training.py
13.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import os
import subprocess
from itertools import chain
import tensorflow as tf
from tensorflow.keras import backend
from datasets import Dataset
from datasets.features import Features
from transformers import AutoTokenizer
from transformers.modeling_tf_utils import TFTokenClassificationLoss
from transformers.tf_utils import shape_list
from .constituency_parser import ConstituencyParser, category_names
from .data_utils import DataCollator
from .dataset_utils import (
add_lemma_rules,
add_spines_and_attachments,
add_adjacency_matrix,
preprocess_ne_heads,
morfeusz_retokenize,
bert_tokenize_and_align
)
from .constants import (
FIRST,
MASK_VALUE,
TOKENS,
SEG_BEGIN,
SEG_INSIDE,
SEGS,
LEMMAS,
LEMMA_CASES,
LEMMA_RULES,
TAGS,
NONTERMINALS,
HEADS,
DEPRELS,
ADJACENCY_MATRIX,
NE_NONTERMINALS,
NE_HEADS,
NE_SPINES,
NE_ANCHORS,
NE_ANCHOR_HS,
NE_ADJACENCY_MATRIX,
)
SPLIT = 'split'
DROP = 'drop'
class AvgAccuracy(tf.keras.callbacks.Callback):
def __init__(self):
super(AvgAccuracy, self).__init__()
def on_epoch_begin(self, epoch, logs={}):
return
def on_epoch_end(self, epoch, logs={}):
accs = []
val_accs = []
for k, v in logs.items():
if k.endswith('_acc'):
if k.startswith('val_'):
val_accs.append(v)
else:
accs.append(v)
logs['avg_acc'] = sum(accs) / len(accs)
logs['val_avg_acc'] = sum(val_accs) / len(val_accs)
def _masked_sparse_categorical_accuracy(y_true, y_pred):
y_pred = tf.convert_to_tensor(y_pred)
y_true = tf.convert_to_tensor(y_true)
y_pred_rank = y_pred.shape.ndims
y_true_rank = y_true.shape.ndims
# If the shape of y_true is (num_samples, 1), squeeze to (num_samples,)
if (y_true_rank is not None) and (y_pred_rank is not None) and (len(
backend.int_shape(y_true)) == len(backend.int_shape(y_pred))):
y_true = tf.squeeze(y_true, [-1])
y_pred = tf.compat.v1.argmax(y_pred, axis=-1)
mask = tf.reshape(y_true, (-1,)) != MASK_VALUE
y_true = tf.boolean_mask(tf.reshape(y_true, (-1,)), mask)
y_pred = tf.boolean_mask(tf.reshape(y_pred, (-1,)), mask)
# If the predicted output and actual output types don't match, force cast them
# to match.
if backend.dtype(y_pred) != backend.dtype(y_true):
y_pred = tf.cast(y_pred, backend.dtype(y_true))
ret = tf.cast(tf.equal(y_true, y_pred), backend.floatx())
return ret
def _matrix_accuracy(y_true, y_pred):
y_pred = tf.convert_to_tensor(y_pred)
y_true = tf.convert_to_tensor(y_true)
row_mask = tf.math.reduce_any(y_true != MASK_VALUE, axis=-1)
masked_true = tf.cast(tf.boolean_mask(y_true, row_mask), backend.floatx())
masked_pred = tf.boolean_mask(y_pred, row_mask)
argmax_true = tf.compat.v1.argmax(masked_true, axis=-1)
argmax_pred = tf.compat.v1.argmax(masked_pred, axis=-1)
ret = tf.cast(tf.equal(argmax_true, argmax_pred), backend.floatx())
return ret
def _matrix_loss(labels, logits):
loss_fn = tf.keras.losses.CategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
row_mask = tf.math.reduce_any(labels != MASK_VALUE, axis=-1)
masked_labels = tf.cast(tf.boolean_mask(labels, row_mask), backend.floatx())
masked_logits = tf.boolean_mask(logits, row_mask)
# add -MASK_VALUE where labels == MASK_VALUE to replace it with zero
masked_labels = masked_labels + tf.cast(masked_labels == MASK_VALUE, backend.floatx()) * -MASK_VALUE
loss = loss_fn(masked_labels, masked_logits)
return loss
class Trainer(object):
def __init__(
self,
bert_path,
dataset,
segmentation=True,
lemmatisation=True,
tagging=True,
dependency=True,
spines=True,
nonterminal_features=[],
named_entities=False,
#masking_strategy=FIRST,
#TODO?: long sequence handling
#long_sequences=SPLIT,
#max_seq_len=80,
batch_size=32,
):
#if long_sequences not in (SPLIT, DROP):
# raise ValueError(f'<long_sequences> must be one of: {SPLIT}, {DROP}')
self.bert_path = bert_path
self.dataset = dataset
self.segmentation = segmentation
self.lemmatisation = lemmatisation
self.tagging = tagging
self.dependency = dependency
self.spines = spines
self.nonterminal_features = nonterminal_features
self.named_entities = named_entities
self.masking_strategy = FIRST
#TODO?
#self._handle_long_sequences(long_sequences, max_seq_len)
self.batch_size = batch_size
self.categories = category_names(self.segmentation, self.lemmatisation, self.tagging, self.dependency, self.spines, self.nonterminal_features, self.named_entities)
if self.lemmatisation:
if LEMMAS not in self.dataset['train'].features:
raise RuntimeError(f'Can’t train lemmatisation without "{LEMMAS}" column in the dataset!')
print('Preprocessing the dataset for lemmatisation...')
self.dataset = add_lemma_rules(self.dataset)
if self.tagging:
if TAGS not in self.dataset['train'].features:
raise RuntimeError(f'Can’t train tagging without "{TAGS}" column in the dataset!')
if self.spines:
if NONTERMINALS not in self.dataset['train'].features:
raise RuntimeError(f'Can’t train spines without "{NONTERMINALS}" column in the dataset!')
print('Preprocessing the dataset for spines and attachments...')
self.dataset = add_spines_and_attachments(self.dataset)
if self.dependency:
if HEADS not in self.dataset['train'].features or DEPRELS not in self.dataset['train'].features:
raise RuntimeError(f'Can’t train dependency without "{HEADS}" and "{DEPRELS}" columns in the dataset!')
print('Preprocessing the dataset for dependency...')
self.dataset = add_adjacency_matrix(self.dataset)
if self.nonterminal_features:
if not self.spines or not self.dependency:
raise RuntimeError(f'Can’t train nonterminal features without training spines and dependency!')
for ntf in self.nonterminal_features:
if ntf not in self.dataset['train'].features:
raise RuntimeError(f'Can’t train "{ntf}" feature without "{ntf}" column in the dataset!')
if self.named_entities:
if NE_HEADS not in self.dataset['train'].features or NE_NONTERMINALS not in self.dataset['train'].features:
raise RuntimeError(f'Can’t train NER without "{NE_HEADS}" and "{NE_NONTERMINALS}" columns in the dataset!')
print('Preprocessing the dataset for NER...')
self.dataset = add_spines_and_attachments(self.dataset, NER=True)
self.dataset = preprocess_ne_heads(self.dataset)
self.dataset = add_adjacency_matrix(self.dataset, NER=True)
cols_to_remove = [c for c in self.dataset['train'].column_names if c not in self.categories + [TOKENS, LEMMAS, 'sent_id']]
print('Removing columns:', ', '.join(cols_to_remove))
self.dataset = self.dataset.remove_columns(cols_to_remove)
if self.segmentation:
print('Preprocessing the dataset for segmentation...')
self.dataset = morfeusz_retokenize(self.dataset)
self.features = Features({cat : self.dataset['train'].features[cat] for cat in self.categories})
print('Loading BERT tokenizer...')
self.bert_tokenizer = AutoTokenizer.from_pretrained(self.bert_path)
print('Preprocessing the dataset for BERT...')
self.dataset = self.dataset.map(lambda x: bert_tokenize_and_align(x, self.bert_tokenizer, self.masking_strategy))
self.train_data = self._prepare_tf_data(self.dataset['train'], shuffle=True)
self.dev_data = self._prepare_tf_data(self.dataset['validation'])
def _prepare_tf_data(self, dataset, shuffle=False):
collator = DataCollator(self.bert_tokenizer, self.features)
return Dataset.to_tf_dataset(
dataset,
columns=['input_ids', 'token_type_ids', 'attention_mask'],
label_cols=self.categories,
batch_size=self.batch_size, shuffle=shuffle, collate_fn=collator
)
'''
def _do_handle_long_sequences(self, tokens, tags, long_sequences, max_seq_len):
if long_sequences == SPLIT:
# TODO? add overlap
#cut = (max_seq_len - overlap) if overlap else max_seq_len
cut = max_seq_len
new_tokens, new_tags = [], []
for x, y in zip(tokens, tags):
while x:
assert(len(x) == len(y))
new_tokens.append(x[:max_seq_len])
new_tags.append(y[:max_seq_len])
x, y = x[cut:], y[cut:]
return new_tokens, new_tags
elif long_sequences == DROP:
return [x for x in tokens if len(x) <= max_seq_len], [y for y in tags if len(y) <= max_seq_len]
def _handle_long_sequences(self, long_sequences, max_seq_len):
print(f'\nhandling sequences longer than {max_seq_len} ({long_sequences})...')
self.train_tokens, self.train_tags = self._do_handle_long_sequences(
self.train_tokens, self.train_tags, long_sequences, max_seq_len)
print(f'train sentences: {len(self.train_tokens)}')
'''
def _prepare_output_dir(self, path):
if not os.path.exists(path):
subprocess.call(f'mkdir {path}', shell=True)
else:
if not os.path.isdir(path):
raise ValueError(f'{path} is not a directory')
elif os.listdir(path):
print(f'emptying {path}')
subprocess.call(f'rm -r {path}/*', shell=True)
def _make_callbacks(self, log_dir):
callbacks = [
AvgAccuracy(),
tf.keras.callbacks.EarlyStopping(monitor='val_avg_acc', patience=4, verbose=1, restore_best_weights=True)
]
if log_dir is not None:
callbacks.append(tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=0, update_freq=50))
return callbacks
def train(self, epochs=10, lr=0.00001, log_dir=None, model_dir=None, tree_weight=1):
if log_dir is not None:
self._prepare_output_dir(log_dir)
if model_dir is not None:
self._prepare_output_dir(model_dir)
parser = ConstituencyParser.create(
self.bert_path,
self.features,
segmentation=self.segmentation,
lemmatisation=self.lemmatisation,
tagging=self.tagging,
dependency=self.dependency,
spines=self.spines,
nonterminal_features=self.nonterminal_features,
named_entities=self.named_entities,
bert_tokenizer=self.bert_tokenizer
)
parser.model.config.tf_legacy_loss = True
hf_loss = parser.model.hf_compute_loss
def _loss(labels, logits):
print('LABELS:', labels)
print('LOGITS:', logits)
l = hf_loss(labels, logits)
print('LOSS:', l)
return l
# wrap in eager execution so that tensor values can be printed
def debug_loss(y_true, y_pred):
return tf.py_function(func=_loss, inp=[tf.cast(y_true, tf.float32), y_pred], Tout=tf.float32)
loss = hf_loss
#loss = debug_loss
matrix_loss = _matrix_loss
accuracy_metric = lambda: tf.keras.metrics.MeanMetricWrapper(
fn=_masked_sparse_categorical_accuracy, name='acc'
)
matrix_accuracy_metric = lambda: tf.keras.metrics.MeanMetricWrapper(
fn=_matrix_accuracy, name='acc'
)
matrix_cats = (ADJACENCY_MATRIX, NE_ADJACENCY_MATRIX)
metrics = {cat : [accuracy_metric() if cat not in matrix_cats else matrix_accuracy_metric()] for cat in self.categories}
losses = {cat : loss if cat not in matrix_cats else matrix_loss for cat in self.categories}
loss_weights = None
if tree_weight != 1:
loss_weights = {
cat : (1 if cat in (SEGS, LEMMA_CASES, LEMMA_RULES, TAGS) else tree_weight)
for cat in self.categories
}
initial_epoch = 0
parser.model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=lr),
loss=losses,
loss_weights=loss_weights,
metrics=metrics
)
parser.model.fit(
x=self.train_data,
validation_data=self.dev_data,
epochs=epochs,
callbacks=self._make_callbacks(log_dir),
initial_epoch=initial_epoch,
)
if model_dir is not None:
parser.save(model_dir)
with open(f'{model_dir}/trainer.info', 'w') as f:
print(f'dataset: {self.dataset}', file=f)
print(f'tree_weight: {tree_weight}', file=f)
print(f'batch_size: {self.batch_size}', file=f)
print(f'epochs: {epochs}', file=f)
print(f'lr: {lr}', file=f)
return parser