:03.624983 140254825452608 params.py:248] model.seq_encoder.type = combo_encoder\n",
      "I0407 10:57:03.625626 140254825452608 params.py:248] model.seq_encoder.stacked_bilstm.input_size = 164\n",
      "I0407 10:57:03.625742 140254825452608 params.py:248] model.seq_encoder.stacked_bilstm.hidden_size = 512\n",
      "I0407 10:57:03.625796 140254825452608 params.py:248] model.seq_encoder.stacked_bilstm.num_layers = 2\n",
      "I0407 10:57:03.625844 140254825452608 params.py:248] model.seq_encoder.stacked_bilstm.recurrent_dropout_probability = 0.33\n",
      "I0407 10:57:03.625942 140254825452608 params.py:248] model.seq_encoder.stacked_bilstm.layer_dropout_probability = 0.33\n",
      "I0407 10:57:03.626068 140254825452608 params.py:248] model.seq_encoder.stacked_bilstm.use_highway = False\n",
      "I0407 10:57:03.933019 140254825452608 params.py:248] model.seq_encoder.layer_dropout_probability = 0.33\n",
      "I0407 10:57:03.933302 140254825452608 params.py:248] model.use_sample_weight = True\n",
      "I0407 10:57:03.933391 140254825452608 params.py:248] model.lemmatizer = None\n",
      "I0407 10:57:03.933440 140254825452608 params.py:248] model.upos_tagger = None\n",
      "I0407 10:57:03.933486 140254825452608 params.py:248] model.xpos_tagger = None\n",
      "I0407 10:57:03.933528 140254825452608 params.py:248] model.semantic_relation = None\n",
      "I0407 10:57:03.933570 140254825452608 params.py:248] model.morphological_feat = None\n",
      "I0407 10:57:03.933835 140254825452608 params.py:248] model.dependency_relation.type = combo_dependency_parsing_from_vocab\n",
      "I0407 10:57:03.934096 140254825452608 params.py:248] model.dependency_relation.vocab_namespace = deprel_labels\n",
      "I0407 10:57:03.934389 140254825452608 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.in_features = 1024\n",
      "I0407 10:57:03.934459 140254825452608 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.out_features = 512\n",
      "I0407 10:57:03.934515 140254825452608 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.activation = tanh\n",
      "I0407 10:57:03.934614 140254825452608 params.py:248] type = tanh\n",
      "I0407 10:57:03.934703 140254825452608 params.py:248] model.dependency_relation.head_predictor.head_projection_layer.dropout_rate = 0.0\n",
      "I0407 10:57:03.938141 140254825452608 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.in_features = 1024\n",
      "I0407 10:57:03.938247 140254825452608 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.out_features = 512\n",
      "I0407 10:57:03.938306 140254825452608 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.activation = tanh\n",
      "I0407 10:57:03.938404 140254825452608 params.py:248] type = tanh\n",
      "I0407 10:57:03.938489 140254825452608 params.py:248] model.dependency_relation.head_predictor.dependency_projection_layer.dropout_rate = 0.0\n",
      "I0407 10:57:03.941669 140254825452608 params.py:248] model.dependency_relation.head_predictor.cycle_loss_n = 0\n",
      "I0407 10:57:03.941908 140254825452608 params.py:248] model.dependency_relation.head_projection_layer.in_features = 1024\n",
      "I0407 10:57:03.941985 140254825452608 params.py:248] model.dependency_relation.head_projection_layer.out_features = 128\n",
      "I0407 10:57:03.942037 140254825452608 params.py:248] model.dependency_relation.head_projection_layer.activation = tanh\n",
      "I0407 10:57:03.942123 140254825452608 params.py:248] type = tanh\n",
      "I0407 10:57:03.942194 140254825452608 params.py:248] model.dependency_relation.head_projection_layer.dropout_rate = 0.25\n",
      "I0407 10:57:03.943288 140254825452608 params.py:248] model.dependency_relation.dependency_projection_layer.in_features = 1024\n",
      "I0407 10:57:03.943376 140254825452608 params.py:248] model.dependency_relation.dependency_projection_layer.out_features = 128\n",
      "I0407 10:57:03.943423 140254825452608 params.py:248] model.dependency_relation.dependency_projection_layer.activation = tanh\n",
      "I0407 10:57:03.943510 140254825452608 params.py:248] type = tanh\n",
      "I0407 10:57:03.943577 140254825452608 params.py:248] model.dependency_relation.dependency_projection_layer.dropout_rate = 0.25\n",
      "I0407 10:57:03.944838 140254825452608 params.py:248] model.enhanced_dependency_relation = None\n",
      "I0407 10:57:03.945286 140254825452608 params.py:248] model.regularizer.regexes.0.1.type = l2\n",
      "I0407 10:57:03.945443 140254825452608 params.py:248] model.regularizer.regexes.0.1.alpha = 1e-06\n",
      "I0407 10:57:03.945568 140254825452608 params.py:248] model.regularizer.regexes.1.1.type = l2\n",
      "I0407 10:57:03.945679 140254825452608 params.py:248] model.regularizer.regexes.1.1.alpha = 1e-06\n",
      "I0407 10:57:03.945787 140254825452608 params.py:248] model.regularizer.regexes.2.1.type = l2\n",
      "I0407 10:57:03.945892 140254825452608 params.py:248] model.regularizer.regexes.2.1.alpha = 1e-06\n",
      "I0407 10:57:03.946047 140254825452608 params.py:248] model.regularizer.regexes.3.1.type = l2\n",
      "I0407 10:57:03.946158 140254825452608 params.py:248] model.regularizer.regexes.3.1.alpha = 1e-05\n",
      "I0407 10:57:06.549506 140254825452608 archival.py:211] removing temporary unarchived model dir at /tmp/tmpdhtf4et1\n",
      "reading instances: 1990it [01:39, 20.00it/s]\n"
     ]
    }
   ],
   "source": [
    "! {COMBO} --mode predict \\\n",
    "    --cuda_device 0 \\\n",
    "    --model_path model-pdbc-cont/model.tar.gz \\\n",
    "    --input_file connlu/pdbc-cont-test.conllu \\\n",
    "    --output_file connlu/pdbc-cont-test-pred.conllu"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "ddc3986b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# text = Mały chłopiec patrzy w bok po ściągnięciu okularów .\r\n",
      "1\tMały\tmały\t_\t_\t_\t2\tadjunct\t2:adjunct\t_\r\n",
      "2\tchłopiec\tchłopiec\t_\t_\t_\t3\tsubj\t3:subj\t_\r\n",
      "3\tpatrzy\tpatrzeć\t_\t_\t_\t0\troot\t0:root\t_\r\n",
      "4\tw\tw\t_\t_\t_\t3\tadjunct_adl\t3:adjunct_adl\t_\r\n",
      "5\tbok\tbok\t_\t_\t_\t4\tcomp\t4:comp\t_\r\n",
      "6\tpo\tpo\t_\t_\t_\t3\tadjunct_temp\t3:adjunct_temp\t_\r\n",
      "7\tściągnięciu\tściągnąć\t_\t_\t_\t6\tcomp\t6:comp\t_\r\n",
      "8\tokularów\tokulary\t_\t_\t_\t7\tobj\t7:obj\t_\r\n",
      "9\t.\t.\t_\t_\t_\t3\tpunct\t3:punct\t_\r\n"
     ]
    }
   ],
   "source": [
    "! head connlu/pdbc-cont-test.conllu"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "34aa16d9",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# text = Mały chłopiec patrzy w bok po ściągnięciu okularów .\r\n",
      "1\tMały\tmały\t_\t_\t_\t2\tadjunct\t2:adjunct\t_\r\n",
      "2\tchłopiec\tchłopiec\t_\t_\t_\t3\tsubj\t3:subj\t_\r\n",
      "3\tpatrzy\tpatrzeć\t_\t_\t_\t0\troot\t0:root\t_\r\n",
      "4\tw\tw\t_\t_\t_\t3\tcomp\t3:adjunct_adl\t_\r\n",
      "5\tbok\tbok\t_\t_\t_\t4\tcomp\t4:comp\t_\r\n",
      "6\tpo\tpo\t_\t_\t_\t3\tadjunct_temp\t3:adjunct_temp\t_\r\n",
      "7\tściągnięciu\tściągnąć\t_\t_\t_\t6\tcomp\t6:comp\t_\r\n",
      "8\tokularów\tokulary\t_\t_\t_\t7\tobj\t7:obj\t_\r\n",
      "9\t.\t.\t_\t_\t_\t3\tpunct\t3:punct\t_\r\n"
     ]
    }
   ],
   "source": [
    "! head connlu/pdbc-cont-test-pred.conllu"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "combo_python39",
   "language": "python",
   "name": "combo_python39"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}