Commit 5ee737bf2b2951378f2adeeffd7f1abc7b7670b5
1 parent
6060efac
Porownanie modelu MLP na danych polskich i angielskich z tree-lstmem. Pierwsza w…
…ersja i eksperymenty sieci z parametryzajcja krawedziami
Showing
24 changed files
with
5173 additions
and
479 deletions
Too many changes to show.
To preserve performance only 19 of 24 files are displayed.
main_for_experiments_on_polish_data_LSTM.py
0 → 100644
| 1 | +import numpy as np | |
| 2 | +import time | |
| 3 | +import sys | |
| 4 | +import subprocess | |
| 5 | +import os | |
| 6 | +import random | |
| 7 | + | |
| 8 | +#from modules.data import load | |
| 9 | +from modules.rnn.LSTM_models import * | |
| 10 | +#from modules.metrics.accuracy import conlleval | |
| 11 | +from modules.utils.tools import load_stanford_data4, shuffle | |
| 12 | + | |
| 13 | +from theano import pp | |
| 14 | + | |
| 15 | +import theano.tensor as T | |
| 16 | +import theano | |
| 17 | +from theano.sandbox.rng_mrg import MRG_RandomStreams #as MRG_RandomStreams | |
| 18 | + | |
| 19 | +import itertools | |
| 20 | + | |
| 21 | +import os.path | |
| 22 | +import pickle | |
| 23 | + | |
| 24 | +from collections import Counter | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | +from theano import tensor as T, printing | |
| 29 | +from collections import OrderedDict | |
| 30 | +from theano.ifelse import ifelse | |
| 31 | + | |
| 32 | +from keras.preprocessing import sequence as seq | |
| 33 | + | |
| 34 | +dataType = 'int64' | |
| 35 | + | |
| 36 | + | |
| 37 | +if __name__ == '__main__': | |
| 38 | + | |
| 39 | + | |
| 40 | + | |
| 41 | + w2v_DIM = "300" | |
| 42 | + | |
| 43 | + | |
| 44 | + | |
| 45 | + file_with_filtered_embeddings = "embeddings/embedding_and_words2ids_dim"+w2v_DIM+"_polish.pkl" | |
| 46 | + if not os.path.exists(file_with_filtered_embeddings): | |
| 47 | + print("Cannot find file with only needed embeddings. We use 'filter_embeddings' in order to create it.") | |
| 48 | + filter_embeddings(["data/dane_polskie/train/train_labels.txt", "data/dane_polskie/train/train_parents.txt","data/dane_polskie/train/train_sentence.txt", | |
| 49 | + "data/dane_polskie/dev/dev_labels.txt", "data/dane_polskie/dev/dev_parents.txt","data/dane_polskie/dev/dev_sentence.txt", | |
| 50 | + "data/dane_polskie/test/test_labels.txt", "data/dane_polskie/test/test_parents.txt","data/dane_polskie/test/test_sentence.txt"], | |
| 51 | + | |
| 52 | + "/home/norbert/Doktorat/clarin2sent/deeptagger/embeddings/w2v_allwiki_nkjpfull_"+w2v_DIM+".txt", | |
| 53 | + file_with_filtered_embeddings) | |
| 54 | + | |
| 55 | + | |
| 56 | + s = {'lr':0.002, | |
| 57 | + 'nepochs':40, | |
| 58 | + 'seed':345, | |
| 59 | + 'nc':3 # number of y classes | |
| 60 | + } | |
| 61 | + batch_size = 1 | |
| 62 | + | |
| 63 | + | |
| 64 | + for h_dim in [100, 150]: | |
| 65 | + | |
| 66 | + np.random.seed(s['seed']) | |
| 67 | + random.seed(s['seed']) | |
| 68 | + | |
| 69 | + | |
| 70 | + rnn = LSTM_1( h_dim, | |
| 71 | + nc = s['nc'], | |
| 72 | + w2v_model_path = file_with_filtered_embeddings, #sciezka do pliku z embeddingami | |
| 73 | + max_phrase_length = 60 ) | |
| 74 | + | |
| 75 | + | |
| 76 | + train_data = load_stanford_data4("data/dane_polskie/train/train_labels.txt", "data/dane_polskie/train/train_parents.txt","data/dane_polskie/train/train_sentence.txt",rnn.words2ids,True,batch_size,s['nc']) | |
| 77 | + train_data_check = train_data | |
| 78 | + dev_data = load_stanford_data4("data/dane_polskie/dev/dev_labels.txt", "data/dane_polskie/dev/dev_parents.txt","data/dane_polskie/dev/dev_sentence.txt",rnn.words2ids,False,0,s['nc']) | |
| 79 | + test_data = load_stanford_data4("data/dane_polskie/test/test_labels.txt", "data/dane_polskie/test/test_parents.txt","data/dane_polskie/test/test_sentence.txt",rnn.words2ids,False,0,s['nc']) | |
| 80 | + | |
| 81 | + n_train = len(train_data) | |
| 82 | + n_dev = len(dev_data) | |
| 83 | + n_test = len(test_data) | |
| 84 | + | |
| 85 | + print "" | |
| 86 | + #print "model 56 : h_dim = ", h_dim, "h2_dim = ", h2_dim, "h3_dim = ", h3_dim, " learning rate = ", s['lr']#, "dropout rate: ", dropout_rate | |
| 87 | + print "model LSTM_` : " , "h_dim = ", h_dim | |
| 88 | + print "" | |
| 89 | + | |
| 90 | + best_prediction_valid_all = 0 | |
| 91 | + best_prediction_test_all = 0 | |
| 92 | + best_prediction_test_root = 0 | |
| 93 | + early_stop = 0 | |
| 94 | + | |
| 95 | + | |
| 96 | + tic = time.time() | |
| 97 | + | |
| 98 | + for e in xrange(s['nepochs']): | |
| 99 | + | |
| 100 | + #if e >= 1: | |
| 101 | + # s['lr'] = 0.8 * s['lr'] | |
| 102 | + | |
| 103 | + if early_stop == 10: | |
| 104 | + break | |
| 105 | + | |
| 106 | + | |
| 107 | + # shuffle | |
| 108 | + shuffle([train_data], s['seed']) | |
| 109 | + | |
| 110 | + for i in range(n_train): | |
| 111 | + rnn.train(train_data[i][0],train_data[i][1], train_data[i][2], train_data[i][3], s['lr']) | |
| 112 | + | |
| 113 | + | |
| 114 | + | |
| 115 | + # Dev: | |
| 116 | + counts_dev = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 117 | + counts_dev_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 118 | + for ii in range(n_dev): | |
| 119 | + pred = rnn.classify(dev_data[ii][0],dev_data[ii][1], dev_data[ii][3]) | |
| 120 | + for j in range(len(pred)): | |
| 121 | + counts_dev[pred[j], dev_data[ii][2][j]] += 1 | |
| 122 | + counts_dev_root[pred[-1], dev_data[ii][2][-1]] += 1 | |
| 123 | + | |
| 124 | + | |
| 125 | + # Test: | |
| 126 | + counts_test = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 127 | + counts_test_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 128 | + for i in range(n_test): | |
| 129 | + pred = rnn.classify(test_data[i][0],test_data[i][1], test_data[i][3]) | |
| 130 | + for j in range(len(pred)): | |
| 131 | + counts_test[pred[j], test_data[i][2][j]] += 1 | |
| 132 | + counts_test_root[pred[-1], test_data[i][2][-1]] += 1 | |
| 133 | + | |
| 134 | + # Train | |
| 135 | + counts = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 136 | + counts_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 137 | + for i in range(len(train_data_check)): | |
| 138 | + | |
| 139 | + if i % 1 == 0: #sprawdzamy dopasowanie na 1/100 zbioru zeby oszczedzic czas | |
| 140 | + pred = rnn.classify(train_data_check[i][0],train_data_check[i][1], train_data_check[i][3]) | |
| 141 | + for j in range(len(pred)): | |
| 142 | + counts[pred[j], train_data_check[i][2][j]] += 1 | |
| 143 | + counts_root[pred[-1], train_data_check[i][2][-1]] += 1 | |
| 144 | + | |
| 145 | + print("epoch: ", e, | |
| 146 | + "V all: ", "%0.2f" % (100 * np.diag(counts_dev).sum()/float(counts_dev.sum())), | |
| 147 | + " Test all: ", "%0.2f" % (100 * np.diag(counts_test).sum()/float(counts_test.sum())), | |
| 148 | + "V root: ", "%0.2f" % (100 * np.diag(counts_dev_root).sum()/float(counts_dev_root.sum())), | |
| 149 | + " Test root: ", "%0.2f" % (100 * np.diag(counts_test_root).sum()/float(counts_test_root.sum())), | |
| 150 | + " Train: ", "%0.2f" % (100 * np.diag(counts).sum()/float(counts.sum())), | |
| 151 | + " Train root: ", "%0.2f" % (100 * np.diag(counts_root).sum()/float(counts_root.sum())) | |
| 152 | + ) | |
| 153 | + | |
| 154 | + | |
| 155 | + if np.diag(counts_dev).sum()/float(counts_dev.sum()) > best_prediction_valid_all: | |
| 156 | + best_prediction_valid_all = np.diag(counts_dev).sum()/float(counts_dev.sum()) | |
| 157 | + best_prediction_test_all = np.diag(counts_test).sum()/float(counts_test.sum()) | |
| 158 | + best_prediction_test_root = np.diag(counts_test_root).sum()/float(counts_test_root.sum()) | |
| 159 | + | |
| 160 | + early_stop = 0 | |
| 161 | + else: | |
| 162 | + early_stop = early_stop + 1 | |
| 163 | + | |
| 164 | + | |
| 165 | + print("Best valid: ", "%0.2f" % (100 * best_prediction_valid_all)," Test all: ","%0.2f" % (100 * best_prediction_test_all),"Test root: ","%0.2f" % (100 * best_prediction_test_root), " time: ", time.time()-tic) | |
| 166 | + | |
| ... | ... |
main_for_experiments_on_polish_data_MLP2.py
0 → 100644
| 1 | +import numpy as np | |
| 2 | +import time | |
| 3 | +import sys | |
| 4 | +import subprocess | |
| 5 | +import os | |
| 6 | +import random | |
| 7 | + | |
| 8 | +#from modules.data import load | |
| 9 | +from modules.rnn.models_with_relations import * | |
| 10 | +#from modules.metrics.accuracy import conlleval | |
| 11 | +from modules.utils.tools import load_stanford_data6, shuffle | |
| 12 | + | |
| 13 | +from theano import pp | |
| 14 | + | |
| 15 | +import theano.tensor as T | |
| 16 | +import theano | |
| 17 | +from theano.sandbox.rng_mrg import MRG_RandomStreams #as MRG_RandomStreams | |
| 18 | + | |
| 19 | +import itertools | |
| 20 | + | |
| 21 | +import os.path | |
| 22 | +import pickle | |
| 23 | + | |
| 24 | +from collections import Counter | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | +from theano import tensor as T, printing | |
| 29 | +from collections import OrderedDict | |
| 30 | +from theano.ifelse import ifelse | |
| 31 | + | |
| 32 | +from keras.preprocessing import sequence as seq | |
| 33 | + | |
| 34 | +dataType = 'int64' | |
| 35 | + | |
| 36 | + | |
| 37 | +if __name__ == '__main__': | |
| 38 | + | |
| 39 | + | |
| 40 | + | |
| 41 | + w2v_DIM = "300" | |
| 42 | + | |
| 43 | + | |
| 44 | + | |
| 45 | + file_with_filtered_embeddings = "embeddings/embedding_and_words2ids_dim"+w2v_DIM+"_polish.pkl" | |
| 46 | + if not os.path.exists(file_with_filtered_embeddings): | |
| 47 | + print("Cannot find file with only needed embeddings. We use 'filter_embeddings' in order to create it.") | |
| 48 | + filter_embeddings(["data/dane_polskie/train/train_labels.txt", "data/dane_polskie/train/train_parents.txt","data/dane_polskie/train/train_sentence.txt", | |
| 49 | + "data/dane_polskie/dev/dev_labels.txt", "data/dane_polskie/dev/dev_parents.txt","data/dane_polskie/dev/dev_sentence.txt", | |
| 50 | + "data/dane_polskie/test/test_labels.txt", "data/dane_polskie/test/test_parents.txt","data/dane_polskie/test/test_sentence.txt"], | |
| 51 | + | |
| 52 | + "/home/norbert/Doktorat/clarin2sent/deeptagger/embeddings/w2v_allwiki_nkjpfull_"+w2v_DIM+".txt", | |
| 53 | + file_with_filtered_embeddings) | |
| 54 | + | |
| 55 | + | |
| 56 | + s = {'lr':0.002, | |
| 57 | + 'nepochs':40, | |
| 58 | + 'seed':345, | |
| 59 | + 'nc':3 # number of y classes | |
| 60 | + } | |
| 61 | + batch_size = 1 | |
| 62 | + | |
| 63 | + | |
| 64 | + for h_dim in [50]: | |
| 65 | + | |
| 66 | + np.random.seed(s['seed']) | |
| 67 | + random.seed(s['seed']) | |
| 68 | + | |
| 69 | + | |
| 70 | + rnn = MLP_2_1( h_dim, h_dim, | |
| 71 | + nc = s['nc'], | |
| 72 | + w2v_model_path = file_with_filtered_embeddings, #sciezka do pliku z embeddingami | |
| 73 | + max_phrase_length = 60 ) | |
| 74 | + | |
| 75 | + | |
| 76 | + train_data = load_stanford_data4("data/dane_polskie/train/train_labels.txt", | |
| 77 | + "data/dane_polskie/train/train_parents.txt", | |
| 78 | + "data/dane_polskie/train/train_sentence.txt", | |
| 79 | + | |
| 80 | +############################################################################################# | |
| 81 | + | |
| 82 | + NIE MA RELACJI DLA POLSKICH DANYCH | |
| 83 | + | |
| 84 | +############################################################################################# | |
| 85 | + | |
| 86 | + rnn.words2ids,True,batch_size,s['nc']) | |
| 87 | + train_data_check = train_data | |
| 88 | + dev_data = load_stanford_data4("data/dane_polskie/dev/dev_labels.txt", "data/dane_polskie/dev/dev_parents.txt","data/dane_polskie/dev/dev_sentence.txt",rnn.words2ids,False,0,s['nc']) | |
| 89 | + test_data = load_stanford_data4("data/dane_polskie/test/test_labels.txt", "data/dane_polskie/test/test_parents.txt","data/dane_polskie/test/test_sentence.txt",rnn.words2ids,False,0,s['nc']) | |
| 90 | + | |
| 91 | + n_train = len(train_data) | |
| 92 | + n_dev = len(dev_data) | |
| 93 | + n_test = len(test_data) | |
| 94 | + | |
| 95 | + print "" | |
| 96 | + #print "model 56 : h_dim = ", h_dim, "h2_dim = ", h2_dim, "h3_dim = ", h3_dim, " learning rate = ", s['lr']#, "dropout rate: ", dropout_rate | |
| 97 | + print "model LSTM_` : " , "h_dim = ", h_dim | |
| 98 | + print "" | |
| 99 | + | |
| 100 | + best_prediction_valid_all = 0 | |
| 101 | + best_prediction_test_all = 0 | |
| 102 | + best_prediction_test_root = 0 | |
| 103 | + early_stop = 0 | |
| 104 | + | |
| 105 | + | |
| 106 | + tic = time.time() | |
| 107 | + | |
| 108 | + for e in xrange(s['nepochs']): | |
| 109 | + | |
| 110 | + #if e >= 1: | |
| 111 | + # s['lr'] = 0.8 * s['lr'] | |
| 112 | + | |
| 113 | + if early_stop == 10: | |
| 114 | + break | |
| 115 | + | |
| 116 | + | |
| 117 | + # shuffle | |
| 118 | + shuffle([train_data], s['seed']) | |
| 119 | + | |
| 120 | + for i in range(n_train): | |
| 121 | + rnn.train(train_data[i][0],train_data[i][1], train_data[i][2], train_data[i][3], s['lr']) | |
| 122 | + | |
| 123 | + | |
| 124 | + | |
| 125 | + # Dev: | |
| 126 | + counts_dev = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 127 | + counts_dev_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 128 | + for ii in range(n_dev): | |
| 129 | + pred = rnn.classify(dev_data[ii][0],dev_data[ii][1], dev_data[ii][3]) | |
| 130 | + for j in range(len(pred)): | |
| 131 | + counts_dev[pred[j], dev_data[ii][2][j]] += 1 | |
| 132 | + counts_dev_root[pred[-1], dev_data[ii][2][-1]] += 1 | |
| 133 | + | |
| 134 | + | |
| 135 | + # Test: | |
| 136 | + counts_test = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 137 | + counts_test_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 138 | + for i in range(n_test): | |
| 139 | + pred = rnn.classify(test_data[i][0],test_data[i][1], test_data[i][3]) | |
| 140 | + for j in range(len(pred)): | |
| 141 | + counts_test[pred[j], test_data[i][2][j]] += 1 | |
| 142 | + counts_test_root[pred[-1], test_data[i][2][-1]] += 1 | |
| 143 | + | |
| 144 | + # Train | |
| 145 | + counts = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 146 | + counts_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 147 | + for i in range(len(train_data_check)): | |
| 148 | + | |
| 149 | + if i % 1 == 0: #sprawdzamy dopasowanie na 1/100 zbioru zeby oszczedzic czas | |
| 150 | + pred = rnn.classify(train_data_check[i][0],train_data_check[i][1], train_data_check[i][3]) | |
| 151 | + for j in range(len(pred)): | |
| 152 | + counts[pred[j], train_data_check[i][2][j]] += 1 | |
| 153 | + counts_root[pred[-1], train_data_check[i][2][-1]] += 1 | |
| 154 | + | |
| 155 | + print("epoch: ", e, | |
| 156 | + "V all: ", "%0.2f" % (100 * np.diag(counts_dev).sum()/float(counts_dev.sum())), | |
| 157 | + " Test all: ", "%0.2f" % (100 * np.diag(counts_test).sum()/float(counts_test.sum())), | |
| 158 | + "V root: ", "%0.2f" % (100 * np.diag(counts_dev_root).sum()/float(counts_dev_root.sum())), | |
| 159 | + " Test root: ", "%0.2f" % (100 * np.diag(counts_test_root).sum()/float(counts_test_root.sum())), | |
| 160 | + " Train: ", "%0.2f" % (100 * np.diag(counts).sum()/float(counts.sum())), | |
| 161 | + " Train root: ", "%0.2f" % (100 * np.diag(counts_root).sum()/float(counts_root.sum())) | |
| 162 | + ) | |
| 163 | + | |
| 164 | + | |
| 165 | + if np.diag(counts_dev).sum()/float(counts_dev.sum()) > best_prediction_valid_all: | |
| 166 | + best_prediction_valid_all = np.diag(counts_dev).sum()/float(counts_dev.sum()) | |
| 167 | + best_prediction_test_all = np.diag(counts_test).sum()/float(counts_test.sum()) | |
| 168 | + best_prediction_test_root = np.diag(counts_test_root).sum()/float(counts_test_root.sum()) | |
| 169 | + | |
| 170 | + early_stop = 0 | |
| 171 | + else: | |
| 172 | + early_stop = early_stop + 1 | |
| 173 | + | |
| 174 | + | |
| 175 | + print("Best valid: ", "%0.2f" % (100 * best_prediction_valid_all)," Test all: ","%0.2f" % (100 * best_prediction_test_all),"Test root: ","%0.2f" % (100 * best_prediction_test_root), " time: ", time.time()-tic) | |
| 176 | + | |
| ... | ... |
main_for_experiments_on_sst_MLP2.py
0 → 100644
| 1 | +import numpy as np | |
| 2 | +import time | |
| 3 | +import sys | |
| 4 | +import subprocess | |
| 5 | +import os | |
| 6 | +import random | |
| 7 | + | |
| 8 | +#from modules.data import load | |
| 9 | +from modules.rnn.models_with_relations import * | |
| 10 | +#from modules.metrics.accuracy import conlleval | |
| 11 | +from modules.utils.tools import load_stanford_data6, shuffle | |
| 12 | + | |
| 13 | +from theano import pp | |
| 14 | + | |
| 15 | +import theano.tensor as T | |
| 16 | +import theano | |
| 17 | +from theano.sandbox.rng_mrg import MRG_RandomStreams #as MRG_RandomStreams | |
| 18 | + | |
| 19 | +import itertools | |
| 20 | + | |
| 21 | +import os.path | |
| 22 | +import pickle | |
| 23 | + | |
| 24 | +from collections import Counter | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | +from theano import tensor as T, printing | |
| 29 | +from collections import OrderedDict | |
| 30 | +from theano.ifelse import ifelse | |
| 31 | + | |
| 32 | +from keras.preprocessing import sequence as seq | |
| 33 | + | |
| 34 | +dataType = 'int64' | |
| 35 | + | |
| 36 | + | |
| 37 | + | |
| 38 | +if __name__ == '__main__': | |
| 39 | + | |
| 40 | + #theano.config.floatX = 'float64' | |
| 41 | + | |
| 42 | + file_with_filtered_embeddings = "embeddings/embedding_and_words2ids.pkl" | |
| 43 | + if not os.path.exists(file_with_filtered_embeddings): | |
| 44 | + print("Cannot find file with only needed embeddings. We use 'filter_embeddings' in order to create it.") | |
| 45 | + filter_embeddings(["data/sst/train/dlabels.txt", "data/sst/train/dparents.txt","data/sst/train/sents.toks", "data/sst/dev/dlabels.txt", "data/sst/dev/dparents.txt","data/sst/dev/sents.toks", "data/sst/test/dlabels.txt", "data/sst/test/dparents.txt","data/sst/test/sents.toks"], | |
| 46 | + | |
| 47 | + "/home/norbert/Doktorat/clarin2sent/treelstm/data/glove/glove.840B.300d.txt", | |
| 48 | + file_with_filtered_embeddings) | |
| 49 | + | |
| 50 | + | |
| 51 | + batch_size = 1 | |
| 52 | + | |
| 53 | + s = {'lr':0.002, | |
| 54 | + 'nepochs':30, | |
| 55 | + 'seed':345, | |
| 56 | + 'nc':5 # number of y classes | |
| 57 | + } | |
| 58 | + | |
| 59 | + | |
| 60 | + batch_size = 1 | |
| 61 | + | |
| 62 | + | |
| 63 | + | |
| 64 | + for ne_dim, nchd_dim, nh2_dim, number_of_relations in [(50,50, 50, 5),(100,100, 100, 5),(50,50, 50, 10),(100,100, 100, 10),(200,200, 100, 5)]: | |
| 65 | + | |
| 66 | + np.random.seed(s['seed']) | |
| 67 | + random.seed(s['seed']) | |
| 68 | + | |
| 69 | + | |
| 70 | + rnn = MLP_2_2( ne = ne_dim, nchd = nchd_dim, nh2 = nh2_dim, | |
| 71 | + nc = s['nc'], | |
| 72 | + w2v_model_path = file_with_filtered_embeddings, #sciezka do pliku z embeddingami | |
| 73 | + max_phrase_length = 60, | |
| 74 | + number_of_relations = number_of_relations ) | |
| 75 | + | |
| 76 | + train_data = load_stanford_data6("data/sst/train/dlabels.txt", "data/sst/train/dparents.txt","data/sst/train/sents.toks","data/sst/train/rels.txt",rnn.words2ids,True,batch_size,s['nc'], k_most_common_relations = number_of_relations) | |
| 77 | + | |
| 78 | + dev_data = load_stanford_data6("data/sst/dev/dlabels.txt", "data/sst/dev/dparents.txt","data/sst/dev/sents.toks","data/sst/dev/rels.txt",rnn.words2ids,False,0,s['nc'], k_most_common_relations = number_of_relations) | |
| 79 | + | |
| 80 | + test_data = load_stanford_data6("data/sst/test/dlabels.txt", "data/sst/test/dparents.txt","data/sst/test/sents.toks","data/sst/test/rels.txt",rnn.words2ids,False,0,s['nc'], k_most_common_relations = number_of_relations) | |
| 81 | + | |
| 82 | + n_train = len(train_data) | |
| 83 | + n_dev = len(dev_data) | |
| 84 | + n_test = len(test_data) | |
| 85 | + | |
| 86 | + print "" | |
| 87 | + print "lr = ", s['lr'], "number_of_relations = ", number_of_relations | |
| 88 | + print "model MLP_2_2 : ", "nchd_dim = ", nchd_dim ,"ne_dim = ", ne_dim , "nh2 =", nh2_dim | |
| 89 | + print "" | |
| 90 | + | |
| 91 | + best_prediction_valid_all = 0 | |
| 92 | + best_prediction_test_all = 0 | |
| 93 | + best_prediction_test_root = 0 | |
| 94 | + early_stop = 0 | |
| 95 | + | |
| 96 | + | |
| 97 | + tic = time.time() | |
| 98 | + | |
| 99 | + for e in xrange(s['nepochs']): | |
| 100 | + | |
| 101 | + #if e >= 1: | |
| 102 | + # s['lr'] = 0.8 * s['lr'] | |
| 103 | + | |
| 104 | + if early_stop == 5: | |
| 105 | + break | |
| 106 | + | |
| 107 | + | |
| 108 | + # shuffle | |
| 109 | + shuffle([train_data], s['seed']) | |
| 110 | + | |
| 111 | + for i in range(n_train): | |
| 112 | + rnn.train(train_data[i][0],train_data[i][1], train_data[i][2], train_data[i][3], train_data[i][4],s['lr']) | |
| 113 | + | |
| 114 | + | |
| 115 | + | |
| 116 | + # Dev: | |
| 117 | + counts_dev = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 118 | + counts_dev_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 119 | + for ii in range(n_dev): | |
| 120 | + pred = rnn.classify(dev_data[ii][0],dev_data[ii][1], dev_data[ii][3], dev_data[ii][4]) | |
| 121 | + for j in range(len(pred)): | |
| 122 | + counts_dev[pred[j], dev_data[ii][2][j]] += 1 | |
| 123 | + counts_dev_root[pred[-1], dev_data[ii][2][-1]] += 1 | |
| 124 | + | |
| 125 | + | |
| 126 | + # Test: | |
| 127 | + counts_test = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 128 | + counts_test_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 129 | + for i in range(n_test): | |
| 130 | + pred = rnn.classify(test_data[i][0],test_data[i][1], test_data[i][3], test_data[i][4]) | |
| 131 | + for j in range(len(pred)): | |
| 132 | + counts_test[pred[j], test_data[i][2][j]] += 1 | |
| 133 | + counts_test_root[pred[-1], test_data[i][2][-1]] += 1 | |
| 134 | + | |
| 135 | + # Train | |
| 136 | + counts = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 137 | + counts_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 138 | + for i in range(len(train_data)): | |
| 139 | + | |
| 140 | + if i % 10 == 0: #sprawdzamy dopasowanie na 1/10 zbioru zeby oszczedzic czas | |
| 141 | + pred = rnn.classify(train_data[i][0],train_data[i][1], train_data[i][3], train_data[i][4]) | |
| 142 | + for j in range(len(pred)): | |
| 143 | + counts[pred[j], train_data[i][2][j]] += 1 | |
| 144 | + counts_root[pred[-1], train_data[i][2][-1]] += 1 | |
| 145 | + | |
| 146 | + | |
| 147 | + | |
| 148 | + print("Valid: ", "%0.2f" % (100 * np.diag(counts_dev).sum()/float(counts_dev.sum())), | |
| 149 | + "Valid root: ","%0.2f" % (100 * np.diag(counts_dev_root).sum()/float(counts_dev_root.sum())), | |
| 150 | + " Test all: ","%0.2f" % (100 * np.diag(counts_test).sum()/float(counts_test.sum())), | |
| 151 | + "Test root: ","%0.2f" % (100 * np.diag(counts_test_root).sum()/float(counts_test_root.sum())), | |
| 152 | + " Train all: ","%0.2f" % (100 * np.diag(counts).sum()/float(counts.sum())), | |
| 153 | + "Train root: ","%0.2f" % (100 * np.diag(counts_root).sum()/float(counts_root.sum()))," time: ", time.time()-tic) | |
| 154 | + | |
| 155 | + if np.diag(counts_dev).sum()/float(counts_dev.sum()) > best_prediction_valid_all: | |
| 156 | + best_prediction_valid_all = np.diag(counts_dev).sum()/float(counts_dev.sum()) | |
| 157 | + best_prediction_test_all = np.diag(counts_test).sum()/float(counts_test.sum()) | |
| 158 | + best_prediction_test_root = np.diag(counts_test_root).sum()/float(counts_test_root.sum()) | |
| 159 | + | |
| 160 | + early_stop = 0 | |
| 161 | + else: | |
| 162 | + early_stop = early_stop + 1 | |
| 163 | + | |
| 164 | + | |
| 165 | + print("Best valid: ", "%0.2f" % (100 * best_prediction_valid_all)," Test all: ","%0.2f" % (100 * best_prediction_test_all),"Test root: ","%0.2f" % (100 * best_prediction_test_root), " time: ", time.time()-tic) | |
| 166 | + | |
| 167 | + | |
| 168 | + | |
| 169 | + | |
| 170 | + | |
| ... | ... |
main_for_experiments_on_stanford_data.py
0 → 100644
| 1 | +import numpy as np | |
| 2 | +import time | |
| 3 | +import sys | |
| 4 | +import subprocess | |
| 5 | +import os | |
| 6 | +import random | |
| 7 | + | |
| 8 | +#from modules.data import load | |
| 9 | +from modules.rnn.models import * | |
| 10 | +#from modules.metrics.accuracy import conlleval | |
| 11 | +from modules.utils.tools import load_stanford_data4, shuffle | |
| 12 | + | |
| 13 | +from theano import pp | |
| 14 | + | |
| 15 | +import theano.tensor as T | |
| 16 | +import theano | |
| 17 | +from theano.sandbox.rng_mrg import MRG_RandomStreams #as MRG_RandomStreams | |
| 18 | + | |
| 19 | +import itertools | |
| 20 | + | |
| 21 | +import os.path | |
| 22 | +import pickle | |
| 23 | + | |
| 24 | +from collections import Counter | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | +from theano import tensor as T, printing | |
| 29 | +from collections import OrderedDict | |
| 30 | +from theano.ifelse import ifelse | |
| 31 | + | |
| 32 | +from keras.preprocessing import sequence as seq | |
| 33 | + | |
| 34 | +dataType = 'int64' | |
| 35 | + | |
| 36 | + | |
| 37 | + | |
| 38 | +if __name__ == '__main__': | |
| 39 | + | |
| 40 | + #theano.config.floatX = 'float64' | |
| 41 | + | |
| 42 | + file_with_filtered_embeddings = "embeddings/embedding_and_words2ids.pkl" | |
| 43 | + if not os.path.exists(file_with_filtered_embeddings): | |
| 44 | + print("Cannot find file with only needed embeddings. We use 'filter_embeddings' in order to create it.") | |
| 45 | + filter_embeddings(["data/sst/train/dlabels.txt", "data/sst/train/dparents.txt","data/sst/train/sents.toks", "data/sst/dev/dlabels.txt", "data/sst/dev/dparents.txt","data/sst/dev/sents.toks", "data/sst/test/dlabels.txt", "data/sst/test/dparents.txt","data/sst/test/sents.toks"], | |
| 46 | + | |
| 47 | + "/home/norbert/Doktorat/clarin2sent/treelstm/data/glove/glove.840B.300d.txt", | |
| 48 | + file_with_filtered_embeddings) | |
| 49 | + | |
| 50 | + | |
| 51 | + batch_size = 1 | |
| 52 | + | |
| 53 | + | |
| 54 | + # ZDABAC MODELE 7,8,9 , 1, 2, 3 , 10, 11, 5,6 | |
| 55 | + | |
| 56 | + | |
| 57 | + | |
| 58 | + s = {'lr':0.002, | |
| 59 | + 'nepochs':30, | |
| 60 | + 'seed':345, | |
| 61 | + 'nc':5 # number of y classes | |
| 62 | + } | |
| 63 | + | |
| 64 | + | |
| 65 | + batch_size = 1 | |
| 66 | + | |
| 67 | + | |
| 68 | + | |
| 69 | + | |
| 70 | + | |
| 71 | + for ne_dim, nchd_dim in [(100,100)]:#,(200,200, 200,100),(200,200, 300,100),(100,100, 200,100)]: | |
| 72 | + | |
| 73 | + np.random.seed(s['seed']) | |
| 74 | + random.seed(s['seed']) | |
| 75 | + | |
| 76 | + | |
| 77 | + rnn = model55_pf1( ne = ne_dim, nchd = nchd_dim,# nh2 = nh2_dim, | |
| 78 | + nc = s['nc'], | |
| 79 | + w2v_model_path = file_with_filtered_embeddings, #sciezka do pliku z embeddingami | |
| 80 | + max_phrase_length = 60 ) | |
| 81 | + | |
| 82 | + train_data = load_stanford_data4("data/sst/train/dlabels.txt", "data/sst/train/dparents.txt","data/sst/train/sents.toks",rnn.words2ids,True,batch_size,s['nc']) | |
| 83 | + | |
| 84 | + dev_data = load_stanford_data4("data/sst/dev/dlabels.txt", "data/sst/dev/dparents.txt","data/sst/dev/sents.toks",rnn.words2ids,False,0,s['nc']) | |
| 85 | + | |
| 86 | + test_data = load_stanford_data4("data/sst/test/dlabels.txt", "data/sst/test/dparents.txt","data/sst/test/sents.toks",rnn.words2ids,False,0,s['nc']) | |
| 87 | + | |
| 88 | + n_train = len(train_data) | |
| 89 | + n_dev = len(dev_data) | |
| 90 | + n_test = len(test_data) | |
| 91 | + | |
| 92 | + print "" | |
| 93 | + print "lr = ", s['lr'] | |
| 94 | + print "model 55_pf1 : ", "nchd_dim = ", nchd_dim ,"ne_dim = ", ne_dim #, "nh2_dim = ", nh2_dim | |
| 95 | + print "" | |
| 96 | + | |
| 97 | + best_prediction_valid_all = 0 | |
| 98 | + best_prediction_test_all = 0 | |
| 99 | + best_prediction_test_root = 0 | |
| 100 | + early_stop = 0 | |
| 101 | + | |
| 102 | + | |
| 103 | + tic = time.time() | |
| 104 | + | |
| 105 | + for e in xrange(s['nepochs']): | |
| 106 | + | |
| 107 | + #if e >= 1: | |
| 108 | + # s['lr'] = 0.8 * s['lr'] | |
| 109 | + | |
| 110 | + if early_stop == 5: | |
| 111 | + break | |
| 112 | + | |
| 113 | + | |
| 114 | + # shuffle | |
| 115 | + shuffle([train_data], s['seed']) | |
| 116 | + | |
| 117 | + for i in range(n_train): | |
| 118 | + rnn.train(train_data[i][0],train_data[i][1], train_data[i][2], train_data[i][3], s['lr']) | |
| 119 | + | |
| 120 | + | |
| 121 | + | |
| 122 | + # Dev: | |
| 123 | + counts_dev = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 124 | + counts_dev_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 125 | + for ii in range(n_dev): | |
| 126 | + pred = rnn.classify(dev_data[ii][0],dev_data[ii][1], dev_data[ii][3]) | |
| 127 | + for j in range(len(pred)): | |
| 128 | + counts_dev[pred[j], dev_data[ii][2][j]] += 1 | |
| 129 | + counts_dev_root[pred[-1], dev_data[ii][2][-1]] += 1 | |
| 130 | + | |
| 131 | + | |
| 132 | + # Test: | |
| 133 | + counts_test = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 134 | + counts_test_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 135 | + for i in range(n_test): | |
| 136 | + pred = rnn.classify(test_data[i][0],test_data[i][1], test_data[i][3]) | |
| 137 | + for j in range(len(pred)): | |
| 138 | + counts_test[pred[j], test_data[i][2][j]] += 1 | |
| 139 | + counts_test_root[pred[-1], test_data[i][2][-1]] += 1 | |
| 140 | + | |
| 141 | + # Train | |
| 142 | + counts = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 143 | + counts_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 144 | + for i in range(len(train_data)): | |
| 145 | + | |
| 146 | + if i % 10 == 0: #sprawdzamy dopasowanie na 1/10 zbioru zeby oszczedzic czas | |
| 147 | + pred = rnn.classify(train_data[i][0],train_data[i][1], train_data[i][3]) | |
| 148 | + for j in range(len(pred)): | |
| 149 | + counts[pred[j], train_data[i][2][j]] += 1 | |
| 150 | + counts_root[pred[-1], train_data[i][2][-1]] += 1 | |
| 151 | + | |
| 152 | + | |
| 153 | + | |
| 154 | + print("Valid: ", "%0.2f" % (100 * np.diag(counts_dev).sum()/float(counts_dev.sum())), | |
| 155 | + "Valid root: ","%0.2f" % (100 * np.diag(counts_dev_root).sum()/float(counts_dev_root.sum())), | |
| 156 | + " Test all: ","%0.2f" % (100 * np.diag(counts_test).sum()/float(counts_test.sum())), | |
| 157 | + "Test root: ","%0.2f" % (100 * np.diag(counts_test_root).sum()/float(counts_test_root.sum())), | |
| 158 | + " Train all: ","%0.2f" % (100 * np.diag(counts).sum()/float(counts.sum())), | |
| 159 | + "Train root: ","%0.2f" % (100 * np.diag(counts_root).sum()/float(counts_root.sum()))," time: ", time.time()-tic) | |
| 160 | + | |
| 161 | + if np.diag(counts_dev).sum()/float(counts_dev.sum()) > best_prediction_valid_all: | |
| 162 | + best_prediction_valid_all = np.diag(counts_dev).sum()/float(counts_dev.sum()) | |
| 163 | + best_prediction_test_all = np.diag(counts_test).sum()/float(counts_test.sum()) | |
| 164 | + best_prediction_test_root = np.diag(counts_test_root).sum()/float(counts_test_root.sum()) | |
| 165 | + | |
| 166 | + early_stop = 0 | |
| 167 | + else: | |
| 168 | + early_stop = early_stop + 1 | |
| 169 | + | |
| 170 | + | |
| 171 | + print("Best valid: ", "%0.2f" % (100 * best_prediction_valid_all)," Test all: ","%0.2f" % (100 * best_prediction_test_all),"Test root: ","%0.2f" % (100 * best_prediction_test_root), " time: ", time.time()-tic) | |
| 172 | + | |
| 173 | + | |
| 174 | + | |
| 175 | + | |
| 176 | +### 9 , 2,3 , 5,6 | |
| 177 | + | |
| 178 | + | |
| 179 | + | |
| ... | ... |
main_for_sst_LSTM.py
0 → 100644
| 1 | +import numpy as np | |
| 2 | +import time | |
| 3 | +import sys | |
| 4 | +import subprocess | |
| 5 | +import os | |
| 6 | +import random | |
| 7 | + | |
| 8 | +#from modules.data import load | |
| 9 | +from modules.rnn.LSTM_models import * | |
| 10 | +#from modules.metrics.accuracy import conlleval | |
| 11 | +from modules.utils.tools import load_stanford_data4, shuffle | |
| 12 | + | |
| 13 | +from theano import pp | |
| 14 | + | |
| 15 | +import theano.tensor as T | |
| 16 | +import theano | |
| 17 | +from theano.sandbox.rng_mrg import MRG_RandomStreams #as MRG_RandomStreams | |
| 18 | + | |
| 19 | +import itertools | |
| 20 | + | |
| 21 | +import os.path | |
| 22 | +import pickle | |
| 23 | + | |
| 24 | +from collections import Counter | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | +from theano import tensor as T, printing | |
| 29 | +from collections import OrderedDict | |
| 30 | +from theano.ifelse import ifelse | |
| 31 | + | |
| 32 | +from keras.preprocessing import sequence as seq | |
| 33 | + | |
| 34 | +dataType = 'int64' | |
| 35 | + | |
| 36 | + | |
| 37 | +if __name__ == '__main__': | |
| 38 | + | |
| 39 | + | |
| 40 | + sys.setrecursionlimit(10000) | |
| 41 | + | |
| 42 | + #w2v_DIM = "300" | |
| 43 | + | |
| 44 | + | |
| 45 | + | |
| 46 | + file_with_filtered_embeddings = "embeddings/embedding_and_words2ids.pkl" | |
| 47 | + #if not os.path.exists(file_with_filtered_embeddings): | |
| 48 | + # print("Cannot find file with only needed embeddings. We use 'filter_embeddings' in order to create it.") | |
| 49 | + # filter_embeddings(["data/dane_polskie/train/train_labels.txt", "data/dane_polskie/train/train_parents.txt","data/dane_polskie/train/train_sentence.txt", | |
| 50 | + # "data/dane_polskie/dev/dev_labels.txt", "data/dane_polskie/dev/dev_parents.txt","data/dane_polskie/dev/dev_sentence.txt", | |
| 51 | + # "data/dane_polskie/test/test_labels.txt", "data/dane_polskie/test/test_parents.txt","data/dane_polskie/test/test_sentence.txt"], | |
| 52 | + | |
| 53 | + #"/home/norbert/Doktorat/clarin2sent/deeptagger/embeddings/w2v_allwiki_nkjpfull_"+w2v_DIM+".txt", | |
| 54 | + #file_with_filtered_embeddings) | |
| 55 | + | |
| 56 | + | |
| 57 | + s = {'lr':0.002, | |
| 58 | + 'nepochs':40, | |
| 59 | + 'seed':345, | |
| 60 | + 'nc':5 # number of y classes | |
| 61 | + } | |
| 62 | + batch_size = 1 | |
| 63 | + | |
| 64 | + | |
| 65 | + for h_dim in [100]: #100, 150, 200 | |
| 66 | + | |
| 67 | + np.random.seed(s['seed']) | |
| 68 | + random.seed(s['seed']) | |
| 69 | + | |
| 70 | + | |
| 71 | + rnn = LSTM_1( h_dim, | |
| 72 | + nc = s['nc'], | |
| 73 | + w2v_model_path = file_with_filtered_embeddings, #sciezka do pliku z embeddingami | |
| 74 | + max_phrase_length = 60 ) | |
| 75 | + | |
| 76 | + | |
| 77 | + train_data = load_stanford_data4("data/sst/train/dlabels.txt", "data/sst/train/dparents.txt","data/sst/train/sents.toks",rnn.words2ids,True,batch_size,s['nc']) | |
| 78 | + dev_data = load_stanford_data4("data/sst/dev/dlabels.txt", "data/sst/dev/dparents.txt","data/sst/dev/sents.toks",rnn.words2ids,False,0,s['nc']) | |
| 79 | + test_data = load_stanford_data4("data/sst/test/dlabels.txt", "data/sst/test/dparents.txt","data/sst/test/sents.toks",rnn.words2ids,False,0,s['nc']) | |
| 80 | + | |
| 81 | + n_train = len(train_data) | |
| 82 | + n_dev = len(dev_data) | |
| 83 | + n_test = len(test_data) | |
| 84 | + | |
| 85 | + print "" | |
| 86 | + print "learning rate: ", s['lr'] | |
| 87 | + print "model LSTM_1 : " , "h_dim = ", h_dim | |
| 88 | + print "" | |
| 89 | + | |
| 90 | + best_prediction_valid_all = 0 | |
| 91 | + best_prediction_test_all = 0 | |
| 92 | + best_prediction_test_root = 0 | |
| 93 | + early_stop = 0 | |
| 94 | + | |
| 95 | + | |
| 96 | + tic = time.time() | |
| 97 | + | |
| 98 | + for e in xrange(s['nepochs']): | |
| 99 | + | |
| 100 | + #if e >= 1: | |
| 101 | + # s['lr'] = 0.8 * s['lr'] | |
| 102 | + | |
| 103 | + if early_stop == 5: | |
| 104 | + break | |
| 105 | + | |
| 106 | + | |
| 107 | + # shuffle | |
| 108 | + shuffle([train_data], s['seed']) | |
| 109 | + | |
| 110 | + for i in range(n_train): | |
| 111 | + rnn.train(train_data[i][0],train_data[i][1], train_data[i][2], train_data[i][3], s['lr']) | |
| 112 | + | |
| 113 | + pickle.dump(rnn, open("model" + str(e) + ".pkl",'wb')) | |
| 114 | + | |
| 115 | + # Dev: | |
| 116 | + counts_dev = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 117 | + counts_dev_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 118 | + for ii in range(n_dev): | |
| 119 | + pred = rnn.classify(dev_data[ii][0],dev_data[ii][1], dev_data[ii][3]) | |
| 120 | + for j in range(len(pred)): | |
| 121 | + counts_dev[pred[j], dev_data[ii][2][j]] += 1 | |
| 122 | + counts_dev_root[pred[-1], dev_data[ii][2][-1]] += 1 | |
| 123 | + | |
| 124 | + | |
| 125 | + # Test: | |
| 126 | + counts_test = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 127 | + counts_test_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 128 | + for i in range(n_test): | |
| 129 | + pred = rnn.classify(test_data[i][0],test_data[i][1], test_data[i][3]) | |
| 130 | + for j in range(len(pred)): | |
| 131 | + counts_test[pred[j], test_data[i][2][j]] += 1 | |
| 132 | + counts_test_root[pred[-1], test_data[i][2][-1]] += 1 | |
| 133 | + | |
| 134 | + # Train | |
| 135 | + counts = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 136 | + counts_root = np.zeros((s['nc'],s['nc']),dtype='int') | |
| 137 | + for i in range(len(train_data)): | |
| 138 | + | |
| 139 | + if i % 5 == 0: #sprawdzamy dopasowanie na 1/100 zbioru zeby oszczedzic czas | |
| 140 | + pred = rnn.classify(train_data[i][0],train_data[i][1], train_data[i][3]) | |
| 141 | + for j in range(len(pred)): | |
| 142 | + counts[pred[j], train_data[i][2][j]] += 1 | |
| 143 | + counts_root[pred[-1], train_data[i][2][-1]] += 1 | |
| 144 | + | |
| 145 | + print("epoch: ", e, | |
| 146 | + "V all: ", "%0.2f" % (100 * np.diag(counts_dev).sum()/float(counts_dev.sum())), | |
| 147 | + " Test all: ", "%0.2f" % (100 * np.diag(counts_test).sum()/float(counts_test.sum())), | |
| 148 | + "V root: ", "%0.2f" % (100 * np.diag(counts_dev_root).sum()/float(counts_dev_root.sum())), | |
| 149 | + " Test root: ", "%0.2f" % (100 * np.diag(counts_test_root).sum()/float(counts_test_root.sum())), | |
| 150 | + " Train: ", "%0.2f" % (100 * np.diag(counts).sum()/float(counts.sum())), | |
| 151 | + " Train root: ", "%0.2f" % (100 * np.diag(counts_root).sum()/float(counts_root.sum())) | |
| 152 | + ) | |
| 153 | + | |
| 154 | + | |
| 155 | + if np.diag(counts_dev).sum()/float(counts_dev.sum()) > best_prediction_valid_all: | |
| 156 | + best_prediction_valid_all = np.diag(counts_dev).sum()/float(counts_dev.sum()) | |
| 157 | + best_prediction_test_all = np.diag(counts_test).sum()/float(counts_test.sum()) | |
| 158 | + best_prediction_test_root = np.diag(counts_test_root).sum()/float(counts_test_root.sum()) | |
| 159 | + | |
| 160 | + early_stop = 0 | |
| 161 | + else: | |
| 162 | + early_stop = early_stop + 1 | |
| 163 | + | |
| 164 | + | |
| 165 | + print("Best valid: ", "%0.2f" % (100 * best_prediction_valid_all)," Test all: ","%0.2f" % (100 * best_prediction_test_all),"Test root: ","%0.2f" % (100 * best_prediction_test_root), " time: ", time.time()-tic) | |
| 166 | + | |
| ... | ... |
modules/rnn/LSTM_models.py
0 → 100644
| 1 | +import numpy as np | |
| 2 | +import time | |
| 3 | +import sys | |
| 4 | +import subprocess | |
| 5 | +import os | |
| 6 | +import random | |
| 7 | + | |
| 8 | +#from modules.data import load | |
| 9 | +#from modules.rnn.many_models import * | |
| 10 | +#from modules.metrics.accuracy import conlleval | |
| 11 | +from modules.utils.tools import load_stanford_data4 | |
| 12 | + | |
| 13 | +from theano import pp | |
| 14 | + | |
| 15 | +import theano.tensor as T | |
| 16 | +import theano | |
| 17 | +from theano.sandbox.rng_mrg import MRG_RandomStreams #as MRG_RandomStreams | |
| 18 | + | |
| 19 | +import itertools | |
| 20 | + | |
| 21 | +import os.path | |
| 22 | +import pickle | |
| 23 | + | |
| 24 | +from collections import Counter | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | +from theano import tensor as T, printing | |
| 29 | +from collections import OrderedDict | |
| 30 | +from theano.ifelse import ifelse | |
| 31 | + | |
| 32 | +from keras.preprocessing import sequence as seq | |
| 33 | + | |
| 34 | +dataType = 'int64' | |
| 35 | + | |
| 36 | + | |
| 37 | + | |
| 38 | + | |
| 39 | +class LSTM_1(object): | |
| 40 | + def __init__(self, h_dim, nc, w2v_model_path, max_phrase_length): | |
| 41 | + | |
| 42 | + ''' | |
| 43 | + nh :: dimension of hidden state | |
| 44 | + nc :: number of classes | |
| 45 | + ''' | |
| 46 | + | |
| 47 | + self.max_phrase_length = max_phrase_length | |
| 48 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 49 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 50 | + self.words2ids = w2vecs["words2ids"] | |
| 51 | + | |
| 52 | + emb_dim = w2vecs["vectors"].shape[1] | |
| 53 | + del w2vecs | |
| 54 | + | |
| 55 | + r = 0.05 | |
| 56 | + | |
| 57 | + self.W_i = theano.shared(r * np.random.uniform(-1.0, 1.0, (emb_dim, h_dim) ).astype(theano.config.floatX)) | |
| 58 | + self.U_i = theano.shared(r * np.random.uniform(-1.0, 1.0, (h_dim, h_dim) ).astype(theano.config.floatX)) | |
| 59 | + self.b_i = theano.shared(r * np.random.uniform(-1.0, 1.0, h_dim ).astype(theano.config.floatX)) | |
| 60 | + | |
| 61 | + self.W_f = theano.shared(r * np.random.uniform(-1.0, 1.0, (emb_dim, h_dim) ).astype(theano.config.floatX)) | |
| 62 | + self.U_f = theano.shared(r * np.random.uniform(-1.0, 1.0, (h_dim, h_dim) ).astype(theano.config.floatX)) | |
| 63 | + self.b_f = theano.shared(r * np.random.uniform(-1.0, 1.0, h_dim ).astype(theano.config.floatX)) | |
| 64 | + | |
| 65 | + self.W_o = theano.shared(r * np.random.uniform(-1.0, 1.0, (emb_dim, h_dim) ).astype(theano.config.floatX)) | |
| 66 | + self.U_o = theano.shared(r * np.random.uniform(-1.0, 1.0, (h_dim, h_dim) ).astype(theano.config.floatX)) | |
| 67 | + self.b_o = theano.shared(r * np.random.uniform(-1.0, 1.0, h_dim ).astype(theano.config.floatX)) | |
| 68 | + | |
| 69 | + self.W_u = theano.shared(r * np.random.uniform(-1.0, 1.0, (emb_dim, h_dim) ).astype(theano.config.floatX)) | |
| 70 | + self.U_u = theano.shared(r * np.random.uniform(-1.0, 1.0, (h_dim, h_dim) ).astype(theano.config.floatX)) | |
| 71 | + self.b_u = theano.shared(r * np.random.uniform(-1.0, 1.0, h_dim ).astype(theano.config.floatX)) | |
| 72 | + | |
| 73 | + self.W_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (h_dim, nc)).astype(theano.config.floatX)) | |
| 74 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 75 | + | |
| 76 | + | |
| 77 | + def one_step(word_id, word_children_positions, y_true, k, hidden_states, cell_states, learning_rate): | |
| 78 | + | |
| 79 | + x = self.emb[word_id] | |
| 80 | + # czyli wektor zerowy # sprawdzic + 0.5 | |
| 81 | + tmp = word_children_positions>=0.0 | |
| 82 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 83 | + idx_tmp = tmp.nonzero() # indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 84 | + | |
| 85 | + h_aggregated = ifelse(T.gt(number_of_children, 0.0), hidden_states[word_children_positions[idx_tmp]].sum(axis=0), hidden_states[-1]) | |
| 86 | + | |
| 87 | + #number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 88 | + #h_aggregated = h_aggregated/number_of_children # Usrednianie stanow ukrytych dzieci - | |
| 89 | + | |
| 90 | + | |
| 91 | + i = T.nnet.sigmoid( T.dot(x, self.W_i) + T.dot(h_aggregated, self.U_i) + self.b_i) | |
| 92 | + | |
| 93 | + o = T.nnet.sigmoid( T.dot(x, self.W_o) + T.dot(h_aggregated, self.U_o) + self.b_o) | |
| 94 | + | |
| 95 | + u = T.tanh( T.dot(x, self.W_u) + T.dot(h_aggregated, self.U_u) + self.b_u) | |
| 96 | + | |
| 97 | + f_c = ifelse(T.gt(number_of_children, 0.0), | |
| 98 | + (T.nnet.sigmoid( T.dot(x, self.W_f ) + T.dot(hidden_states[word_children_positions[idx_tmp]], self.U_f) + self.b_f )*cell_states[word_children_positions[idx_tmp]]).sum(axis=0), | |
| 99 | + T.nnet.sigmoid( T.dot(x, self.W_f ) + T.dot(hidden_states[-1], self.U_f) + self.b_f ) * cell_states[-1] | |
| 100 | + ) | |
| 101 | + | |
| 102 | + c = i*u + f_c | |
| 103 | + | |
| 104 | + h = o * T.tanh(c) | |
| 105 | + | |
| 106 | + current_cell_state = cell_states[k] | |
| 107 | + cell_states_new = T.set_subtensor(current_cell_state, c) | |
| 108 | + | |
| 109 | + current_hidden_state = hidden_states[k] | |
| 110 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 111 | + | |
| 112 | + | |
| 113 | + y_prob = T.nnet.softmax(T.dot(h,self.W_y) + self.b_y)[0] | |
| 114 | + | |
| 115 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 116 | + | |
| 117 | + return cross_entropy, hidden_states_new, cell_states_new | |
| 118 | + | |
| 119 | + | |
| 120 | + y = T.vector('y',dtype=dataType) | |
| 121 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 122 | + words = T.vector(dtype=dataType) | |
| 123 | + children_positions = T.matrix(dtype=dataType) | |
| 124 | + words_indexes = T.vector(dtype=dataType) | |
| 125 | + | |
| 126 | + [cross_entropy_vector, _, _] , _ = theano.scan(fn=one_step, \ | |
| 127 | + sequences = [words, children_positions,y,words_indexes], | |
| 128 | + outputs_info = [None, | |
| 129 | + theano.shared(np.zeros((self.max_phrase_length+1,h_dim), dtype = theano.config.floatX)), | |
| 130 | + theano.shared(np.zeros((self.max_phrase_length+1,h_dim), dtype = theano.config.floatX))], | |
| 131 | + non_sequences = learning_rate, | |
| 132 | + n_steps = words.shape[0]) | |
| 133 | + cost = T.sum(cross_entropy_vector) | |
| 134 | + | |
| 135 | + updates = OrderedDict([ | |
| 136 | + (self.W_i, self.W_i-learning_rate*T.grad(cost, self.W_i)), | |
| 137 | + (self.W_f, self.W_f-learning_rate*T.grad(cost, self.W_f)), | |
| 138 | + (self.W_o, self.W_o-learning_rate*T.grad(cost, self.W_o)), | |
| 139 | + (self.W_u, self.W_u-learning_rate*T.grad(cost, self.W_u)), | |
| 140 | + (self.W_y, self.W_y-learning_rate*T.grad(cost, self.W_y)), | |
| 141 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 142 | + (self.b_i, self.b_i-learning_rate*T.grad(cost,self.b_i)), | |
| 143 | + (self.b_f, self.b_f-learning_rate*T.grad(cost,self.b_f)), | |
| 144 | + (self.b_o, self.b_o-learning_rate*T.grad(cost,self.b_o)), | |
| 145 | + (self.b_u, self.b_u-learning_rate*T.grad(cost,self.b_u)), | |
| 146 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 147 | + ]) | |
| 148 | + | |
| 149 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 150 | + outputs = [], | |
| 151 | + updates = updates, | |
| 152 | + allow_input_downcast=True, | |
| 153 | + mode='FAST_RUN' | |
| 154 | + ) | |
| 155 | + | |
| 156 | + | |
| 157 | + def one_step_classify(word_id, word_children_positions, k, hidden_states, cell_states): | |
| 158 | + | |
| 159 | + x = self.emb[word_id] | |
| 160 | + # czyli wektor zerowy # sprawdzic + 0.5 | |
| 161 | + tmp = word_children_positions>=0.0 | |
| 162 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 163 | + idx_tmp = tmp.nonzero() # indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 164 | + | |
| 165 | + h_aggregated = ifelse(T.gt(number_of_children, 0.0), hidden_states[word_children_positions[idx_tmp]].sum(axis=0), hidden_states[-1]) | |
| 166 | + | |
| 167 | + #number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 168 | + #h_aggregated = h_aggregated/number_of_children # Usrednianie stanow ukrytych dzieci - | |
| 169 | + | |
| 170 | + | |
| 171 | + i = T.nnet.sigmoid( T.dot(x, self.W_i) + T.dot(h_aggregated, self.U_i) + self.b_i) | |
| 172 | + | |
| 173 | + o = T.nnet.sigmoid( T.dot(x, self.W_o) + T.dot(h_aggregated, self.U_o) + self.b_o) | |
| 174 | + | |
| 175 | + u = T.tanh( T.dot(x, self.W_u) + T.dot(h_aggregated, self.U_u) + self.b_u) | |
| 176 | + | |
| 177 | + f_c = ifelse(T.gt(number_of_children, 0.0), | |
| 178 | + (T.nnet.sigmoid( T.dot(x, self.W_f ) + T.dot(hidden_states[word_children_positions[idx_tmp]], self.U_f) + self.b_f )*cell_states[word_children_positions[idx_tmp]]).sum(axis=0), | |
| 179 | + T.nnet.sigmoid( T.dot(x, self.W_f ) + T.dot(hidden_states[-1], self.U_f) + self.b_f ) * cell_states[-1] | |
| 180 | + ) | |
| 181 | + | |
| 182 | + c = i*u + f_c | |
| 183 | + | |
| 184 | + h = o * T.tanh(c) | |
| 185 | + | |
| 186 | + current_cell_state = cell_states[k] | |
| 187 | + cell_states_new = T.set_subtensor(current_cell_state, c) | |
| 188 | + | |
| 189 | + current_hidden_state = hidden_states[k] | |
| 190 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 191 | + | |
| 192 | + | |
| 193 | + y_prob = T.nnet.softmax(T.dot(h,self.W_y) + self.b_y)[0] | |
| 194 | + | |
| 195 | + return y_prob, hidden_states_new, cell_states_new | |
| 196 | + | |
| 197 | + | |
| 198 | + [y_probs_classify, _, _ ], _ = theano.scan( | |
| 199 | + fn=one_step_classify, | |
| 200 | + sequences = [words, children_positions, words_indexes], | |
| 201 | + outputs_info = [None, | |
| 202 | + theano.shared(np.zeros((self.max_phrase_length+1,h_dim), dtype = theano.config.floatX)), | |
| 203 | + theano.shared(np.zeros((self.max_phrase_length+1,h_dim), dtype = theano.config.floatX))]) | |
| 204 | + | |
| 205 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 206 | + sequences = [words_indexes]) | |
| 207 | + | |
| 208 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 209 | + outputs=predictions, | |
| 210 | + allow_input_downcast=True, | |
| 211 | + mode='FAST_RUN' | |
| 212 | + ) | |
| 213 | + | |
| 214 | + | |
| ... | ... |
modules/rnn/LSTM_models.pyc
0 → 100644
No preview for this file type
modules/rnn/models.py
0 → 100644
| 1 | +import numpy as np | |
| 2 | +import time | |
| 3 | +import sys | |
| 4 | +import subprocess | |
| 5 | +import os | |
| 6 | +import random | |
| 7 | + | |
| 8 | +#from modules.data import load | |
| 9 | +#from modules.rnn.many_models import * | |
| 10 | +#from modules.metrics.accuracy import conlleval | |
| 11 | +from modules.utils.tools import load_stanford_data4 | |
| 12 | + | |
| 13 | +from theano import pp | |
| 14 | + | |
| 15 | +import theano.tensor as T | |
| 16 | +import theano | |
| 17 | +from theano.sandbox.rng_mrg import MRG_RandomStreams #as MRG_RandomStreams | |
| 18 | + | |
| 19 | +import itertools | |
| 20 | + | |
| 21 | +import os.path | |
| 22 | +import pickle | |
| 23 | + | |
| 24 | +from collections import Counter | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | +from theano import tensor as T, printing | |
| 29 | +from collections import OrderedDict | |
| 30 | +from theano.ifelse import ifelse | |
| 31 | + | |
| 32 | +from keras.preprocessing import sequence as seq | |
| 33 | + | |
| 34 | +dataType = 'int64' | |
| 35 | + | |
| 36 | + | |
| 37 | + | |
| 38 | +# UWAGA: "ne" to NIE JEST to co jest napisane - to jest wymiar warstwy bezposrednio nad embeddingiem | |
| 39 | + | |
| 40 | + | |
| 41 | +class model55_pf1(object): | |
| 42 | + def __init__(self, ne, nchd, nc, w2v_model_path, max_phrase_length): | |
| 43 | + ''' | |
| 44 | + nh :: dimension of hidden state | |
| 45 | + nc :: number of classes | |
| 46 | + ne :: number of word embeddings in the vocabulary | |
| 47 | + de :: dimension of the word embeddings | |
| 48 | + ds :: dimension of the sentiment state | |
| 49 | + ''' | |
| 50 | + self.max_phrase_length = max_phrase_length | |
| 51 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 52 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 53 | + self.words2ids = w2vecs["words2ids"] | |
| 54 | + | |
| 55 | + #ne = len(w2vecs["words2ids"]) | |
| 56 | + de = w2vecs["vectors"].shape[1] | |
| 57 | + del w2vecs | |
| 58 | + | |
| 59 | + r = 0.05 | |
| 60 | + self.W_e_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, ne)).astype(theano.config.floatX)) | |
| 61 | + self.W_h_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nc)).astype(theano.config.floatX)) | |
| 62 | + | |
| 63 | + self.W_sh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nchd)).astype(theano.config.floatX)) | |
| 64 | + | |
| 65 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 66 | + | |
| 67 | + | |
| 68 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 69 | + | |
| 70 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 71 | + | |
| 72 | + tmp = word_children_positions>=0.0 | |
| 73 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 74 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 75 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 76 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 77 | + schh = schh/number_of_children | |
| 78 | + | |
| 79 | + h = T.tanh(T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)])) | |
| 80 | + | |
| 81 | + current_hidden_state = hidden_states[i] | |
| 82 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 83 | + | |
| 84 | + y_prob = T.nnet.softmax(T.dot(h,self.W_h_y) + self.b_y)[0] | |
| 85 | + | |
| 86 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 87 | + | |
| 88 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 89 | + | |
| 90 | + return cross_entropy, hidden_states_new | |
| 91 | + | |
| 92 | + | |
| 93 | + y = T.vector('y',dtype=dataType) | |
| 94 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 95 | + words = T.vector(dtype=dataType) | |
| 96 | + children_positions = T.matrix(dtype=dataType) | |
| 97 | + words_indexes = T.vector(dtype=dataType) | |
| 98 | + | |
| 99 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 100 | + sequences = [words, children_positions,y,words_indexes], | |
| 101 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 102 | + non_sequences = learning_rate, | |
| 103 | + n_steps = words.shape[0]) | |
| 104 | + cost = T.sum(cross_entropy_vector[0]) | |
| 105 | + | |
| 106 | + updates = OrderedDict([ | |
| 107 | + (self.W_h_y, self.W_h_y-learning_rate*T.grad(cost, self.W_h_y)), | |
| 108 | + (self.W_e_h, self.W_e_h-learning_rate*T.grad(cost, self.W_e_h)), | |
| 109 | + (self.W_sh_h, self.W_sh_h-learning_rate*T.grad(cost, self.W_sh_h)), | |
| 110 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 111 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 112 | + ]) | |
| 113 | + | |
| 114 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 115 | + outputs = [], | |
| 116 | + updates = updates, | |
| 117 | + allow_input_downcast=True, | |
| 118 | + mode='FAST_RUN' | |
| 119 | + ) | |
| 120 | + | |
| 121 | + | |
| 122 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 123 | + | |
| 124 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 125 | + | |
| 126 | + tmp = word_children_positions>=0.0 | |
| 127 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 128 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 129 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 130 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 131 | + schh = schh/number_of_children | |
| 132 | + | |
| 133 | + h = T.tanh(T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)]) ) | |
| 134 | + | |
| 135 | + current_hidden_state = hidden_states[i] | |
| 136 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 137 | + | |
| 138 | + y_prob = T.nnet.softmax(T.dot(h,self.W_h_y) + self.b_y)[0] | |
| 139 | + | |
| 140 | + return y_prob, hidden_states_new | |
| 141 | + | |
| 142 | + | |
| 143 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 144 | + fn=one_step_classify, | |
| 145 | + sequences = [words, children_positions,words_indexes], | |
| 146 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 147 | + | |
| 148 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 149 | + sequences = [words_indexes]) | |
| 150 | + | |
| 151 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 152 | + outputs=predictions, | |
| 153 | + allow_input_downcast=True, | |
| 154 | + mode='FAST_RUN' | |
| 155 | + ) | |
| 156 | + | |
| 157 | + | |
| 158 | + | |
| 159 | +class model55_pf2(object): | |
| 160 | + def __init__(self, ne, nchd, nh2, nc, w2v_model_path, max_phrase_length): | |
| 161 | + ''' | |
| 162 | + nh :: dimension of hidden state | |
| 163 | + nc :: number of classes | |
| 164 | + ne :: number of word embeddings in the vocabulary | |
| 165 | + de :: dimension of the word embeddings | |
| 166 | + ds :: dimension of the sentiment state | |
| 167 | + ''' | |
| 168 | + self.max_phrase_length = max_phrase_length | |
| 169 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 170 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 171 | + self.words2ids = w2vecs["words2ids"] | |
| 172 | + | |
| 173 | + #ne = len(w2vecs["words2ids"]) | |
| 174 | + de = w2vecs["vectors"].shape[1] | |
| 175 | + del w2vecs | |
| 176 | + | |
| 177 | + r = 0.05 | |
| 178 | + | |
| 179 | + self.W_e_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, ne)).astype(theano.config.floatX)) | |
| 180 | + | |
| 181 | + self.W_sh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nchd)).astype(theano.config.floatX)) | |
| 182 | + | |
| 183 | + self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nh2)).astype(theano.config.floatX)) | |
| 184 | + self.W_h2_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh2, nc)).astype(theano.config.floatX)) | |
| 185 | + | |
| 186 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 187 | + | |
| 188 | + | |
| 189 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 190 | + | |
| 191 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 192 | + | |
| 193 | + tmp = word_children_positions>=0.0 | |
| 194 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 195 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 196 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 197 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 198 | + schh = schh/number_of_children | |
| 199 | + | |
| 200 | + h = T.tanh(T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)])) | |
| 201 | + #h = T.nnet.sigmoid(T.dot(self.emb[word_id],self.W_eh) + T.dot(schh,self.W_shsh) + self.bh) | |
| 202 | + | |
| 203 | + current_hidden_state = hidden_states[i] | |
| 204 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 205 | + | |
| 206 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 207 | + | |
| 208 | + y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y) + self.b_y)[0] | |
| 209 | + | |
| 210 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 211 | + | |
| 212 | + return cross_entropy, hidden_states_new | |
| 213 | + | |
| 214 | + | |
| 215 | + y = T.vector('y',dtype=dataType) | |
| 216 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 217 | + words = T.vector(dtype=dataType) | |
| 218 | + children_positions = T.matrix(dtype=dataType) | |
| 219 | + words_indexes = T.vector(dtype=dataType) | |
| 220 | + | |
| 221 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 222 | + sequences = [words, children_positions,y,words_indexes], | |
| 223 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 224 | + non_sequences = learning_rate, | |
| 225 | + n_steps = words.shape[0]) | |
| 226 | + cost = T.sum(cross_entropy_vector[0]) | |
| 227 | + | |
| 228 | + updates = OrderedDict([ | |
| 229 | + (self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cost, self.W_h_h2)), | |
| 230 | + (self.W_h2_y, self.W_h2_y-learning_rate*T.grad(cost, self.W_h2_y)), | |
| 231 | + (self.W_e_h, self.W_e_h-learning_rate*T.grad(cost, self.W_e_h)), | |
| 232 | + (self.W_sh_h, self.W_sh_h-learning_rate*T.grad(cost, self.W_sh_h)), | |
| 233 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 234 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 235 | + ]) | |
| 236 | + | |
| 237 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 238 | + outputs = [], | |
| 239 | + updates = updates, | |
| 240 | + allow_input_downcast=True, | |
| 241 | + mode='FAST_RUN' | |
| 242 | + ) | |
| 243 | + | |
| 244 | + | |
| 245 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 246 | + | |
| 247 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 248 | + | |
| 249 | + tmp = word_children_positions>=0.0 | |
| 250 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 251 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 252 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 253 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 254 | + schh = schh/number_of_children | |
| 255 | + | |
| 256 | + h = T.tanh(T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)])) | |
| 257 | + | |
| 258 | + current_hidden_state = hidden_states[i] | |
| 259 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 260 | + | |
| 261 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 262 | + | |
| 263 | + y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y) + self.b_y)[0] | |
| 264 | + | |
| 265 | + return y_prob, hidden_states_new | |
| 266 | + | |
| 267 | + | |
| 268 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 269 | + fn=one_step_classify, | |
| 270 | + sequences = [words, children_positions,words_indexes], | |
| 271 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 272 | + | |
| 273 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 274 | + sequences = [words_indexes]) | |
| 275 | + | |
| 276 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 277 | + outputs=predictions, | |
| 278 | + allow_input_downcast=True, | |
| 279 | + mode='FAST_RUN' | |
| 280 | + ) | |
| 281 | + | |
| 282 | + | |
| 283 | + | |
| 284 | + | |
| 285 | +class model55_pf3(object): | |
| 286 | + def __init__(self, ne, nchd, nh2, nh3, nc, w2v_model_path, max_phrase_length): | |
| 287 | + ''' | |
| 288 | + nh :: dimension of hidden state | |
| 289 | + nc :: number of classes | |
| 290 | + ne :: number of word embeddings in the vocabulary | |
| 291 | + de :: dimension of the word embeddings | |
| 292 | + ds :: dimension of the sentiment state | |
| 293 | + ''' | |
| 294 | + self.max_phrase_length = max_phrase_length | |
| 295 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 296 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 297 | + self.words2ids = w2vecs["words2ids"] | |
| 298 | + | |
| 299 | + #ne = len(w2vecs["words2ids"]) | |
| 300 | + de = w2vecs["vectors"].shape[1] | |
| 301 | + del w2vecs | |
| 302 | + | |
| 303 | + r = 0.05 | |
| 304 | + self.W_e_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, ne)).astype(theano.config.floatX)) | |
| 305 | + self.W_sh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nchd)).astype(theano.config.floatX)) | |
| 306 | + | |
| 307 | + self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nh2)).astype(theano.config.floatX)) | |
| 308 | + self.W_h2_h3 = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh2, nh3)).astype(theano.config.floatX)) | |
| 309 | + self.W_h3_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh3, nc)).astype(theano.config.floatX)) | |
| 310 | + | |
| 311 | + | |
| 312 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 313 | + | |
| 314 | + | |
| 315 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 316 | + | |
| 317 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 318 | + | |
| 319 | + tmp = word_children_positions>=0.0 | |
| 320 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 321 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 322 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 323 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 324 | + schh = schh/number_of_children | |
| 325 | + | |
| 326 | + h = T.tanh(T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)])) | |
| 327 | + #h = T.nnet.sigmoid(T.dot(self.emb[word_id],self.W_eh) + T.dot(schh,self.W_shsh) + self.bh) | |
| 328 | + | |
| 329 | + current_hidden_state = hidden_states[i] | |
| 330 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 331 | + | |
| 332 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 333 | + | |
| 334 | + h3 = T.tanh(T.dot(h2, self.W_h2_h3)) | |
| 335 | + | |
| 336 | + y_prob = T.nnet.softmax(T.dot(h3,self.W_h3_y) + self.b_y)[0] | |
| 337 | + | |
| 338 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 339 | + | |
| 340 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 341 | + | |
| 342 | + return cross_entropy, hidden_states_new | |
| 343 | + | |
| 344 | + | |
| 345 | + y = T.vector('y',dtype=dataType) | |
| 346 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 347 | + words = T.vector(dtype=dataType) | |
| 348 | + children_positions = T.matrix(dtype=dataType) | |
| 349 | + words_indexes = T.vector(dtype=dataType) | |
| 350 | + | |
| 351 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 352 | + sequences = [words, children_positions,y,words_indexes], | |
| 353 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 354 | + non_sequences = learning_rate, | |
| 355 | + n_steps = words.shape[0]) | |
| 356 | + cost = T.sum(cross_entropy_vector[0]) | |
| 357 | + | |
| 358 | + updates = OrderedDict([ | |
| 359 | + (self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cost, self.W_h_h2)), | |
| 360 | + (self.W_h2_h3, self.W_h2_h3-learning_rate*T.grad(cost, self.W_h2_h3)), | |
| 361 | + (self.W_h3_y, self.W_h3_y-learning_rate*T.grad(cost, self.W_h3_y)), | |
| 362 | + (self.W_e_h, self.W_e_h-learning_rate*T.grad(cost, self.W_e_h)), | |
| 363 | + (self.W_sh_h, self.W_sh_h-learning_rate*T.grad(cost, self.W_sh_h)), | |
| 364 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 365 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 366 | + ]) | |
| 367 | + | |
| 368 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 369 | + outputs = [], | |
| 370 | + updates = updates, | |
| 371 | + allow_input_downcast=True, | |
| 372 | + mode='FAST_RUN' | |
| 373 | + ) | |
| 374 | + | |
| 375 | + | |
| 376 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 377 | + | |
| 378 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 379 | + | |
| 380 | + tmp = word_children_positions>=0.0 | |
| 381 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 382 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 383 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 384 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 385 | + schh = schh/number_of_children | |
| 386 | + | |
| 387 | + h = T.tanh(T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)]) ) | |
| 388 | + | |
| 389 | + current_hidden_state = hidden_states[i] | |
| 390 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 391 | + | |
| 392 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 393 | + | |
| 394 | + h3 = T.tanh(T.dot(h2, self.W_h2_h3)) | |
| 395 | + | |
| 396 | + y_prob = T.nnet.softmax(T.dot(h3,self.W_h3_y) + self.b_y)[0] | |
| 397 | + | |
| 398 | + return y_prob, hidden_states_new | |
| 399 | + | |
| 400 | + | |
| 401 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 402 | + fn=one_step_classify, | |
| 403 | + sequences = [words, children_positions,words_indexes], | |
| 404 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 405 | + | |
| 406 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 407 | + sequences = [words_indexes]) | |
| 408 | + | |
| 409 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 410 | + outputs=predictions, | |
| 411 | + allow_input_downcast=True, | |
| 412 | + mode='FAST_RUN' | |
| 413 | + ) | |
| 414 | + | |
| 415 | + | |
| 416 | + | |
| 417 | + | |
| 418 | + | |
| 419 | + | |
| 420 | +class model55_pf4(object): | |
| 421 | + def __init__(self, neh, ne, nchd, nc, w2v_model_path, max_phrase_length): | |
| 422 | + ''' | |
| 423 | + nh :: dimension of hidden state | |
| 424 | + nc :: number of classes | |
| 425 | + ne :: number of word embeddings in the vocabulary | |
| 426 | + de :: dimension of the word embeddings | |
| 427 | + ds :: dimension of the sentiment state | |
| 428 | + ''' | |
| 429 | + self.max_phrase_length = max_phrase_length | |
| 430 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 431 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 432 | + self.words2ids = w2vecs["words2ids"] | |
| 433 | + | |
| 434 | + de = w2vecs["vectors"].shape[1] | |
| 435 | + del w2vecs | |
| 436 | + | |
| 437 | + r = 0.05 | |
| 438 | + self.W_e_eh = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, neh)).astype(theano.config.floatX)) | |
| 439 | + | |
| 440 | + self.W_eh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (neh, ne)).astype(theano.config.floatX)) | |
| 441 | + | |
| 442 | + self.W_h_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nc)).astype(theano.config.floatX)) | |
| 443 | + | |
| 444 | + self.W_sh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nchd)).astype(theano.config.floatX)) | |
| 445 | + | |
| 446 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 447 | + | |
| 448 | + | |
| 449 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 450 | + | |
| 451 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 452 | + | |
| 453 | + tmp = word_children_positions>=0.0 | |
| 454 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 455 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 456 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 457 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 458 | + schh = schh/number_of_children | |
| 459 | + | |
| 460 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 461 | + | |
| 462 | + h = T.tanh(T.concatenate([T.dot(eh, self.W_eh_h), T.dot(schh,self.W_sh_h)])) | |
| 463 | + | |
| 464 | + current_hidden_state = hidden_states[i] | |
| 465 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 466 | + | |
| 467 | + y_prob = T.nnet.softmax(T.dot(h,self.W_h_y) + self.b_y)[0] | |
| 468 | + | |
| 469 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 470 | + | |
| 471 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 472 | + | |
| 473 | + return cross_entropy, hidden_states_new | |
| 474 | + | |
| 475 | + | |
| 476 | + y = T.vector('y',dtype=dataType) | |
| 477 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 478 | + words = T.vector(dtype=dataType) | |
| 479 | + children_positions = T.matrix(dtype=dataType) | |
| 480 | + words_indexes = T.vector(dtype=dataType) | |
| 481 | + | |
| 482 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 483 | + sequences = [words, children_positions,y,words_indexes], | |
| 484 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 485 | + non_sequences = learning_rate, | |
| 486 | + n_steps = words.shape[0]) | |
| 487 | + cost = T.sum(cross_entropy_vector[0]) | |
| 488 | + | |
| 489 | + updates = OrderedDict([ | |
| 490 | + (self.W_h_y, self.W_h_y-learning_rate*T.grad(cost, self.W_h_y)), | |
| 491 | + (self.W_e_eh, self.W_e_eh-learning_rate*T.grad(cost, self.W_e_eh)), | |
| 492 | + (self.W_eh_h, self.W_eh_h-learning_rate*T.grad(cost, self.W_eh_h)), | |
| 493 | + (self.W_sh_h, self.W_sh_h-learning_rate*T.grad(cost, self.W_sh_h)), | |
| 494 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 495 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 496 | + ]) | |
| 497 | + | |
| 498 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 499 | + outputs = [], | |
| 500 | + updates = updates, | |
| 501 | + allow_input_downcast=True, | |
| 502 | + mode='FAST_RUN' | |
| 503 | + ) | |
| 504 | + | |
| 505 | + | |
| 506 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 507 | + | |
| 508 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 509 | + | |
| 510 | + tmp = word_children_positions>=0.0 | |
| 511 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 512 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 513 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 514 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 515 | + schh = schh/number_of_children | |
| 516 | + | |
| 517 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 518 | + | |
| 519 | + h = T.tanh(T.concatenate([T.dot(eh, self.W_eh_h), T.dot(schh,self.W_sh_h)])) | |
| 520 | + | |
| 521 | + current_hidden_state = hidden_states[i] | |
| 522 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 523 | + | |
| 524 | + y_prob = T.nnet.softmax(T.dot(h,self.W_h_y) + self.b_y)[0] | |
| 525 | + | |
| 526 | + return y_prob, hidden_states_new | |
| 527 | + | |
| 528 | + | |
| 529 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 530 | + fn=one_step_classify, | |
| 531 | + sequences = [words, children_positions,words_indexes], | |
| 532 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 533 | + | |
| 534 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 535 | + sequences = [words_indexes]) | |
| 536 | + | |
| 537 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 538 | + outputs=predictions, | |
| 539 | + allow_input_downcast=True, | |
| 540 | + mode='FAST_RUN' | |
| 541 | + ) | |
| 542 | + | |
| 543 | + | |
| 544 | + | |
| 545 | + | |
| 546 | + | |
| 547 | + | |
| 548 | +class model55_pf5(object): | |
| 549 | + def __init__(self, ne, nshh, nchd, nc, w2v_model_path, max_phrase_length): | |
| 550 | + ''' | |
| 551 | + nh :: dimension of hidden state | |
| 552 | + nc :: number of classes | |
| 553 | + ne :: number of word embeddings in the vocabulary | |
| 554 | + de :: dimension of the word embeddings | |
| 555 | + ds :: dimension of the sentiment state | |
| 556 | + ''' | |
| 557 | + self.max_phrase_length = max_phrase_length | |
| 558 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 559 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 560 | + self.words2ids = w2vecs["words2ids"] | |
| 561 | + | |
| 562 | + #ne = len(w2vecs["words2ids"]) | |
| 563 | + de = w2vecs["vectors"].shape[1] | |
| 564 | + del w2vecs | |
| 565 | + | |
| 566 | + r = 0.05 | |
| 567 | + self.W_e_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, ne)).astype(theano.config.floatX)) | |
| 568 | + | |
| 569 | + | |
| 570 | + self.W_h_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nc)).astype(theano.config.floatX)) | |
| 571 | + | |
| 572 | + self.W_sh_shh = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nshh)).astype(theano.config.floatX)) | |
| 573 | + | |
| 574 | + self.W_shh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (nshh, nchd)).astype(theano.config.floatX)) | |
| 575 | + | |
| 576 | + | |
| 577 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 578 | + | |
| 579 | + | |
| 580 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 581 | + | |
| 582 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 583 | + | |
| 584 | + tmp = word_children_positions>=0.0 | |
| 585 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 586 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 587 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 588 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 589 | + schh = schh/number_of_children | |
| 590 | + | |
| 591 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 592 | + | |
| 593 | + h = T.tanh(T.concatenate([T.dot(self.emb[word_id], self.W_e_h), T.dot(shh,self.W_shh_h)])) | |
| 594 | + | |
| 595 | + current_hidden_state = hidden_states[i] | |
| 596 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 597 | + | |
| 598 | + y_prob = T.nnet.softmax(T.dot(h,self.W_h_y) + self.b_y)[0] | |
| 599 | + | |
| 600 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 601 | + | |
| 602 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 603 | + | |
| 604 | + return cross_entropy, hidden_states_new | |
| 605 | + | |
| 606 | + | |
| 607 | + y = T.vector('y',dtype=dataType) | |
| 608 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 609 | + words = T.vector(dtype=dataType) | |
| 610 | + children_positions = T.matrix(dtype=dataType) | |
| 611 | + words_indexes = T.vector(dtype=dataType) | |
| 612 | + | |
| 613 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 614 | + sequences = [words, children_positions,y,words_indexes], | |
| 615 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 616 | + non_sequences = learning_rate, | |
| 617 | + n_steps = words.shape[0]) | |
| 618 | + cost = T.sum(cross_entropy_vector[0]) | |
| 619 | + | |
| 620 | + updates = OrderedDict([ | |
| 621 | + (self.W_h_y, self.W_h_y-learning_rate*T.grad(cost, self.W_h_y)), | |
| 622 | + (self.W_e_h, self.W_e_h-learning_rate*T.grad(cost, self.W_e_h)), | |
| 623 | + (self.W_shh_h, self.W_shh_h-learning_rate*T.grad(cost, self.W_shh_h)), | |
| 624 | + (self.W_sh_shh, self.W_sh_shh-learning_rate*T.grad(cost, self.W_sh_shh)), | |
| 625 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 626 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 627 | + ]) | |
| 628 | + | |
| 629 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 630 | + outputs = [], | |
| 631 | + updates = updates, | |
| 632 | + allow_input_downcast=True, | |
| 633 | + mode='FAST_RUN' | |
| 634 | + ) | |
| 635 | + | |
| 636 | + | |
| 637 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 638 | + | |
| 639 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 640 | + | |
| 641 | + tmp = word_children_positions>=0.0 | |
| 642 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 643 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 644 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 645 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 646 | + schh = schh/number_of_children | |
| 647 | + | |
| 648 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 649 | + | |
| 650 | + h = T.tanh(T.concatenate([T.dot(self.emb[word_id], self.W_e_h), T.dot(shh,self.W_shh_h)])) | |
| 651 | + | |
| 652 | + | |
| 653 | + current_hidden_state = hidden_states[i] | |
| 654 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 655 | + | |
| 656 | + y_prob = T.nnet.softmax(T.dot(h,self.W_h_y) + self.b_y)[0] | |
| 657 | + | |
| 658 | + return y_prob, hidden_states_new | |
| 659 | + | |
| 660 | + | |
| 661 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 662 | + fn=one_step_classify, | |
| 663 | + sequences = [words, children_positions,words_indexes], | |
| 664 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 665 | + | |
| 666 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 667 | + sequences = [words_indexes]) | |
| 668 | + | |
| 669 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 670 | + outputs=predictions, | |
| 671 | + allow_input_downcast=True, | |
| 672 | + mode='FAST_RUN' | |
| 673 | + ) | |
| 674 | + | |
| 675 | + | |
| 676 | + | |
| 677 | + | |
| 678 | +class model55_pf6(object): | |
| 679 | + def __init__(self, neh, ne, nshh, nchd, nc, w2v_model_path, max_phrase_length): | |
| 680 | + ''' | |
| 681 | + nh :: dimension of hidden state | |
| 682 | + nc :: number of classes | |
| 683 | + ne :: number of word embeddings in the vocabulary | |
| 684 | + de :: dimension of the word embeddings | |
| 685 | + ds :: dimension of the sentiment state | |
| 686 | + ''' | |
| 687 | + self.max_phrase_length = max_phrase_length | |
| 688 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 689 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 690 | + self.words2ids = w2vecs["words2ids"] | |
| 691 | + | |
| 692 | + #ne = len(w2vecs["words2ids"]) | |
| 693 | + de = w2vecs["vectors"].shape[1] | |
| 694 | + del w2vecs | |
| 695 | + | |
| 696 | + r = 0.05 | |
| 697 | + self.W_e_eh = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, neh)).astype(theano.config.floatX)) | |
| 698 | + | |
| 699 | + self.W_eh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (neh, ne)).astype(theano.config.floatX)) | |
| 700 | + | |
| 701 | + self.W_h_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nc)).astype(theano.config.floatX)) | |
| 702 | + | |
| 703 | + self.W_sh_shh = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nshh)).astype(theano.config.floatX)) | |
| 704 | + | |
| 705 | + self.W_shh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (nshh, nchd)).astype(theano.config.floatX)) | |
| 706 | + | |
| 707 | + | |
| 708 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 709 | + | |
| 710 | + | |
| 711 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 712 | + | |
| 713 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 714 | + | |
| 715 | + tmp = word_children_positions>=0.0 | |
| 716 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 717 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 718 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 719 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 720 | + schh = schh/number_of_children | |
| 721 | + | |
| 722 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 723 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 724 | + | |
| 725 | + h = T.tanh(T.concatenate([T.dot(eh, self.W_eh_h), T.dot(shh,self.W_shh_h)])) | |
| 726 | + | |
| 727 | + current_hidden_state = hidden_states[i] | |
| 728 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 729 | + | |
| 730 | + y_prob = T.nnet.softmax(T.dot(h,self.W_h_y) + self.b_y)[0] | |
| 731 | + | |
| 732 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 733 | + | |
| 734 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 735 | + | |
| 736 | + return cross_entropy, hidden_states_new | |
| 737 | + | |
| 738 | + | |
| 739 | + y = T.vector('y',dtype=dataType) | |
| 740 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 741 | + words = T.vector(dtype=dataType) | |
| 742 | + children_positions = T.matrix(dtype=dataType) | |
| 743 | + words_indexes = T.vector(dtype=dataType) | |
| 744 | + | |
| 745 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 746 | + sequences = [words, children_positions,y,words_indexes], | |
| 747 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 748 | + non_sequences = learning_rate, | |
| 749 | + n_steps = words.shape[0]) | |
| 750 | + cost = T.sum(cross_entropy_vector[0]) | |
| 751 | + | |
| 752 | + updates = OrderedDict([ | |
| 753 | + (self.W_h_y, self.W_h_y-learning_rate*T.grad(cost, self.W_h_y)), | |
| 754 | + (self.W_e_eh, self.W_e_eh-learning_rate*T.grad(cost, self.W_e_eh)), | |
| 755 | + (self.W_eh_h, self.W_eh_h-learning_rate*T.grad(cost, self.W_eh_h)), | |
| 756 | + (self.W_shh_h, self.W_shh_h-learning_rate*T.grad(cost, self.W_shh_h)), | |
| 757 | + (self.W_sh_shh, self.W_sh_shh-learning_rate*T.grad(cost, self.W_sh_shh)), | |
| 758 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 759 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 760 | + ]) | |
| 761 | + | |
| 762 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 763 | + outputs = [], | |
| 764 | + updates = updates, | |
| 765 | + allow_input_downcast=True, | |
| 766 | + mode='FAST_RUN' | |
| 767 | + ) | |
| 768 | + | |
| 769 | + | |
| 770 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 771 | + | |
| 772 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 773 | + | |
| 774 | + tmp = word_children_positions>=0.0 | |
| 775 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 776 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 777 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 778 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 779 | + schh = schh/number_of_children | |
| 780 | + | |
| 781 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 782 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 783 | + | |
| 784 | + h = T.tanh(T.concatenate([T.dot(eh, self.W_eh_h), T.dot(shh,self.W_shh_h)])) | |
| 785 | + | |
| 786 | + | |
| 787 | + current_hidden_state = hidden_states[i] | |
| 788 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 789 | + | |
| 790 | + y_prob = T.nnet.softmax(T.dot(h,self.W_h_y) + self.b_y)[0] | |
| 791 | + | |
| 792 | + return y_prob, hidden_states_new | |
| 793 | + | |
| 794 | + | |
| 795 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 796 | + fn=one_step_classify, | |
| 797 | + sequences = [words, children_positions,words_indexes], | |
| 798 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 799 | + | |
| 800 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 801 | + sequences = [words_indexes]) | |
| 802 | + | |
| 803 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 804 | + outputs=predictions, | |
| 805 | + allow_input_downcast=True, | |
| 806 | + mode='FAST_RUN' | |
| 807 | + ) | |
| 808 | + | |
| 809 | + | |
| 810 | + | |
| 811 | + | |
| 812 | + | |
| 813 | +class model55_pf7(object): | |
| 814 | + def __init__(self, neh, ne, nshh, nchd, nh2, nc, w2v_model_path, max_phrase_length): | |
| 815 | + ''' | |
| 816 | + nh :: dimension of hidden state | |
| 817 | + nc :: number of classes | |
| 818 | + ne :: number of word embeddings in the vocabulary | |
| 819 | + de :: dimension of the word embeddings | |
| 820 | + ds :: dimension of the sentiment state | |
| 821 | + ''' | |
| 822 | + self.max_phrase_length = max_phrase_length | |
| 823 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 824 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 825 | + self.words2ids = w2vecs["words2ids"] | |
| 826 | + | |
| 827 | + #ne = len(w2vecs["words2ids"]) | |
| 828 | + de = w2vecs["vectors"].shape[1] | |
| 829 | + del w2vecs | |
| 830 | + | |
| 831 | + r = 0.05 | |
| 832 | + self.W_e_eh = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, neh)).astype(theano.config.floatX)) | |
| 833 | + | |
| 834 | + self.W_eh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (neh, ne)).astype(theano.config.floatX)) | |
| 835 | + | |
| 836 | + self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nh2)).astype(theano.config.floatX)) | |
| 837 | + self.W_h2_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh2, nc)).astype(theano.config.floatX)) | |
| 838 | + | |
| 839 | + self.W_sh_shh = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nshh)).astype(theano.config.floatX)) | |
| 840 | + | |
| 841 | + self.W_shh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (nshh, nchd)).astype(theano.config.floatX)) | |
| 842 | + | |
| 843 | + | |
| 844 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 845 | + | |
| 846 | + | |
| 847 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 848 | + | |
| 849 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 850 | + | |
| 851 | + tmp = word_children_positions>=0.0 | |
| 852 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 853 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 854 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 855 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 856 | + schh = schh/number_of_children | |
| 857 | + | |
| 858 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 859 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 860 | + | |
| 861 | + h = T.tanh(T.concatenate([T.dot(eh, self.W_eh_h), T.dot(shh,self.W_shh_h)])) | |
| 862 | + | |
| 863 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 864 | + | |
| 865 | + current_hidden_state = hidden_states[i] | |
| 866 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 867 | + | |
| 868 | + y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y) + self.b_y)[0] | |
| 869 | + | |
| 870 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 871 | + | |
| 872 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 873 | + | |
| 874 | + return cross_entropy, hidden_states_new | |
| 875 | + | |
| 876 | + | |
| 877 | + y = T.vector('y',dtype=dataType) | |
| 878 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 879 | + words = T.vector(dtype=dataType) | |
| 880 | + children_positions = T.matrix(dtype=dataType) | |
| 881 | + words_indexes = T.vector(dtype=dataType) | |
| 882 | + | |
| 883 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 884 | + sequences = [words, children_positions,y,words_indexes], | |
| 885 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 886 | + non_sequences = learning_rate, | |
| 887 | + n_steps = words.shape[0]) | |
| 888 | + | |
| 889 | + cost = T.sum(cross_entropy_vector[0]) | |
| 890 | + | |
| 891 | + updates = OrderedDict([ | |
| 892 | + (self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cost, self.W_h_h2)), | |
| 893 | + (self.W_h2_y, self.W_h2_y-learning_rate*T.grad(cost, self.W_h2_y)), | |
| 894 | + (self.W_e_eh, self.W_e_eh-learning_rate*T.grad(cost, self.W_e_eh)), | |
| 895 | + (self.W_eh_h, self.W_eh_h-learning_rate*T.grad(cost, self.W_eh_h)), | |
| 896 | + (self.W_shh_h, self.W_shh_h-learning_rate*T.grad(cost, self.W_shh_h)), | |
| 897 | + (self.W_sh_shh, self.W_sh_shh-learning_rate*T.grad(cost, self.W_sh_shh)), | |
| 898 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 899 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 900 | + ]) | |
| 901 | + | |
| 902 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 903 | + outputs = [], | |
| 904 | + updates = updates, | |
| 905 | + allow_input_downcast=True, | |
| 906 | + mode='FAST_RUN' | |
| 907 | + ) | |
| 908 | + | |
| 909 | + | |
| 910 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 911 | + | |
| 912 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 913 | + | |
| 914 | + tmp = word_children_positions>=0.0 | |
| 915 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 916 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 917 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 918 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 919 | + schh = schh/number_of_children | |
| 920 | + | |
| 921 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 922 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 923 | + | |
| 924 | + h = T.tanh(T.concatenate([T.dot(eh, self.W_eh_h), T.dot(shh,self.W_shh_h)])) | |
| 925 | + | |
| 926 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 927 | + | |
| 928 | + current_hidden_state = hidden_states[i] | |
| 929 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 930 | + | |
| 931 | + y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y) + self.b_y)[0] | |
| 932 | + | |
| 933 | + return y_prob, hidden_states_new | |
| 934 | + | |
| 935 | + | |
| 936 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 937 | + fn=one_step_classify, | |
| 938 | + sequences = [words, children_positions,words_indexes], | |
| 939 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 940 | + | |
| 941 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 942 | + sequences = [words_indexes]) | |
| 943 | + | |
| 944 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 945 | + outputs=predictions, | |
| 946 | + allow_input_downcast=True, | |
| 947 | + mode='FAST_RUN' | |
| 948 | + ) | |
| 949 | + | |
| 950 | + | |
| 951 | + | |
| 952 | + | |
| 953 | + | |
| 954 | +class model55_pf8(object): | |
| 955 | + def __init__(self, neh, ne, nshh, nchd, nh2, nh3, nc, w2v_model_path, max_phrase_length): | |
| 956 | + ''' | |
| 957 | + nh :: dimension of hidden state | |
| 958 | + nc :: number of classes | |
| 959 | + ne :: number of word embeddings in the vocabulary | |
| 960 | + de :: dimension of the word embeddings | |
| 961 | + ds :: dimension of the sentiment state | |
| 962 | + ''' | |
| 963 | + self.max_phrase_length = max_phrase_length | |
| 964 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 965 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 966 | + self.words2ids = w2vecs["words2ids"] | |
| 967 | + | |
| 968 | + #ne = len(w2vecs["words2ids"]) | |
| 969 | + de = w2vecs["vectors"].shape[1] | |
| 970 | + del w2vecs | |
| 971 | + | |
| 972 | + r = 0.05 | |
| 973 | + self.W_e_eh = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, neh)).astype(theano.config.floatX)) | |
| 974 | + | |
| 975 | + self.W_eh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (neh, ne)).astype(theano.config.floatX)) | |
| 976 | + | |
| 977 | + self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nh2)).astype(theano.config.floatX)) | |
| 978 | + self.W_h2_h3 = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh2, nh3)).astype(theano.config.floatX)) | |
| 979 | + self.W_h3_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh3, nc)).astype(theano.config.floatX)) | |
| 980 | + | |
| 981 | + self.W_sh_shh = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nshh)).astype(theano.config.floatX)) | |
| 982 | + | |
| 983 | + self.W_shh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (nshh, nchd)).astype(theano.config.floatX)) | |
| 984 | + | |
| 985 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 986 | + | |
| 987 | + | |
| 988 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 989 | + | |
| 990 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 991 | + | |
| 992 | + tmp = word_children_positions>=0.0 | |
| 993 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 994 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 995 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 996 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 997 | + schh = schh/number_of_children | |
| 998 | + | |
| 999 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 1000 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 1001 | + | |
| 1002 | + h = T.tanh(T.concatenate([T.dot(eh, self.W_eh_h), T.dot(shh,self.W_shh_h)])) | |
| 1003 | + | |
| 1004 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 1005 | + | |
| 1006 | + | |
| 1007 | + h3 = T.tanh(T.dot(h2, self.W_h2_h3)) | |
| 1008 | + | |
| 1009 | + current_hidden_state = hidden_states[i] | |
| 1010 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 1011 | + | |
| 1012 | + y_prob = T.nnet.softmax(T.dot(h3,self.W_h3_y) + self.b_y)[0] | |
| 1013 | + | |
| 1014 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 1015 | + | |
| 1016 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 1017 | + | |
| 1018 | + return cross_entropy, hidden_states_new | |
| 1019 | + | |
| 1020 | + | |
| 1021 | + y = T.vector('y',dtype=dataType) | |
| 1022 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 1023 | + words = T.vector(dtype=dataType) | |
| 1024 | + children_positions = T.matrix(dtype=dataType) | |
| 1025 | + words_indexes = T.vector(dtype=dataType) | |
| 1026 | + | |
| 1027 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 1028 | + sequences = [words, children_positions,y,words_indexes], | |
| 1029 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 1030 | + non_sequences = learning_rate, | |
| 1031 | + n_steps = words.shape[0]) | |
| 1032 | + | |
| 1033 | + cost = T.sum(cross_entropy_vector[0]) | |
| 1034 | + | |
| 1035 | + updates = OrderedDict([ | |
| 1036 | + (self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cost, self.W_h_h2)), | |
| 1037 | + (self.W_h2_h3, self.W_h2_h3-learning_rate*T.grad(cost, self.W_h2_h3)), | |
| 1038 | + (self.W_h3_y, self.W_h3_y-learning_rate*T.grad(cost, self.W_h3_y)), | |
| 1039 | + (self.W_e_eh, self.W_e_eh-learning_rate*T.grad(cost, self.W_e_eh)), | |
| 1040 | + (self.W_eh_h, self.W_eh_h-learning_rate*T.grad(cost, self.W_eh_h)), | |
| 1041 | + (self.W_shh_h, self.W_shh_h-learning_rate*T.grad(cost, self.W_shh_h)), | |
| 1042 | + (self.W_sh_shh, self.W_sh_shh-learning_rate*T.grad(cost, self.W_sh_shh)), | |
| 1043 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 1044 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 1045 | + ]) | |
| 1046 | + | |
| 1047 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 1048 | + outputs = [], | |
| 1049 | + updates = updates, | |
| 1050 | + allow_input_downcast=True, | |
| 1051 | + mode='FAST_RUN' | |
| 1052 | + ) | |
| 1053 | + | |
| 1054 | + | |
| 1055 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 1056 | + | |
| 1057 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 1058 | + | |
| 1059 | + tmp = word_children_positions>=0.0 | |
| 1060 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 1061 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 1062 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 1063 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 1064 | + schh = schh/number_of_children | |
| 1065 | + | |
| 1066 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 1067 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 1068 | + | |
| 1069 | + h = T.tanh(T.concatenate([T.dot(eh, self.W_eh_h), T.dot(shh,self.W_shh_h)])) | |
| 1070 | + | |
| 1071 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 1072 | + | |
| 1073 | + h3 = T.tanh(T.dot(h2, self.W_h2_h3)) | |
| 1074 | + | |
| 1075 | + current_hidden_state = hidden_states[i] | |
| 1076 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 1077 | + | |
| 1078 | + y_prob = T.nnet.softmax(T.dot(h3,self.W_h3_y) + self.b_y)[0] | |
| 1079 | + | |
| 1080 | + return y_prob, hidden_states_new | |
| 1081 | + | |
| 1082 | + | |
| 1083 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 1084 | + fn=one_step_classify, | |
| 1085 | + sequences = [words, children_positions,words_indexes], | |
| 1086 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 1087 | + | |
| 1088 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 1089 | + sequences = [words_indexes]) | |
| 1090 | + | |
| 1091 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 1092 | + outputs=predictions, | |
| 1093 | + allow_input_downcast=True, | |
| 1094 | + mode='FAST_RUN' | |
| 1095 | + ) | |
| 1096 | + | |
| 1097 | + | |
| 1098 | +class model55_pf9(object): | |
| 1099 | + def __init__(self, ne, nchd, nh2, nh3, nc, w2v_model_path, max_phrase_length): | |
| 1100 | + ''' | |
| 1101 | + nh :: dimension of hidden state | |
| 1102 | + nc :: number of classes | |
| 1103 | + ne :: number of word embeddings in the vocabulary | |
| 1104 | + de :: dimension of the word embeddings | |
| 1105 | + ds :: dimension of the sentiment state | |
| 1106 | + ''' | |
| 1107 | + self.max_phrase_length = max_phrase_length | |
| 1108 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 1109 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 1110 | + self.words2ids = w2vecs["words2ids"] | |
| 1111 | + | |
| 1112 | + #ne = len(w2vecs["words2ids"]) | |
| 1113 | + de = w2vecs["vectors"].shape[1] | |
| 1114 | + del w2vecs | |
| 1115 | + | |
| 1116 | + r = 0.05 | |
| 1117 | + self.W_e_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, ne)).astype(theano.config.floatX)) | |
| 1118 | + | |
| 1119 | + | |
| 1120 | + self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nh2)).astype(theano.config.floatX)) | |
| 1121 | + self.W_h2_h3 = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh2, nh3)).astype(theano.config.floatX)) | |
| 1122 | + self.W_h3_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh3, nc)).astype(theano.config.floatX)) | |
| 1123 | + | |
| 1124 | + self.W_sh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nchd)).astype(theano.config.floatX)) | |
| 1125 | + | |
| 1126 | + | |
| 1127 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 1128 | + | |
| 1129 | + | |
| 1130 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 1131 | + | |
| 1132 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 1133 | + | |
| 1134 | + tmp = word_children_positions>=0.0 | |
| 1135 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 1136 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 1137 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 1138 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 1139 | + schh = schh/number_of_children | |
| 1140 | + | |
| 1141 | + | |
| 1142 | + h = T.tanh(T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)])) | |
| 1143 | + | |
| 1144 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 1145 | + | |
| 1146 | + | |
| 1147 | + h3 = T.tanh(T.dot(h2, self.W_h2_h3)) | |
| 1148 | + | |
| 1149 | + current_hidden_state = hidden_states[i] | |
| 1150 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 1151 | + | |
| 1152 | + y_prob = T.nnet.softmax(T.dot(h3,self.W_h3_y) + self.b_y)[0] | |
| 1153 | + | |
| 1154 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 1155 | + | |
| 1156 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 1157 | + | |
| 1158 | + return cross_entropy, hidden_states_new | |
| 1159 | + | |
| 1160 | + | |
| 1161 | + y = T.vector('y',dtype=dataType) | |
| 1162 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 1163 | + words = T.vector(dtype=dataType) | |
| 1164 | + children_positions = T.matrix(dtype=dataType) | |
| 1165 | + words_indexes = T.vector(dtype=dataType) | |
| 1166 | + | |
| 1167 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 1168 | + sequences = [words, children_positions,y,words_indexes], | |
| 1169 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 1170 | + non_sequences = learning_rate, | |
| 1171 | + n_steps = words.shape[0]) | |
| 1172 | + | |
| 1173 | + cost = T.sum(cross_entropy_vector[0]) | |
| 1174 | + | |
| 1175 | + updates = OrderedDict([ | |
| 1176 | + (self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cost, self.W_h_h2)), | |
| 1177 | + (self.W_h2_h3, self.W_h2_h3-learning_rate*T.grad(cost, self.W_h2_h3)), | |
| 1178 | + (self.W_h3_y, self.W_h3_y-learning_rate*T.grad(cost, self.W_h3_y)), | |
| 1179 | + (self.W_e_h, self.W_e_h-learning_rate*T.grad(cost, self.W_e_h)), | |
| 1180 | + (self.W_sh_h, self.W_sh_h-learning_rate*T.grad(cost, self.W_sh_h)), | |
| 1181 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 1182 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 1183 | + ]) | |
| 1184 | + | |
| 1185 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 1186 | + outputs = [], | |
| 1187 | + updates = updates, | |
| 1188 | + allow_input_downcast=True, | |
| 1189 | + mode='FAST_RUN' | |
| 1190 | + ) | |
| 1191 | + | |
| 1192 | + | |
| 1193 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 1194 | + | |
| 1195 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 1196 | + | |
| 1197 | + tmp = word_children_positions>=0.0 | |
| 1198 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 1199 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 1200 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 1201 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 1202 | + schh = schh/number_of_children | |
| 1203 | + | |
| 1204 | + | |
| 1205 | + h = T.tanh(T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)])) | |
| 1206 | + | |
| 1207 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 1208 | + | |
| 1209 | + h3 = T.tanh(T.dot(h2, self.W_h2_h3)) | |
| 1210 | + | |
| 1211 | + current_hidden_state = hidden_states[i] | |
| 1212 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 1213 | + | |
| 1214 | + y_prob = T.nnet.softmax(T.dot(h3,self.W_h3_y) + self.b_y)[0] | |
| 1215 | + | |
| 1216 | + return y_prob, hidden_states_new | |
| 1217 | + | |
| 1218 | + | |
| 1219 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 1220 | + fn=one_step_classify, | |
| 1221 | + sequences = [words, children_positions,words_indexes], | |
| 1222 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 1223 | + | |
| 1224 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 1225 | + sequences = [words_indexes]) | |
| 1226 | + | |
| 1227 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 1228 | + outputs=predictions, | |
| 1229 | + allow_input_downcast=True, | |
| 1230 | + mode='FAST_RUN' | |
| 1231 | + ) | |
| 1232 | + | |
| 1233 | + | |
| 1234 | + | |
| 1235 | +class model55_pf10(object): | |
| 1236 | + def __init__(self, nchd, nh2, nc, w2v_model_path, max_phrase_length): | |
| 1237 | + ''' | |
| 1238 | + nh :: dimension of hidden state | |
| 1239 | + nc :: number of classes | |
| 1240 | + ne :: number of word embeddings in the vocabulary | |
| 1241 | + de :: dimension of the word embeddings | |
| 1242 | + ds :: dimension of the sentiment state | |
| 1243 | + ''' | |
| 1244 | + self.max_phrase_length = max_phrase_length | |
| 1245 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 1246 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 1247 | + self.words2ids = w2vecs["words2ids"] | |
| 1248 | + | |
| 1249 | + #ne = len(w2vecs["words2ids"]) | |
| 1250 | + de = w2vecs["vectors"].shape[1] | |
| 1251 | + del w2vecs | |
| 1252 | + | |
| 1253 | + r = 0.05 | |
| 1254 | + | |
| 1255 | + self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (de+nchd, nh2)).astype(theano.config.floatX)) | |
| 1256 | + self.W_h2_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh2, nc)).astype(theano.config.floatX)) | |
| 1257 | + | |
| 1258 | + self.W_sh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (de+nchd, nchd)).astype(theano.config.floatX)) | |
| 1259 | + | |
| 1260 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 1261 | + | |
| 1262 | + | |
| 1263 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 1264 | + | |
| 1265 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 1266 | + | |
| 1267 | + tmp = word_children_positions>=0.0 | |
| 1268 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 1269 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 1270 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 1271 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 1272 | + schh = schh/number_of_children | |
| 1273 | + | |
| 1274 | + | |
| 1275 | + h = T.tanh(T.concatenate([self.emb[word_id], T.dot(schh,self.W_sh_h)])) | |
| 1276 | + | |
| 1277 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 1278 | + | |
| 1279 | + | |
| 1280 | + current_hidden_state = hidden_states[i] | |
| 1281 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 1282 | + | |
| 1283 | + y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y) + self.b_y)[0] | |
| 1284 | + | |
| 1285 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 1286 | + | |
| 1287 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 1288 | + | |
| 1289 | + return cross_entropy, hidden_states_new | |
| 1290 | + | |
| 1291 | + | |
| 1292 | + y = T.vector('y',dtype=dataType) | |
| 1293 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 1294 | + words = T.vector(dtype=dataType) | |
| 1295 | + children_positions = T.matrix(dtype=dataType) | |
| 1296 | + words_indexes = T.vector(dtype=dataType) | |
| 1297 | + | |
| 1298 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 1299 | + sequences = [words, children_positions,y,words_indexes], | |
| 1300 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,de+nchd), dtype = theano.config.floatX))], | |
| 1301 | + non_sequences = learning_rate, | |
| 1302 | + n_steps = words.shape[0]) | |
| 1303 | + | |
| 1304 | + cost = T.sum(cross_entropy_vector[0]) | |
| 1305 | + | |
| 1306 | + updates = OrderedDict([ | |
| 1307 | + (self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cost, self.W_h_h2)), | |
| 1308 | + (self.W_h2_y, self.W_h2_y-learning_rate*T.grad(cost, self.W_h2_y)), | |
| 1309 | + (self.W_sh_h, self.W_sh_h-learning_rate*T.grad(cost, self.W_sh_h)), | |
| 1310 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 1311 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 1312 | + ]) | |
| 1313 | + | |
| 1314 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 1315 | + outputs = [], | |
| 1316 | + updates = updates, | |
| 1317 | + allow_input_downcast=True, | |
| 1318 | + mode='FAST_RUN' | |
| 1319 | + ) | |
| 1320 | + | |
| 1321 | + | |
| 1322 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 1323 | + | |
| 1324 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 1325 | + | |
| 1326 | + tmp = word_children_positions>=0.0 | |
| 1327 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 1328 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 1329 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 1330 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 1331 | + schh = schh/number_of_children | |
| 1332 | + | |
| 1333 | + h = T.tanh(T.concatenate([self.emb[word_id], T.dot(schh,self.W_sh_h)])) | |
| 1334 | + | |
| 1335 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 1336 | + | |
| 1337 | + | |
| 1338 | + current_hidden_state = hidden_states[i] | |
| 1339 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 1340 | + | |
| 1341 | + y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y) + self.b_y)[0] | |
| 1342 | + | |
| 1343 | + return y_prob, hidden_states_new | |
| 1344 | + | |
| 1345 | + | |
| 1346 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 1347 | + fn=one_step_classify, | |
| 1348 | + sequences = [words, children_positions,words_indexes], | |
| 1349 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,de+nchd), dtype = theano.config.floatX))]) | |
| 1350 | + | |
| 1351 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 1352 | + sequences = [words_indexes]) | |
| 1353 | + | |
| 1354 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 1355 | + outputs=predictions, | |
| 1356 | + allow_input_downcast=True, | |
| 1357 | + mode='FAST_RUN' | |
| 1358 | + ) | |
| 1359 | + | |
| 1360 | + | |
| 1361 | + | |
| 1362 | + | |
| 1363 | +class model55_pf11(object): | |
| 1364 | + def __init__(self, nchd, nh2, nh3, nc, w2v_model_path, max_phrase_length): | |
| 1365 | + ''' | |
| 1366 | + nh :: dimension of hidden state | |
| 1367 | + nc :: number of classes | |
| 1368 | + ne :: number of word embeddings in the vocabulary | |
| 1369 | + de :: dimension of the word embeddings | |
| 1370 | + ds :: dimension of the sentiment state | |
| 1371 | + ''' | |
| 1372 | + self.max_phrase_length = max_phrase_length | |
| 1373 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 1374 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 1375 | + self.words2ids = w2vecs["words2ids"] | |
| 1376 | + | |
| 1377 | + #ne = len(w2vecs["words2ids"]) | |
| 1378 | + de = w2vecs["vectors"].shape[1] | |
| 1379 | + del w2vecs | |
| 1380 | + | |
| 1381 | + r = 0.05 | |
| 1382 | + | |
| 1383 | + | |
| 1384 | + self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (de+nchd, nh2)).astype(theano.config.floatX)) | |
| 1385 | + self.W_h2_h3 = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh2, nh3)).astype(theano.config.floatX)) | |
| 1386 | + self.W_h3_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh3, nc)).astype(theano.config.floatX)) | |
| 1387 | + | |
| 1388 | + self.W_sh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (de+nchd, nchd)).astype(theano.config.floatX)) | |
| 1389 | + | |
| 1390 | + | |
| 1391 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 1392 | + | |
| 1393 | + | |
| 1394 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 1395 | + | |
| 1396 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 1397 | + | |
| 1398 | + tmp = word_children_positions>=0.0 | |
| 1399 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 1400 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 1401 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 1402 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 1403 | + schh = schh/number_of_children | |
| 1404 | + | |
| 1405 | + | |
| 1406 | + h = T.tanh(T.concatenate([self.emb[word_id], T.dot(schh,self.W_sh_h)])) | |
| 1407 | + | |
| 1408 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 1409 | + | |
| 1410 | + | |
| 1411 | + h3 = T.tanh(T.dot(h2, self.W_h2_h3)) | |
| 1412 | + | |
| 1413 | + current_hidden_state = hidden_states[i] | |
| 1414 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 1415 | + | |
| 1416 | + y_prob = T.nnet.softmax(T.dot(h3,self.W_h3_y) + self.b_y)[0] | |
| 1417 | + | |
| 1418 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 1419 | + | |
| 1420 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 1421 | + | |
| 1422 | + return cross_entropy, hidden_states_new | |
| 1423 | + | |
| 1424 | + | |
| 1425 | + y = T.vector('y',dtype=dataType) | |
| 1426 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 1427 | + words = T.vector(dtype=dataType) | |
| 1428 | + children_positions = T.matrix(dtype=dataType) | |
| 1429 | + words_indexes = T.vector(dtype=dataType) | |
| 1430 | + | |
| 1431 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 1432 | + sequences = [words, children_positions,y,words_indexes], | |
| 1433 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,de+nchd), dtype = theano.config.floatX))], | |
| 1434 | + non_sequences = learning_rate, | |
| 1435 | + n_steps = words.shape[0]) | |
| 1436 | + | |
| 1437 | + cost = T.sum(cross_entropy_vector[0]) | |
| 1438 | + | |
| 1439 | + updates = OrderedDict([ | |
| 1440 | + (self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cost, self.W_h_h2)), | |
| 1441 | + (self.W_h2_h3, self.W_h2_h3-learning_rate*T.grad(cost, self.W_h2_h3)), | |
| 1442 | + (self.W_h3_y, self.W_h3_y-learning_rate*T.grad(cost, self.W_h3_y)), | |
| 1443 | + (self.W_sh_h, self.W_sh_h-learning_rate*T.grad(cost, self.W_sh_h)), | |
| 1444 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 1445 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 1446 | + ]) | |
| 1447 | + | |
| 1448 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 1449 | + outputs = [], | |
| 1450 | + updates = updates, | |
| 1451 | + allow_input_downcast=True, | |
| 1452 | + mode='FAST_RUN' | |
| 1453 | + ) | |
| 1454 | + | |
| 1455 | + | |
| 1456 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 1457 | + | |
| 1458 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 1459 | + | |
| 1460 | + tmp = word_children_positions>=0.0 | |
| 1461 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 1462 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 1463 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 1464 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 1465 | + schh = schh/number_of_children | |
| 1466 | + | |
| 1467 | + | |
| 1468 | + h = T.tanh(T.concatenate([self.emb[word_id], T.dot(schh,self.W_sh_h)])) | |
| 1469 | + | |
| 1470 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 1471 | + | |
| 1472 | + h3 = T.tanh(T.dot(h2, self.W_h2_h3)) | |
| 1473 | + | |
| 1474 | + current_hidden_state = hidden_states[i] | |
| 1475 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 1476 | + | |
| 1477 | + y_prob = T.nnet.softmax(T.dot(h3,self.W_h3_y) + self.b_y)[0] | |
| 1478 | + | |
| 1479 | + return y_prob, hidden_states_new | |
| 1480 | + | |
| 1481 | + | |
| 1482 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 1483 | + fn=one_step_classify, | |
| 1484 | + sequences = [words, children_positions,words_indexes], | |
| 1485 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,de+nchd), dtype = theano.config.floatX))]) | |
| 1486 | + | |
| 1487 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 1488 | + sequences = [words_indexes]) | |
| 1489 | + | |
| 1490 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 1491 | + outputs=predictions, | |
| 1492 | + allow_input_downcast=True, | |
| 1493 | + mode='FAST_RUN' | |
| 1494 | + ) | |
| 1495 | + | |
| 1496 | + | |
| 1497 | + | |
| 1498 | + | |
| 1499 | + | |
| 1500 | +class model55_pf12(object): | |
| 1501 | + def __init__(self, neh, ne, nshh, nchd, nh2, nh3, nh4, nc, w2v_model_path, max_phrase_length): | |
| 1502 | + ''' | |
| 1503 | + nh :: dimension of hidden state | |
| 1504 | + nc :: number of classes | |
| 1505 | + ne :: number of word embeddings in the vocabulary | |
| 1506 | + de :: dimension of the word embeddings | |
| 1507 | + ds :: dimension of the sentiment state | |
| 1508 | + ''' | |
| 1509 | + self.max_phrase_length = max_phrase_length | |
| 1510 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 1511 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 1512 | + self.words2ids = w2vecs["words2ids"] | |
| 1513 | + | |
| 1514 | + #ne = len(w2vecs["words2ids"]) | |
| 1515 | + de = w2vecs["vectors"].shape[1] | |
| 1516 | + del w2vecs | |
| 1517 | + | |
| 1518 | + r = 0.05 | |
| 1519 | + self.W_e_eh = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, neh)).astype(theano.config.floatX)) | |
| 1520 | + | |
| 1521 | + self.W_eh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (neh, ne)).astype(theano.config.floatX)) | |
| 1522 | + | |
| 1523 | + self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nh2)).astype(theano.config.floatX)) | |
| 1524 | + self.W_h2_h3 = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh2, nh3)).astype(theano.config.floatX)) | |
| 1525 | + self.W_h3_h4 = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh3, nh4)).astype(theano.config.floatX)) | |
| 1526 | + self.W_h4_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh4, nc)).astype(theano.config.floatX)) | |
| 1527 | + | |
| 1528 | + self.W_sh_shh = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nshh)).astype(theano.config.floatX)) | |
| 1529 | + | |
| 1530 | + self.W_shh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (nshh, nchd)).astype(theano.config.floatX)) | |
| 1531 | + | |
| 1532 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 1533 | + | |
| 1534 | + | |
| 1535 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 1536 | + | |
| 1537 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 1538 | + | |
| 1539 | + tmp = word_children_positions>=0.0 | |
| 1540 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 1541 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 1542 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 1543 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 1544 | + schh = schh/number_of_children | |
| 1545 | + | |
| 1546 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 1547 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 1548 | + | |
| 1549 | + h = T.tanh(T.concatenate([T.dot(eh, self.W_eh_h), T.dot(shh,self.W_shh_h)])) | |
| 1550 | + | |
| 1551 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 1552 | + | |
| 1553 | + | |
| 1554 | + h3 = T.tanh(T.dot(h2, self.W_h2_h3)) | |
| 1555 | + h4 = T.tanh(T.dot(h3, self.W_h3_h4)) | |
| 1556 | + | |
| 1557 | + current_hidden_state = hidden_states[i] | |
| 1558 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 1559 | + | |
| 1560 | + y_prob = T.nnet.softmax(T.dot(h4,self.W_h4_y) + self.b_y)[0] | |
| 1561 | + | |
| 1562 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 1563 | + | |
| 1564 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 1565 | + | |
| 1566 | + return cross_entropy, hidden_states_new | |
| 1567 | + | |
| 1568 | + | |
| 1569 | + y = T.vector('y',dtype=dataType) | |
| 1570 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 1571 | + words = T.vector(dtype=dataType) | |
| 1572 | + children_positions = T.matrix(dtype=dataType) | |
| 1573 | + words_indexes = T.vector(dtype=dataType) | |
| 1574 | + | |
| 1575 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 1576 | + sequences = [words, children_positions,y,words_indexes], | |
| 1577 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 1578 | + non_sequences = learning_rate, | |
| 1579 | + n_steps = words.shape[0]) | |
| 1580 | + | |
| 1581 | + cost = T.sum(cross_entropy_vector[0]) | |
| 1582 | + | |
| 1583 | + updates = OrderedDict([ | |
| 1584 | + (self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cost, self.W_h_h2)), | |
| 1585 | + (self.W_h2_h3, self.W_h2_h3-learning_rate*T.grad(cost, self.W_h2_h3)), | |
| 1586 | + (self.W_h3_h4, self.W_h3_h4-learning_rate*T.grad(cost, self.W_h3_h4)), | |
| 1587 | + (self.W_h4_y, self.W_h4_y-learning_rate*T.grad(cost, self.W_h4_y)), | |
| 1588 | + (self.W_e_eh, self.W_e_eh-learning_rate*T.grad(cost, self.W_e_eh)), | |
| 1589 | + (self.W_eh_h, self.W_eh_h-learning_rate*T.grad(cost, self.W_eh_h)), | |
| 1590 | + (self.W_shh_h, self.W_shh_h-learning_rate*T.grad(cost, self.W_shh_h)), | |
| 1591 | + (self.W_sh_shh, self.W_sh_shh-learning_rate*T.grad(cost, self.W_sh_shh)), | |
| 1592 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 1593 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 1594 | + ]) | |
| 1595 | + | |
| 1596 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 1597 | + outputs = [], | |
| 1598 | + updates = updates, | |
| 1599 | + allow_input_downcast=True, | |
| 1600 | + mode='FAST_RUN' | |
| 1601 | + ) | |
| 1602 | + | |
| 1603 | + | |
| 1604 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 1605 | + | |
| 1606 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 1607 | + | |
| 1608 | + tmp = word_children_positions>=0.0 | |
| 1609 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 1610 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 1611 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 1612 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 1613 | + schh = schh/number_of_children | |
| 1614 | + | |
| 1615 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 1616 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 1617 | + | |
| 1618 | + h = T.tanh(T.concatenate([T.dot(eh, self.W_eh_h), T.dot(shh,self.W_shh_h)])) | |
| 1619 | + | |
| 1620 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 1621 | + | |
| 1622 | + h3 = T.tanh(T.dot(h2, self.W_h2_h3)) | |
| 1623 | + h4 = T.tanh(T.dot(h3, self.W_h3_h4)) | |
| 1624 | + | |
| 1625 | + current_hidden_state = hidden_states[i] | |
| 1626 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 1627 | + | |
| 1628 | + y_prob = T.nnet.softmax(T.dot(h4,self.W_h4_y) + self.b_y)[0] | |
| 1629 | + | |
| 1630 | + return y_prob, hidden_states_new | |
| 1631 | + | |
| 1632 | + | |
| 1633 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 1634 | + fn=one_step_classify, | |
| 1635 | + sequences = [words, children_positions,words_indexes], | |
| 1636 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 1637 | + | |
| 1638 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 1639 | + sequences = [words_indexes]) | |
| 1640 | + | |
| 1641 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 1642 | + outputs=predictions, | |
| 1643 | + allow_input_downcast=True, | |
| 1644 | + mode='FAST_RUN' | |
| 1645 | + ) | |
| 1646 | + | |
| 1647 | + | |
| 1648 | + | |
| 1649 | +class model55_pf13(object): | |
| 1650 | + def __init__(self, neh, neh2, ne, nshh, nshh2, nchd, nc, w2v_model_path, max_phrase_length): | |
| 1651 | + ''' | |
| 1652 | + nh :: dimension of hidden state | |
| 1653 | + nc :: number of classes | |
| 1654 | + ne :: number of word embeddings in the vocabulary | |
| 1655 | + de :: dimension of the word embeddings | |
| 1656 | + ds :: dimension of the sentiment state | |
| 1657 | + ''' | |
| 1658 | + self.max_phrase_length = max_phrase_length | |
| 1659 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 1660 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 1661 | + self.words2ids = w2vecs["words2ids"] | |
| 1662 | + | |
| 1663 | + #ne = len(w2vecs["words2ids"]) | |
| 1664 | + de = w2vecs["vectors"].shape[1] | |
| 1665 | + del w2vecs | |
| 1666 | + | |
| 1667 | + r = 0.05 | |
| 1668 | + self.W_e_eh = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, neh)).astype(theano.config.floatX)) | |
| 1669 | + self.W_eh_eh2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (neh, neh2)).astype(theano.config.floatX)) | |
| 1670 | + self.W_eh2_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (neh2, ne)).astype(theano.config.floatX)) | |
| 1671 | + | |
| 1672 | + self.W_sh_shh = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nshh)).astype(theano.config.floatX)) | |
| 1673 | + self.W_shh_shh2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (nshh, nshh2)).astype(theano.config.floatX)) | |
| 1674 | + self.W_shh2_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (nshh2, nchd)).astype(theano.config.floatX)) | |
| 1675 | + | |
| 1676 | + self.W_h_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nc)).astype(theano.config.floatX)) | |
| 1677 | + | |
| 1678 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 1679 | + | |
| 1680 | + | |
| 1681 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 1682 | + | |
| 1683 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 1684 | + | |
| 1685 | + tmp = word_children_positions>=0.0 | |
| 1686 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 1687 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 1688 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 1689 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 1690 | + schh = schh/number_of_children | |
| 1691 | + | |
| 1692 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 1693 | + eh2 = T.tanh(T.dot(eh,self.W_eh_eh2)) | |
| 1694 | + | |
| 1695 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 1696 | + shh2 = T.tanh(T.dot(shh,self.W_shh_shh2)) | |
| 1697 | + | |
| 1698 | + | |
| 1699 | + h = T.tanh(T.concatenate([T.dot(eh2, self.W_eh2_h), T.dot(shh2,self.W_shh2_h)])) | |
| 1700 | + | |
| 1701 | + | |
| 1702 | + current_hidden_state = hidden_states[i] | |
| 1703 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 1704 | + | |
| 1705 | + y_prob = T.nnet.softmax(T.dot(h,self.W_h_y) + self.b_y)[0] | |
| 1706 | + | |
| 1707 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 1708 | + | |
| 1709 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 1710 | + | |
| 1711 | + return cross_entropy, hidden_states_new | |
| 1712 | + | |
| 1713 | + | |
| 1714 | + y = T.vector('y',dtype=dataType) | |
| 1715 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 1716 | + words = T.vector(dtype=dataType) | |
| 1717 | + children_positions = T.matrix(dtype=dataType) | |
| 1718 | + words_indexes = T.vector(dtype=dataType) | |
| 1719 | + | |
| 1720 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 1721 | + sequences = [words, children_positions,y,words_indexes], | |
| 1722 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 1723 | + non_sequences = learning_rate, | |
| 1724 | + n_steps = words.shape[0]) | |
| 1725 | + | |
| 1726 | + cost = T.sum(cross_entropy_vector[0]) | |
| 1727 | + | |
| 1728 | + updates = OrderedDict([ | |
| 1729 | + (self.W_h_y, self.W_h_y-learning_rate*T.grad(cost, self.W_h_y)), | |
| 1730 | + (self.W_e_eh, self.W_e_eh-learning_rate*T.grad(cost, self.W_e_eh)), | |
| 1731 | + (self.W_eh_eh2, self.W_eh_eh2-learning_rate*T.grad(cost, self.W_eh_eh2)), | |
| 1732 | + (self.W_eh2_h, self.W_eh2_h-learning_rate*T.grad(cost, self.W_eh2_h)), | |
| 1733 | + (self.W_shh2_h, self.W_shh2_h-learning_rate*T.grad(cost, self.W_shh2_h)), | |
| 1734 | + (self.W_sh_shh, self.W_sh_shh-learning_rate*T.grad(cost, self.W_sh_shh)), | |
| 1735 | + (self.W_shh_shh2, self.W_shh_shh2-learning_rate*T.grad(cost, self.W_shh_shh2)), | |
| 1736 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 1737 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 1738 | + ]) | |
| 1739 | + | |
| 1740 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 1741 | + outputs = [], | |
| 1742 | + updates = updates, | |
| 1743 | + allow_input_downcast=True, | |
| 1744 | + mode='FAST_RUN' | |
| 1745 | + ) | |
| 1746 | + | |
| 1747 | + | |
| 1748 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 1749 | + | |
| 1750 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 1751 | + | |
| 1752 | + tmp = word_children_positions>=0.0 | |
| 1753 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 1754 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 1755 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 1756 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 1757 | + schh = schh/number_of_children | |
| 1758 | + | |
| 1759 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 1760 | + eh2 = T.tanh(T.dot(eh,self.W_eh_eh2)) | |
| 1761 | + | |
| 1762 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 1763 | + shh2 = T.tanh(T.dot(shh,self.W_shh_shh2)) | |
| 1764 | + | |
| 1765 | + | |
| 1766 | + h = T.tanh(T.concatenate([T.dot(eh2, self.W_eh2_h), T.dot(shh2,self.W_shh2_h)])) | |
| 1767 | + | |
| 1768 | + | |
| 1769 | + current_hidden_state = hidden_states[i] | |
| 1770 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 1771 | + | |
| 1772 | + y_prob = T.nnet.softmax(T.dot(h,self.W_h_y) + self.b_y)[0] | |
| 1773 | + | |
| 1774 | + | |
| 1775 | + return y_prob, hidden_states_new | |
| 1776 | + | |
| 1777 | + | |
| 1778 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 1779 | + fn=one_step_classify, | |
| 1780 | + sequences = [words, children_positions,words_indexes], | |
| 1781 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 1782 | + | |
| 1783 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 1784 | + sequences = [words_indexes]) | |
| 1785 | + | |
| 1786 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 1787 | + outputs=predictions, | |
| 1788 | + allow_input_downcast=True, | |
| 1789 | + mode='FAST_RUN' | |
| 1790 | + ) | |
| 1791 | + | |
| 1792 | + | |
| 1793 | + | |
| 1794 | +class model55_pf14(object): | |
| 1795 | + def __init__(self, neh, neh2, ne, nshh, nshh2, nchd, nh2, nc, w2v_model_path, max_phrase_length): | |
| 1796 | + ''' | |
| 1797 | + nh :: dimension of hidden state | |
| 1798 | + nc :: number of classes | |
| 1799 | + ne :: number of word embeddings in the vocabulary | |
| 1800 | + de :: dimension of the word embeddings | |
| 1801 | + ds :: dimension of the sentiment state | |
| 1802 | + ''' | |
| 1803 | + self.max_phrase_length = max_phrase_length | |
| 1804 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 1805 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 1806 | + self.words2ids = w2vecs["words2ids"] | |
| 1807 | + | |
| 1808 | + #ne = len(w2vecs["words2ids"]) | |
| 1809 | + de = w2vecs["vectors"].shape[1] | |
| 1810 | + del w2vecs | |
| 1811 | + | |
| 1812 | + r = 0.05 | |
| 1813 | + self.W_e_eh = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, neh)).astype(theano.config.floatX)) | |
| 1814 | + self.W_eh_eh2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (neh, neh2)).astype(theano.config.floatX)) | |
| 1815 | + self.W_eh2_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (neh2, ne)).astype(theano.config.floatX)) | |
| 1816 | + | |
| 1817 | + self.W_sh_shh = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nshh)).astype(theano.config.floatX)) | |
| 1818 | + self.W_shh_shh2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (nshh, nshh2)).astype(theano.config.floatX)) | |
| 1819 | + self.W_shh2_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (nshh2, nchd)).astype(theano.config.floatX)) | |
| 1820 | + | |
| 1821 | + self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nh2)).astype(theano.config.floatX)) | |
| 1822 | + self.W_h2_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh2, nc)).astype(theano.config.floatX)) | |
| 1823 | + | |
| 1824 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 1825 | + | |
| 1826 | + | |
| 1827 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 1828 | + | |
| 1829 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 1830 | + | |
| 1831 | + tmp = word_children_positions>=0.0 | |
| 1832 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 1833 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 1834 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 1835 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 1836 | + schh = schh/number_of_children | |
| 1837 | + | |
| 1838 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 1839 | + eh2 = T.tanh(T.dot(eh,self.W_eh_eh2)) | |
| 1840 | + | |
| 1841 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 1842 | + shh2 = T.tanh(T.dot(shh,self.W_shh_shh2)) | |
| 1843 | + | |
| 1844 | + | |
| 1845 | + h = T.tanh(T.concatenate([T.dot(eh2, self.W_eh2_h), T.dot(shh2,self.W_shh2_h)])) | |
| 1846 | + | |
| 1847 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 1848 | + | |
| 1849 | + current_hidden_state = hidden_states[i] | |
| 1850 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 1851 | + | |
| 1852 | + y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y) + self.b_y)[0] | |
| 1853 | + | |
| 1854 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 1855 | + | |
| 1856 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 1857 | + | |
| 1858 | + return cross_entropy, hidden_states_new | |
| 1859 | + | |
| 1860 | + | |
| 1861 | + y = T.vector('y',dtype=dataType) | |
| 1862 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 1863 | + words = T.vector(dtype=dataType) | |
| 1864 | + children_positions = T.matrix(dtype=dataType) | |
| 1865 | + words_indexes = T.vector(dtype=dataType) | |
| 1866 | + | |
| 1867 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 1868 | + sequences = [words, children_positions,y,words_indexes], | |
| 1869 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 1870 | + non_sequences = learning_rate, | |
| 1871 | + n_steps = words.shape[0]) | |
| 1872 | + | |
| 1873 | + cost = T.sum(cross_entropy_vector[0]) | |
| 1874 | + | |
| 1875 | + updates = OrderedDict([ | |
| 1876 | + (self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cost, self.W_h_h2)), | |
| 1877 | + (self.W_h2_y, self.W_h2_y-learning_rate*T.grad(cost, self.W_h2_y)), | |
| 1878 | + (self.W_e_eh, self.W_e_eh-learning_rate*T.grad(cost, self.W_e_eh)), | |
| 1879 | + (self.W_eh_eh2, self.W_eh_eh2-learning_rate*T.grad(cost, self.W_eh_eh2)), | |
| 1880 | + (self.W_eh2_h, self.W_eh2_h-learning_rate*T.grad(cost, self.W_eh2_h)), | |
| 1881 | + (self.W_shh2_h, self.W_shh2_h-learning_rate*T.grad(cost, self.W_shh2_h)), | |
| 1882 | + (self.W_sh_shh, self.W_sh_shh-learning_rate*T.grad(cost, self.W_sh_shh)), | |
| 1883 | + (self.W_shh_shh2, self.W_shh_shh2-learning_rate*T.grad(cost, self.W_shh_shh2)), | |
| 1884 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 1885 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 1886 | + ]) | |
| 1887 | + | |
| 1888 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 1889 | + outputs = [], | |
| 1890 | + updates = updates, | |
| 1891 | + allow_input_downcast=True, | |
| 1892 | + mode='FAST_RUN' | |
| 1893 | + ) | |
| 1894 | + | |
| 1895 | + | |
| 1896 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 1897 | + | |
| 1898 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 1899 | + | |
| 1900 | + tmp = word_children_positions>=0.0 | |
| 1901 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 1902 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 1903 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 1904 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 1905 | + schh = schh/number_of_children | |
| 1906 | + | |
| 1907 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 1908 | + eh2 = T.tanh(T.dot(eh,self.W_eh_eh2)) | |
| 1909 | + | |
| 1910 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 1911 | + shh2 = T.tanh(T.dot(shh,self.W_shh_shh2)) | |
| 1912 | + | |
| 1913 | + | |
| 1914 | + h = T.tanh(T.concatenate([T.dot(eh2, self.W_eh2_h), T.dot(shh2,self.W_shh2_h)])) | |
| 1915 | + | |
| 1916 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 1917 | + | |
| 1918 | + current_hidden_state = hidden_states[i] | |
| 1919 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 1920 | + | |
| 1921 | + y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y) + self.b_y)[0] | |
| 1922 | + | |
| 1923 | + | |
| 1924 | + return y_prob, hidden_states_new | |
| 1925 | + | |
| 1926 | + | |
| 1927 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 1928 | + fn=one_step_classify, | |
| 1929 | + sequences = [words, children_positions,words_indexes], | |
| 1930 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 1931 | + | |
| 1932 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 1933 | + sequences = [words_indexes]) | |
| 1934 | + | |
| 1935 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 1936 | + outputs=predictions, | |
| 1937 | + allow_input_downcast=True, | |
| 1938 | + mode='FAST_RUN' | |
| 1939 | + ) | |
| 1940 | + | |
| 1941 | + | |
| 1942 | + | |
| 1943 | + | |
| 1944 | +class model55_pf15(object): | |
| 1945 | + def __init__(self, neh, neh2, ne, nshh, nshh2, nchd, nh2, nh3, nc, w2v_model_path, max_phrase_length): | |
| 1946 | + ''' | |
| 1947 | + nh :: dimension of hidden state | |
| 1948 | + nc :: number of classes | |
| 1949 | + ne :: number of word embeddings in the vocabulary | |
| 1950 | + de :: dimension of the word embeddings | |
| 1951 | + ds :: dimension of the sentiment state | |
| 1952 | + ''' | |
| 1953 | + self.max_phrase_length = max_phrase_length | |
| 1954 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 1955 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 1956 | + self.words2ids = w2vecs["words2ids"] | |
| 1957 | + | |
| 1958 | + #ne = len(w2vecs["words2ids"]) | |
| 1959 | + de = w2vecs["vectors"].shape[1] | |
| 1960 | + del w2vecs | |
| 1961 | + | |
| 1962 | + r = 0.05 | |
| 1963 | + self.W_e_eh = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, neh)).astype(theano.config.floatX)) | |
| 1964 | + self.W_eh_eh2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (neh, neh2)).astype(theano.config.floatX)) | |
| 1965 | + self.W_eh2_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (neh2, ne)).astype(theano.config.floatX)) | |
| 1966 | + | |
| 1967 | + self.W_sh_shh = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nshh)).astype(theano.config.floatX)) | |
| 1968 | + self.W_shh_shh2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (nshh, nshh2)).astype(theano.config.floatX)) | |
| 1969 | + self.W_shh2_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (nshh2, nchd)).astype(theano.config.floatX)) | |
| 1970 | + | |
| 1971 | + self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nh2)).astype(theano.config.floatX)) | |
| 1972 | + self.W_h2_h3 = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh2, nh3)).astype(theano.config.floatX)) | |
| 1973 | + self.W_h3_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh3, nc)).astype(theano.config.floatX)) | |
| 1974 | + | |
| 1975 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 1976 | + | |
| 1977 | + | |
| 1978 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 1979 | + | |
| 1980 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 1981 | + | |
| 1982 | + tmp = word_children_positions>=0.0 | |
| 1983 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 1984 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 1985 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 1986 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 1987 | + schh = schh/number_of_children | |
| 1988 | + | |
| 1989 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 1990 | + eh2 = T.tanh(T.dot(eh,self.W_eh_eh2)) | |
| 1991 | + | |
| 1992 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 1993 | + shh2 = T.tanh(T.dot(shh,self.W_shh_shh2)) | |
| 1994 | + | |
| 1995 | + | |
| 1996 | + h = T.tanh(T.concatenate([T.dot(eh2, self.W_eh2_h), T.dot(shh2,self.W_shh2_h)])) | |
| 1997 | + | |
| 1998 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 1999 | + h3 = T.tanh(T.dot(h2, self.W_h2_h3)) | |
| 2000 | + | |
| 2001 | + current_hidden_state = hidden_states[i] | |
| 2002 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 2003 | + | |
| 2004 | + y_prob = T.nnet.softmax(T.dot(h3,self.W_h3_y) + self.b_y)[0] | |
| 2005 | + | |
| 2006 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 2007 | + | |
| 2008 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 2009 | + | |
| 2010 | + return cross_entropy, hidden_states_new | |
| 2011 | + | |
| 2012 | + | |
| 2013 | + y = T.vector('y',dtype=dataType) | |
| 2014 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 2015 | + words = T.vector(dtype=dataType) | |
| 2016 | + children_positions = T.matrix(dtype=dataType) | |
| 2017 | + words_indexes = T.vector(dtype=dataType) | |
| 2018 | + | |
| 2019 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 2020 | + sequences = [words, children_positions,y,words_indexes], | |
| 2021 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 2022 | + non_sequences = learning_rate, | |
| 2023 | + n_steps = words.shape[0]) | |
| 2024 | + | |
| 2025 | + cost = T.sum(cross_entropy_vector[0]) | |
| 2026 | + | |
| 2027 | + updates = OrderedDict([ | |
| 2028 | + (self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cost, self.W_h_h2)), | |
| 2029 | + (self.W_h2_h3, self.W_h2_h3-learning_rate*T.grad(cost, self.W_h2_h3)), | |
| 2030 | + (self.W_h3_y, self.W_h3_y-learning_rate*T.grad(cost, self.W_h3_y)), | |
| 2031 | + (self.W_e_eh, self.W_e_eh-learning_rate*T.grad(cost, self.W_e_eh)), | |
| 2032 | + (self.W_eh_eh2, self.W_eh_eh2-learning_rate*T.grad(cost, self.W_eh_eh2)), | |
| 2033 | + (self.W_eh2_h, self.W_eh2_h-learning_rate*T.grad(cost, self.W_eh2_h)), | |
| 2034 | + (self.W_shh2_h, self.W_shh2_h-learning_rate*T.grad(cost, self.W_shh2_h)), | |
| 2035 | + (self.W_sh_shh, self.W_sh_shh-learning_rate*T.grad(cost, self.W_sh_shh)), | |
| 2036 | + (self.W_shh_shh2, self.W_shh_shh2-learning_rate*T.grad(cost, self.W_shh_shh2)), | |
| 2037 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 2038 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 2039 | + ]) | |
| 2040 | + | |
| 2041 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 2042 | + outputs = [], | |
| 2043 | + updates = updates, | |
| 2044 | + allow_input_downcast=True, | |
| 2045 | + mode='FAST_RUN' | |
| 2046 | + ) | |
| 2047 | + | |
| 2048 | + | |
| 2049 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 2050 | + | |
| 2051 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 2052 | + | |
| 2053 | + tmp = word_children_positions>=0.0 | |
| 2054 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 2055 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 2056 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 2057 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 2058 | + schh = schh/number_of_children | |
| 2059 | + | |
| 2060 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 2061 | + eh2 = T.tanh(T.dot(eh,self.W_eh_eh2)) | |
| 2062 | + | |
| 2063 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 2064 | + shh2 = T.tanh(T.dot(shh,self.W_shh_shh2)) | |
| 2065 | + | |
| 2066 | + | |
| 2067 | + h = T.tanh(T.concatenate([T.dot(eh2, self.W_eh2_h), T.dot(shh2,self.W_shh2_h)])) | |
| 2068 | + | |
| 2069 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 2070 | + h3 = T.tanh(T.dot(h2, self.W_h2_h3)) | |
| 2071 | + | |
| 2072 | + current_hidden_state = hidden_states[i] | |
| 2073 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 2074 | + | |
| 2075 | + y_prob = T.nnet.softmax(T.dot(h3,self.W_h3_y) + self.b_y)[0] | |
| 2076 | + | |
| 2077 | + | |
| 2078 | + return y_prob, hidden_states_new | |
| 2079 | + | |
| 2080 | + | |
| 2081 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 2082 | + fn=one_step_classify, | |
| 2083 | + sequences = [words, children_positions,words_indexes], | |
| 2084 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 2085 | + | |
| 2086 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 2087 | + sequences = [words_indexes]) | |
| 2088 | + | |
| 2089 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 2090 | + outputs=predictions, | |
| 2091 | + allow_input_downcast=True, | |
| 2092 | + mode='FAST_RUN' | |
| 2093 | + ) | |
| 2094 | + | |
| 2095 | + | |
| 2096 | + | |
| 2097 | + | |
| 2098 | +class model55_pf16(object): | |
| 2099 | + def __init__(self, nchd, nc, w2v_model_path, max_phrase_length): | |
| 2100 | + ''' | |
| 2101 | + nh :: dimension of hidden state | |
| 2102 | + nc :: number of classes | |
| 2103 | + ne :: number of word embeddings in the vocabulary | |
| 2104 | + de :: dimension of the word embeddings | |
| 2105 | + ds :: dimension of the sentiment state | |
| 2106 | + ''' | |
| 2107 | + self.max_phrase_length = max_phrase_length | |
| 2108 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 2109 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 2110 | + self.words2ids = w2vecs["words2ids"] | |
| 2111 | + | |
| 2112 | + #ne = len(w2vecs["words2ids"]) | |
| 2113 | + de = w2vecs["vectors"].shape[1] | |
| 2114 | + del w2vecs | |
| 2115 | + | |
| 2116 | + r = 0.05 | |
| 2117 | + | |
| 2118 | + self.W_h_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (de+nchd, nc)).astype(theano.config.floatX)) | |
| 2119 | + | |
| 2120 | + self.W_sh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (de+nchd, nchd)).astype(theano.config.floatX)) | |
| 2121 | + | |
| 2122 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 2123 | + | |
| 2124 | + | |
| 2125 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 2126 | + | |
| 2127 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 2128 | + | |
| 2129 | + tmp = word_children_positions>=0.0 | |
| 2130 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 2131 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 2132 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 2133 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 2134 | + schh = schh/number_of_children | |
| 2135 | + | |
| 2136 | + | |
| 2137 | + h = T.tanh(T.concatenate([self.emb[word_id], T.dot(schh,self.W_sh_h)])) | |
| 2138 | + | |
| 2139 | + | |
| 2140 | + | |
| 2141 | + current_hidden_state = hidden_states[i] | |
| 2142 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 2143 | + | |
| 2144 | + y_prob = T.nnet.softmax(T.dot(h,self.W_h_y) + self.b_y)[0] | |
| 2145 | + | |
| 2146 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 2147 | + | |
| 2148 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 2149 | + | |
| 2150 | + return cross_entropy, hidden_states_new | |
| 2151 | + | |
| 2152 | + | |
| 2153 | + y = T.vector('y',dtype=dataType) | |
| 2154 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 2155 | + words = T.vector(dtype=dataType) | |
| 2156 | + children_positions = T.matrix(dtype=dataType) | |
| 2157 | + words_indexes = T.vector(dtype=dataType) | |
| 2158 | + | |
| 2159 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 2160 | + sequences = [words, children_positions,y,words_indexes], | |
| 2161 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,de+nchd), dtype = theano.config.floatX))], | |
| 2162 | + non_sequences = learning_rate, | |
| 2163 | + n_steps = words.shape[0]) | |
| 2164 | + | |
| 2165 | + cost = T.sum(cross_entropy_vector[0]) | |
| 2166 | + | |
| 2167 | + updates = OrderedDict([ | |
| 2168 | + (self.W_h_y, self.W_h_y-learning_rate*T.grad(cost, self.W_h_y)), | |
| 2169 | + (self.W_sh_h, self.W_sh_h-learning_rate*T.grad(cost, self.W_sh_h)), | |
| 2170 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 2171 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 2172 | + ]) | |
| 2173 | + | |
| 2174 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 2175 | + outputs = [], | |
| 2176 | + updates = updates, | |
| 2177 | + allow_input_downcast=True, | |
| 2178 | + mode='FAST_RUN' | |
| 2179 | + ) | |
| 2180 | + | |
| 2181 | + | |
| 2182 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 2183 | + | |
| 2184 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 2185 | + | |
| 2186 | + tmp = word_children_positions>=0.0 | |
| 2187 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 2188 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 2189 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 2190 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 2191 | + schh = schh/number_of_children | |
| 2192 | + | |
| 2193 | + h = T.tanh(T.concatenate([self.emb[word_id], T.dot(schh,self.W_sh_h)])) | |
| 2194 | + | |
| 2195 | + current_hidden_state = hidden_states[i] | |
| 2196 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 2197 | + | |
| 2198 | + y_prob = T.nnet.softmax(T.dot(h,self.W_h_y) + self.b_y)[0] | |
| 2199 | + | |
| 2200 | + return y_prob, hidden_states_new | |
| 2201 | + | |
| 2202 | + | |
| 2203 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 2204 | + fn=one_step_classify, | |
| 2205 | + sequences = [words, children_positions,words_indexes], | |
| 2206 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,de+nchd), dtype = theano.config.floatX))]) | |
| 2207 | + | |
| 2208 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 2209 | + sequences = [words_indexes]) | |
| 2210 | + | |
| 2211 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 2212 | + outputs=predictions, | |
| 2213 | + allow_input_downcast=True, | |
| 2214 | + mode='FAST_RUN' | |
| 2215 | + ) | |
| 2216 | + | |
| 2217 | + | |
| 2218 | + | |
| 2219 | +class model55_pf17(object): | |
| 2220 | + def __init__(self, neh, neh2, ne, nshh, nshh2, nchd, nh2, nh3, nh4, nc, w2v_model_path, max_phrase_length): | |
| 2221 | + ''' | |
| 2222 | + nh :: dimension of hidden state | |
| 2223 | + nc :: number of classes | |
| 2224 | + ne :: number of word embeddings in the vocabulary | |
| 2225 | + de :: dimension of the word embeddings | |
| 2226 | + ds :: dimension of the sentiment state | |
| 2227 | + ''' | |
| 2228 | + self.max_phrase_length = max_phrase_length | |
| 2229 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 2230 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 2231 | + self.words2ids = w2vecs["words2ids"] | |
| 2232 | + | |
| 2233 | + #ne = len(w2vecs["words2ids"]) | |
| 2234 | + de = w2vecs["vectors"].shape[1] | |
| 2235 | + del w2vecs | |
| 2236 | + | |
| 2237 | + r = 0.05 | |
| 2238 | + self.W_e_eh = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, neh)).astype(theano.config.floatX)) | |
| 2239 | + self.W_eh_eh2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (neh, neh2)).astype(theano.config.floatX)) | |
| 2240 | + self.W_eh2_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (neh2, ne)).astype(theano.config.floatX)) | |
| 2241 | + | |
| 2242 | + self.W_sh_shh = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nshh)).astype(theano.config.floatX)) | |
| 2243 | + self.W_shh_shh2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (nshh, nshh2)).astype(theano.config.floatX)) | |
| 2244 | + self.W_shh2_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (nshh2, nchd)).astype(theano.config.floatX)) | |
| 2245 | + | |
| 2246 | + self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nh2)).astype(theano.config.floatX)) | |
| 2247 | + self.W_h2_h3 = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh2, nh3)).astype(theano.config.floatX)) | |
| 2248 | + self.W_h3_h4 = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh3, nh4)).astype(theano.config.floatX)) | |
| 2249 | + self.W_h4_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh4, nc)).astype(theano.config.floatX)) | |
| 2250 | + | |
| 2251 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 2252 | + | |
| 2253 | + | |
| 2254 | + def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 2255 | + | |
| 2256 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 2257 | + | |
| 2258 | + tmp = word_children_positions>=0.0 | |
| 2259 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 2260 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 2261 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 2262 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 2263 | + schh = schh/number_of_children | |
| 2264 | + | |
| 2265 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 2266 | + eh2 = T.tanh(T.dot(eh,self.W_eh_eh2)) | |
| 2267 | + | |
| 2268 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 2269 | + shh2 = T.tanh(T.dot(shh,self.W_shh_shh2)) | |
| 2270 | + | |
| 2271 | + | |
| 2272 | + h = T.tanh(T.concatenate([T.dot(eh2, self.W_eh2_h), T.dot(shh2,self.W_shh2_h)])) | |
| 2273 | + | |
| 2274 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 2275 | + h3 = T.tanh(T.dot(h2, self.W_h2_h3)) | |
| 2276 | + h4 = T.tanh(T.dot(h3, self.W_h3_h4)) | |
| 2277 | + | |
| 2278 | + current_hidden_state = hidden_states[i] | |
| 2279 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 2280 | + | |
| 2281 | + y_prob = T.nnet.softmax(T.dot(h4,self.W_h4_y) + self.b_y)[0] | |
| 2282 | + | |
| 2283 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 2284 | + | |
| 2285 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 2286 | + | |
| 2287 | + return cross_entropy, hidden_states_new | |
| 2288 | + | |
| 2289 | + | |
| 2290 | + y = T.vector('y',dtype=dataType) | |
| 2291 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 2292 | + words = T.vector(dtype=dataType) | |
| 2293 | + children_positions = T.matrix(dtype=dataType) | |
| 2294 | + words_indexes = T.vector(dtype=dataType) | |
| 2295 | + | |
| 2296 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 2297 | + sequences = [words, children_positions,y,words_indexes], | |
| 2298 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 2299 | + non_sequences = learning_rate, | |
| 2300 | + n_steps = words.shape[0]) | |
| 2301 | + | |
| 2302 | + cost = T.sum(cross_entropy_vector[0]) | |
| 2303 | + | |
| 2304 | + updates = OrderedDict([ | |
| 2305 | + (self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cost, self.W_h_h2)), | |
| 2306 | + (self.W_h2_h3, self.W_h2_h3-learning_rate*T.grad(cost, self.W_h2_h3)), | |
| 2307 | + (self.W_h3_h4, self.W_h3_h4-learning_rate*T.grad(cost, self.W_h3_h4)), | |
| 2308 | + (self.W_h4_y, self.W_h4_y-learning_rate*T.grad(cost, self.W_h4_y)), | |
| 2309 | + (self.W_e_eh, self.W_e_eh-learning_rate*T.grad(cost, self.W_e_eh)), | |
| 2310 | + (self.W_eh_eh2, self.W_eh_eh2-learning_rate*T.grad(cost, self.W_eh_eh2)), | |
| 2311 | + (self.W_eh2_h, self.W_eh2_h-learning_rate*T.grad(cost, self.W_eh2_h)), | |
| 2312 | + (self.W_shh2_h, self.W_shh2_h-learning_rate*T.grad(cost, self.W_shh2_h)), | |
| 2313 | + (self.W_sh_shh, self.W_sh_shh-learning_rate*T.grad(cost, self.W_sh_shh)), | |
| 2314 | + (self.W_shh_shh2, self.W_shh_shh2-learning_rate*T.grad(cost, self.W_shh_shh2)), | |
| 2315 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 2316 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 2317 | + ]) | |
| 2318 | + | |
| 2319 | + self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate], | |
| 2320 | + outputs = [], | |
| 2321 | + updates = updates, | |
| 2322 | + allow_input_downcast=True, | |
| 2323 | + mode='FAST_RUN' | |
| 2324 | + ) | |
| 2325 | + | |
| 2326 | + | |
| 2327 | + def one_step_classify(word_id, word_children_positions, i, hidden_states): | |
| 2328 | + | |
| 2329 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 2330 | + | |
| 2331 | + tmp = word_children_positions>=0.0 | |
| 2332 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 2333 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 2334 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 2335 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 2336 | + schh = schh/number_of_children | |
| 2337 | + | |
| 2338 | + eh = T.tanh(T.dot(self.emb[word_id],self.W_e_eh)) | |
| 2339 | + eh2 = T.tanh(T.dot(eh,self.W_eh_eh2)) | |
| 2340 | + | |
| 2341 | + shh = T.tanh(T.dot(schh,self.W_sh_shh)) | |
| 2342 | + shh2 = T.tanh(T.dot(shh,self.W_shh_shh2)) | |
| 2343 | + | |
| 2344 | + | |
| 2345 | + h = T.tanh(T.concatenate([T.dot(eh2, self.W_eh2_h), T.dot(shh2,self.W_shh2_h)])) | |
| 2346 | + | |
| 2347 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 2348 | + h3 = T.tanh(T.dot(h2, self.W_h2_h3)) | |
| 2349 | + h4 = T.tanh(T.dot(h3, self.W_h3_h4)) | |
| 2350 | + | |
| 2351 | + current_hidden_state = hidden_states[i] | |
| 2352 | + hidden_states_new = T.set_subtensor(current_hidden_state, h) | |
| 2353 | + | |
| 2354 | + y_prob = T.nnet.softmax(T.dot(h4,self.W_h4_y) + self.b_y)[0] | |
| 2355 | + | |
| 2356 | + | |
| 2357 | + return y_prob, hidden_states_new | |
| 2358 | + | |
| 2359 | + | |
| 2360 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 2361 | + fn=one_step_classify, | |
| 2362 | + sequences = [words, children_positions,words_indexes], | |
| 2363 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 2364 | + | |
| 2365 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 2366 | + sequences = [words_indexes]) | |
| 2367 | + | |
| 2368 | + self.classify = theano.function(inputs=[words,children_positions,words_indexes], | |
| 2369 | + outputs=predictions, | |
| 2370 | + allow_input_downcast=True, | |
| 2371 | + mode='FAST_RUN' | |
| 2372 | + ) | |
| 2373 | + | |
| 2374 | + | |
| ... | ... |
modules/rnn/models.pyc
0 → 100644
No preview for this file type
modules/rnn/models_with_relations.py
0 → 100644
| 1 | + | |
| 2 | +import numpy as np | |
| 3 | +import time | |
| 4 | +import sys | |
| 5 | +import subprocess | |
| 6 | +import os | |
| 7 | +import random | |
| 8 | + | |
| 9 | +#from modules.data import load | |
| 10 | +#from modules.rnn.many_models import * | |
| 11 | +#from modules.metrics.accuracy import conlleval | |
| 12 | +from modules.utils.tools import load_stanford_data4 | |
| 13 | + | |
| 14 | +from theano import pp | |
| 15 | + | |
| 16 | +import theano.tensor as T | |
| 17 | +import theano | |
| 18 | +from theano.sandbox.rng_mrg import MRG_RandomStreams #as MRG_RandomStreams | |
| 19 | + | |
| 20 | +import itertools | |
| 21 | + | |
| 22 | +import os.path | |
| 23 | +import pickle | |
| 24 | + | |
| 25 | +from collections import Counter | |
| 26 | + | |
| 27 | + | |
| 28 | + | |
| 29 | +from theano import tensor as T, printing | |
| 30 | +from collections import OrderedDict | |
| 31 | +from theano.ifelse import ifelse | |
| 32 | + | |
| 33 | +from keras.preprocessing import sequence as seq | |
| 34 | + | |
| 35 | +dataType = 'int64' | |
| 36 | + | |
| 37 | + | |
| 38 | + | |
| 39 | + | |
| 40 | +class MLP_2_1(object): | |
| 41 | + | |
| 42 | + # punkt wyjscia modelu: model55_pf1 | |
| 43 | + | |
| 44 | + def __init__(self, ne, nchd, nc, w2v_model_path, max_phrase_length, number_of_relations): | |
| 45 | + ''' | |
| 46 | + nh :: dimension of hidden state | |
| 47 | + nc :: number of classes | |
| 48 | + de :: dimension of the word embeddings | |
| 49 | + ds :: dimension of the sentiment state | |
| 50 | + ''' | |
| 51 | + self.max_phrase_length = max_phrase_length | |
| 52 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 53 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 54 | + self.words2ids = w2vecs["words2ids"] | |
| 55 | + | |
| 56 | + #ne = len(w2vecs["words2ids"]) | |
| 57 | + de = w2vecs["vectors"].shape[1] | |
| 58 | + del w2vecs | |
| 59 | + | |
| 60 | + r = 0.05 | |
| 61 | + self.W_e_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, ne)).astype(theano.config.floatX)) | |
| 62 | + self.W_h_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nc)).astype(theano.config.floatX)) | |
| 63 | + | |
| 64 | + self.W_sh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nchd)).astype(theano.config.floatX)) | |
| 65 | + | |
| 66 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 67 | + | |
| 68 | + self.relations_weights = theano.shared(r * np.random.uniform(-1.0, 1.0, (number_of_relations+1, ne+nchd, ne+nchd)).astype(theano.config.floatX)) | |
| 69 | + | |
| 70 | + def one_step(word_id, word_children_positions, y_true, relation, i, hidden_states, learning_rate): | |
| 71 | + | |
| 72 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 73 | + | |
| 74 | + tmp = word_children_positions>=0.0 | |
| 75 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 76 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 77 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 78 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 79 | + schh = schh/number_of_children | |
| 80 | + | |
| 81 | + h = T.tanh(T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)])) | |
| 82 | + | |
| 83 | + current_hidden_state = hidden_states[i] | |
| 84 | + hidden_states_new = T.set_subtensor(current_hidden_state, T.dot(h, self.relations_weights[relation,:,:])) | |
| 85 | + | |
| 86 | + y_prob = T.nnet.softmax(T.dot(h,self.W_h_y) + self.b_y)[0] | |
| 87 | + | |
| 88 | + #l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) | |
| 89 | + | |
| 90 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 91 | + | |
| 92 | + return cross_entropy, hidden_states_new | |
| 93 | + | |
| 94 | + | |
| 95 | + y = T.vector('y',dtype=dataType) | |
| 96 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 97 | + words = T.vector(dtype=dataType) | |
| 98 | + children_positions = T.matrix(dtype=dataType) | |
| 99 | + | |
| 100 | + relations = T.vector(dtype=dataType) | |
| 101 | + | |
| 102 | + words_indexes = T.vector(dtype=dataType) | |
| 103 | + | |
| 104 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 105 | + sequences = [words, children_positions,y, relations, words_indexes], | |
| 106 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 107 | + non_sequences = learning_rate, | |
| 108 | + n_steps = words.shape[0]) | |
| 109 | + cost = T.sum(cross_entropy_vector[0]) | |
| 110 | + | |
| 111 | + updates = OrderedDict([ | |
| 112 | + (self.W_h_y, self.W_h_y-learning_rate*T.grad(cost, self.W_h_y)), | |
| 113 | + (self.W_e_h, self.W_e_h-learning_rate*T.grad(cost, self.W_e_h)), | |
| 114 | + (self.W_sh_h, self.W_sh_h-learning_rate*T.grad(cost, self.W_sh_h)), | |
| 115 | + (self.relations_weights, self.relations_weights - learning_rate*T.grad(cost,self.relations_weights)), | |
| 116 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 117 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 118 | + ]) | |
| 119 | + | |
| 120 | + self.train = theano.function( inputs = [words, children_positions, y, relations, words_indexes, learning_rate], | |
| 121 | + outputs = [], | |
| 122 | + updates = updates, | |
| 123 | + allow_input_downcast=True, | |
| 124 | + mode='FAST_RUN' | |
| 125 | + ) | |
| 126 | + | |
| 127 | + | |
| 128 | + def one_step_classify(word_id, word_children_positions, relation, i, hidden_states): | |
| 129 | + | |
| 130 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 131 | + | |
| 132 | + tmp = word_children_positions>=0.0 | |
| 133 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 134 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 135 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 136 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 137 | + schh = schh/number_of_children | |
| 138 | + | |
| 139 | + h = T.tanh(T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)]) ) | |
| 140 | + | |
| 141 | + current_hidden_state = hidden_states[i] | |
| 142 | + hidden_states_new = T.set_subtensor(current_hidden_state, T.dot(h, self.relations_weights[relation,:,:])) | |
| 143 | + | |
| 144 | + y_prob = T.nnet.softmax(T.dot(h,self.W_h_y) + self.b_y)[0] | |
| 145 | + | |
| 146 | + return y_prob, hidden_states_new | |
| 147 | + | |
| 148 | + | |
| 149 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 150 | + fn=one_step_classify, | |
| 151 | + sequences = [words, children_positions, relations, words_indexes], | |
| 152 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 153 | + | |
| 154 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 155 | + sequences = [words_indexes]) | |
| 156 | + | |
| 157 | + self.classify = theano.function(inputs=[words,children_positions,relations, words_indexes], | |
| 158 | + outputs=predictions, | |
| 159 | + allow_input_downcast=True, | |
| 160 | + mode='FAST_RUN' | |
| 161 | + ) | |
| 162 | + | |
| 163 | + | |
| 164 | + | |
| 165 | +class MLP_2_2(object): | |
| 166 | + | |
| 167 | + # punkt wyjscia modelu: model55_pf2 | |
| 168 | + | |
| 169 | + def __init__(self, ne, nchd, nh2, nc, w2v_model_path, max_phrase_length, number_of_relations): | |
| 170 | + ''' | |
| 171 | + nh :: dimension of hidden state | |
| 172 | + nc :: number of classes | |
| 173 | + de :: dimension of the word embeddings | |
| 174 | + ds :: dimension of the sentiment state | |
| 175 | + ''' | |
| 176 | + self.max_phrase_length = max_phrase_length | |
| 177 | + w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 178 | + self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 179 | + self.words2ids = w2vecs["words2ids"] | |
| 180 | + | |
| 181 | + de = w2vecs["vectors"].shape[1] | |
| 182 | + del w2vecs | |
| 183 | + | |
| 184 | + r = 0.05 | |
| 185 | + | |
| 186 | + self.W_e_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (de, ne)).astype(theano.config.floatX)) | |
| 187 | + | |
| 188 | + self.W_sh_h = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nchd)).astype(theano.config.floatX)) | |
| 189 | + | |
| 190 | + self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0, (ne+nchd, nh2)).astype(theano.config.floatX)) | |
| 191 | + self.W_h2_y = theano.shared(r * np.random.uniform(-1.0, 1.0, (nh2, nc)).astype(theano.config.floatX)) | |
| 192 | + | |
| 193 | + self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX)) | |
| 194 | + | |
| 195 | + self.relations_weights = theano.shared(r * np.random.uniform(-1.0, 1.0, (number_of_relations+1, ne+nchd, ne+nchd)).astype(theano.config.floatX)) | |
| 196 | + | |
| 197 | + def one_step(word_id, word_children_positions, y_true, relation, i, hidden_states, learning_rate): | |
| 198 | + | |
| 199 | + schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy | |
| 200 | + | |
| 201 | + tmp = word_children_positions>=0.0 | |
| 202 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 203 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 204 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 205 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 206 | + schh = schh/number_of_children | |
| 207 | + | |
| 208 | + h = T.tanh(T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)])) | |
| 209 | + #h = T.nnet.sigmoid(T.dot(self.emb[word_id],self.W_eh) + T.dot(schh,self.W_shsh) + self.bh) | |
| 210 | + | |
| 211 | + current_hidden_state = hidden_states[i] | |
| 212 | + hidden_states_new = T.set_subtensor(current_hidden_state, T.dot(h, self.relations_weights[relation,:,:])) | |
| 213 | + | |
| 214 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 215 | + | |
| 216 | + y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y) + self.b_y)[0] | |
| 217 | + | |
| 218 | + cross_entropy = -T.log(y_prob[y_true]) # + norm_coefficient * l2_norm | |
| 219 | + | |
| 220 | + return cross_entropy, hidden_states_new | |
| 221 | + | |
| 222 | + | |
| 223 | + y = T.vector('y',dtype=dataType) | |
| 224 | + learning_rate = T.scalar('lr',dtype=theano.config.floatX) | |
| 225 | + words = T.vector(dtype=dataType) | |
| 226 | + children_positions = T.matrix(dtype=dataType) | |
| 227 | + relations = T.vector(dtype=dataType) | |
| 228 | + words_indexes = T.vector(dtype=dataType) | |
| 229 | + | |
| 230 | + cross_entropy_vector, _ = theano.scan(fn=one_step, \ | |
| 231 | + sequences = [words, children_positions,y,relations,words_indexes], | |
| 232 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))], | |
| 233 | + non_sequences = learning_rate, | |
| 234 | + n_steps = words.shape[0]) | |
| 235 | + cost = T.sum(cross_entropy_vector[0]) | |
| 236 | + | |
| 237 | + updates = OrderedDict([ | |
| 238 | + (self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cost, self.W_h_h2)), | |
| 239 | + (self.W_h2_y, self.W_h2_y-learning_rate*T.grad(cost, self.W_h2_y)), | |
| 240 | + (self.W_e_h, self.W_e_h-learning_rate*T.grad(cost, self.W_e_h)), | |
| 241 | + (self.W_sh_h, self.W_sh_h-learning_rate*T.grad(cost, self.W_sh_h)), | |
| 242 | + (self.relations_weights, self.relations_weights - learning_rate*T.grad(cost,self.relations_weights)), | |
| 243 | + (self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), # | |
| 244 | + (self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y)) | |
| 245 | + ]) | |
| 246 | + | |
| 247 | + self.train = theano.function( inputs = [words, children_positions, y, relations, words_indexes, learning_rate], | |
| 248 | + outputs = [], | |
| 249 | + updates = updates, | |
| 250 | + allow_input_downcast=True, | |
| 251 | + mode='FAST_RUN' | |
| 252 | + ) | |
| 253 | + | |
| 254 | + | |
| 255 | + def one_step_classify(word_id, word_children_positions, relation, i, hidden_states): | |
| 256 | + | |
| 257 | + schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy | |
| 258 | + | |
| 259 | + tmp = word_children_positions>=0.0 | |
| 260 | + idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1 | |
| 261 | + schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci | |
| 262 | + number_of_children = tmp.sum(dtype = theano.config.floatX) | |
| 263 | + number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0) | |
| 264 | + schh = schh/number_of_children | |
| 265 | + | |
| 266 | + h = T.tanh(T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)])) | |
| 267 | + | |
| 268 | + current_hidden_state = hidden_states[i] | |
| 269 | + hidden_states_new = T.set_subtensor(current_hidden_state, T.dot(h, self.relations_weights[relation,:,:])) | |
| 270 | + | |
| 271 | + h2 = T.tanh(T.dot(h, self.W_h_h2)) | |
| 272 | + | |
| 273 | + y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y) + self.b_y)[0] | |
| 274 | + | |
| 275 | + return y_prob, hidden_states_new | |
| 276 | + | |
| 277 | + | |
| 278 | + [y_probs_classify, hidden_states ], _ = theano.scan( | |
| 279 | + fn=one_step_classify, | |
| 280 | + sequences = [words, children_positions, relations, words_indexes], | |
| 281 | + outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,ne+nchd), dtype = theano.config.floatX))]) | |
| 282 | + | |
| 283 | + predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]), | |
| 284 | + sequences = [words_indexes]) | |
| 285 | + | |
| 286 | + self.classify = theano.function(inputs=[words,children_positions,relations,words_indexes], | |
| 287 | + outputs=predictions, | |
| 288 | + allow_input_downcast=True, | |
| 289 | + mode='FAST_RUN' | |
| 290 | + ) | |
| 291 | + | |
| 292 | + | |
| 293 | + | |
| 294 | + | |
| ... | ... |
modules/rnn/models_with_relations.pyc
0 → 100644
No preview for this file type
modules/rnn/tmp.py deleted
| 1 | -import theano | |
| 2 | -import numpy as np | |
| 3 | -import os | |
| 4 | -import pickle | |
| 5 | - | |
| 6 | -from theano import tensor as T, printing | |
| 7 | -from collections import OrderedDict | |
| 8 | -from theano.ifelse import ifelse | |
| 9 | - | |
| 10 | -theano.config.floatX = 'float64' | |
| 11 | -dataType = 'int64' | |
| 12 | - | |
| 13 | -class model(object): | |
| 14 | - | |
| 15 | - def __init__(self, nh, nc, ds, w2v_model_path, max_phrase_length): | |
| 16 | - ''' | |
| 17 | - nh :: dimension of hidden state | |
| 18 | - nc :: number of classes | |
| 19 | - ne :: number of word embeddings in the vocabulary | |
| 20 | - de :: dimension of the word embeddings | |
| 21 | - | |
| 22 | - ds :: dimension of the sentiment state | |
| 23 | - ''' | |
| 24 | - | |
| 25 | - | |
| 26 | - | |
| 27 | - self.max_phrase_length = max_phrase_length | |
| 28 | - | |
| 29 | - ###ne = len(model.index2word) | |
| 30 | - ###de = model.vector_size | |
| 31 | - | |
| 32 | - ###vectors = np.zeros((ne,de)) | |
| 33 | - ###self.words2ids = {} | |
| 34 | - ###for i in range(len(model.index2word)): | |
| 35 | - ### self.words2ids[model.index2word[i]] = i | |
| 36 | - ### vectors[i] = model[model.index2word[i]] | |
| 37 | - | |
| 38 | - w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 39 | - #self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 40 | - self.emb = theano.shared(np.load("saved_models4/embeddings.npy").astype(theano.config.floatX)) | |
| 41 | - self.words2ids = w2vecs["words2ids"] | |
| 42 | - | |
| 43 | - ne = len(w2vecs["words2ids"]) | |
| 44 | - de = w2vecs["vectors"].shape[1] | |
| 45 | - | |
| 46 | - del w2vecs | |
| 47 | - | |
| 48 | - #self.words2ids = {} | |
| 49 | - #vectors = [] | |
| 50 | - #i = 0 | |
| 51 | - #for line in open(w2v_model_path,"r"): | |
| 52 | - # toks = line.strip("\n").split(" ") | |
| 53 | - # word = toks[0] | |
| 54 | - # v = map(float, toks[1:]) | |
| 55 | - # vectors.append(v) | |
| 56 | - # self.words2ids[word] = i | |
| 57 | - # i = i + 1 | |
| 58 | - #vectors.append(np.zeros((len(vectors[0])))) | |
| 59 | - #vectors = np.array(vectors) | |
| 60 | - #print(vectors.shape) | |
| 61 | - #self.emb = theano.shared(vectors.astype(theano.config.floatX)) | |
| 62 | - | |
| 63 | - #ne = i | |
| 64 | - #de = len(vectors[0]) | |
| 65 | - | |
| 66 | - #bedzie trzeba obsluzyc przypadek, gdy slowo w danych nie ma embeddina w modelu | |
| 67 | - | |
| 68 | - ###del model | |
| 69 | - #del vectors | |
| 70 | - | |
| 71 | - #self.sent_states = theano.shared(0.2 * np.concatenate(( | |
| 72 | - # np.random.uniform(-1.0, 1.0,(ne, ds)),np.zeros((1,ds))),axis=0).astype(theano.config.floatX)) | |
| 73 | - # dodajemy jeden wektor zerowy potrzebny dla wyznaczenia sumy | |
| 74 | - # dzieci z liscii (czyli lisc symbolicznie ma dziecko bedace nullem - i to ma zerowy sentyment) | |
| 75 | - # uzyc go tez do reprezentacji rzadkich slow na zbiorze treningowym? | |
| 76 | - # porownac dzialanie: 1) przyjecie wektora zerowego dla nowych slow w zbiorze tren; 2) wziecie wartosci ze slowa najbardziej podobnego wzgledem embeddingu wystepujacego w zbiorze tren | |
| 77 | - # trzeba bedzie to uwzglednic w stosowaniu sieci | |
| 78 | - | |
| 79 | - r = 0.05 | |
| 80 | - | |
| 81 | - | |
| 82 | - #self.W_e_h = theano.shared(r * np.random.uniform(-1.0, 1.0,\ | |
| 83 | - # (de, nh)).astype(theano.config.floatX)) | |
| 84 | - self.W_e_h = theano.shared(np.load("saved_models4/W_eh25.npy").astype(theano.config.floatX)) | |
| 85 | - | |
| 86 | - self.W_sh = theano.shared(r * np.random.uniform(-1.0, 1.0,\ | |
| 87 | - (ds, nh)).astype(theano.config.floatX)) | |
| 88 | - | |
| 89 | - #self.W_h2_y = theano.shared(r * np.random.uniform(-1.0, 1.0,\ | |
| 90 | - # (2*nh, nc)).astype(theano.config.floatX)) | |
| 91 | - self.W_h2_y = theano.shared(np.load("saved_models4/W_hh225.npy").astype(theano.config.floatX)) | |
| 92 | - | |
| 93 | - #self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0,\ | |
| 94 | - # (2*nh, 2*nh)).astype(theano.config.floatX)) | |
| 95 | - self.W_h_h2 = theano.shared(np.load("saved_models4/W_h2y25.npy").astype(theano.config.floatX)) | |
| 96 | - | |
| 97 | - self.W_ssy = theano.shared(r * np.random.uniform(-1.0, 1.0,\ | |
| 98 | - (ds, nc)).astype(theano.config.floatX)) | |
| 99 | - | |
| 100 | - #self.W_sh_h = theano.shared(r * np.random.uniform(-1.0, 1.0,\ | |
| 101 | - # (2*nh, nh)).astype(theano.config.floatX)) | |
| 102 | - self.W_sh_h = theano.shared(np.load("saved_models4/W_shsh25.npy").astype(theano.config.floatX)) | |
| 103 | - | |
| 104 | - self.bh = theano.shared(np.zeros(nh, dtype=theano.config.floatX)) | |
| 105 | - self.b = theano.shared(np.zeros(nc, dtype=theano.config.floatX)) | |
| 106 | - | |
| 107 | - | |
| 108 | - # bundle | |
| 109 | - self.params = [ self.W_h2_y, self.W_h_h2, self.W_e_h, self.W_sh_h,self.emb]#, self.bh, self.b ] | |
| 110 | - self.names = [ "W_hh2", 'W_h2y', 'W_eh', 'W_shsh', "embeddings"]#, 'bh', 'b']#, 'h0'] | |
| 111 | - | |
| 112 | - | |
| 113 | - # liczy sentyment obecnego slowa / predykcja | |
| 114 | - # word_id = obecne slowo | |
| 115 | - # i = indeks w zdaniu slowa word_id | |
| 116 | - # word_children_ids = id-ki dzieci obecnego slowa | |
| 117 | - # word_children_positions = pozycje word_children_ids | |
| 118 | - def one_step(word_id, word_children_ids, word_children_positions, i, hidden_states): | |
| 119 | - | |
| 120 | - | |
| 121 | - | |
| 122 | - idx_tmp = (word_children_positions>=0).nonzero() | |
| 123 | - tmp = T.zeros_like(word_children_positions) | |
| 124 | - tmp2 = T.set_subtensor(tmp[idx_tmp], 1) | |
| 125 | - number_of_children = tmp2.sum() | |
| 126 | - | |
| 127 | - #pnoc = theano.printing.Print('Number of children: ') | |
| 128 | - #printed_number_of_children = pnoc(number_of_children) | |
| 129 | - | |
| 130 | - | |
| 131 | - # sprobowac zamiast zer, wstawic wektor wartosci 0.5 | |
| 132 | - schh = hidden_states[word_children_positions].sum(axis=0) /( number_of_children + 0.000001) #dodane 0..1, zeby nie bawic sie w ify, gdy nie ma dzieci (wtedy suma i tak jest zero, wiece dzielenie nie ma znaczenia) | |
| 133 | - h = T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)]) # bez biasa i sigmoida | |
| 134 | - | |
| 135 | - #h = T.nnet.sigmoid(T.dot(self.emb[word_id],self.W_eh) + T.dot(schh,self.W_shsh) + self.bh) | |
| 136 | - | |
| 137 | - #h_s = T.zeros_like(hidden_states) | |
| 138 | - #zeros_subtensor = h_s[i] | |
| 139 | - #new_h_s = T.set_subtensor(zeros_subtensor, h) | |
| 140 | - | |
| 141 | - zeros_subtensor = hidden_states[i] | |
| 142 | - hidden_states_new = T.set_subtensor(zeros_subtensor, h) | |
| 143 | - | |
| 144 | - h2 = T.dot(h, self.W_h_h2) | |
| 145 | - | |
| 146 | - y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y))# + self.b) | |
| 147 | - | |
| 148 | - | |
| 149 | - # powyzsze jest niezbyt sensownie zrobione, bo jesli jest kilka "-1" w dzieciach to tyle razy jest dodawany ten wektor | |
| 150 | - # czy da sie to zamienic na petle, zeby nie dodawac wektora -1 kilka razy? | |
| 151 | - # w tej chwili to nie ma znaczenia, bo ten wektor i tak jest stale rowny 0 - nie zmienia sie podczas uczenia | |
| 152 | - | |
| 153 | - return i+1, hidden_states_new, y_prob | |
| 154 | - | |
| 155 | - | |
| 156 | - | |
| 157 | - words = T.vector(dtype=dataType) | |
| 158 | - children_ids = T.matrix(dtype=dataType) | |
| 159 | - children_positions = T.matrix(dtype=dataType) | |
| 160 | - | |
| 161 | - y_probs, _ = theano.scan(fn=one_step, \ | |
| 162 | - sequences = [words, children_ids, children_positions], | |
| 163 | - outputs_info = [theano.shared(0), | |
| 164 | - theano.shared(np.zeros((self.max_phrase_length+1,2*nh), dtype = theano.config.floatX)), | |
| 165 | - None], | |
| 166 | - n_steps = words.shape[0]) | |
| 167 | - | |
| 168 | - | |
| 169 | - estimated_probs = y_probs[-1][-1][0] | |
| 170 | - | |
| 171 | - y_pred = T.argmax(estimated_probs) # y_probs[-1][-1][0] zwraca wektor [P(y=0), P(y=1)] -> argmax zwraca predykce klasy | |
| 172 | - # dostajemy sie do predykcji dla ostatniego slowa, a klasyfikacja ostatniego slowa odpowiada klasyfikacji frazy, | |
| 173 | - # bo slowa sa ustawione w takiej kolejnosci, ze korzen jest ostatnim slowem | |
| 174 | - | |
| 175 | - | |
| 176 | - y = T.scalar('y',dtype=dataType) | |
| 177 | - | |
| 178 | - # cost and gradients and learning rate | |
| 179 | - lr = T.scalar('lr',dtype=theano.config.floatX) | |
| 180 | - | |
| 181 | - nll = -T.log(estimated_probs)[y] #to samo co (sprawdzone): | |
| 182 | - #nll = T.nnet.nnet.categorical_crossentropy(estimated_probs,T.extra_ops.to_one_hot(y.dimshuffle('x'), 5)[0]) | |
| 183 | - | |
| 184 | - gradients = T.grad( nll, self.params ) | |
| 185 | - updates = OrderedDict(( p, p-lr*g ) for p, g in zip( self.params , gradients)) | |
| 186 | - | |
| 187 | - # uwaga: ostani rzad macierzy sent_states - wektor odpowiadajacy dziecku, ktorego nie ma - jest stale rowny zero | |
| 188 | - | |
| 189 | - | |
| 190 | - # theano functions | |
| 191 | - self.classify = theano.function(inputs=[words,children_ids,children_positions], outputs=y_pred, | |
| 192 | - allow_input_downcast=True, | |
| 193 | - mode='FAST_RUN' ) | |
| 194 | - | |
| 195 | - self.train = theano.function( inputs = [words,children_ids, children_positions, y, lr], | |
| 196 | - outputs = nll, | |
| 197 | - updates = updates, | |
| 198 | - allow_input_downcast=True, | |
| 199 | - mode='FAST_RUN' ) | |
| 200 | - | |
| 201 | - | |
| 202 | - #self.normalize = theano.function( inputs = [], #uwazac na dzielenie przez 0 - ostatni wiersz sent_states jest zerowy | |
| 203 | - # updates = {self.sent_states:\ | |
| 204 | - # self.sent_states/T.sqrt((self.sent_states**2).sum(axis=1))})#.dimshuffle(0,'x')}) | |
| 205 | - | |
| 206 | - def save(self, folder, e): | |
| 207 | - for param, name in zip(self.params, self.names): | |
| 208 | - np.save(os.path.join(folder, name + str(e) + '.npy'), param.get_value()) | |
| 209 | - | |
| 210 | - | |
| 211 | - | |
| 212 | - | |
| 213 | - | |
| 214 | - | |
| 215 | -class model2(object): | |
| 216 | - | |
| 217 | - ''' | |
| 218 | - | |
| 219 | - ''' | |
| 220 | - | |
| 221 | - | |
| 222 | - def __init__(self, nh, nc, ds, w2v_model_path, max_phrase_length): | |
| 223 | - ''' | |
| 224 | - nh :: dimension of hidden state | |
| 225 | - nc :: number of classes | |
| 226 | - ne :: number of word embeddings in the vocabulary | |
| 227 | - de :: dimension of the word embeddings | |
| 228 | - | |
| 229 | - ds :: dimension of the sentiment state | |
| 230 | - ''' | |
| 231 | - | |
| 232 | - self.max_phrase_length = max_phrase_length | |
| 233 | - | |
| 234 | - w2vecs = pickle.load(open(w2v_model_path,"r")) | |
| 235 | - | |
| 236 | - self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX)) | |
| 237 | - #self.emb = theano.shared(np.load("saved_models_final1/embeddings"+str(e)+"_200.npy").astype(theano.config.floatX)) | |
| 238 | - | |
| 239 | - self.words2ids = w2vecs["words2ids"] | |
| 240 | - | |
| 241 | - ne = len(w2vecs["words2ids"]) | |
| 242 | - de = w2vecs["vectors"].shape[1] | |
| 243 | - | |
| 244 | - del w2vecs | |
| 245 | - | |
| 246 | - #self.sent_states = theano.shared(0.2 * np.concatenate(( | |
| 247 | - # np.random.uniform(-1.0, 1.0,(ne, ds)),np.zeros((1,ds))),axis=0).astype(theano.config.floatX)) | |
| 248 | - # dodajemy jeden wektor zerowy potrzebny dla wyznaczenia sumy | |
| 249 | - # dzieci z liscii (czyli lisc symbolicznie ma dziecko bedace nullem - i to ma zerowy sentyment) | |
| 250 | - # uzyc go tez do reprezentacji rzadkich slow na zbiorze treningowym? | |
| 251 | - # porownac dzialanie: 1) przyjecie wektora zerowego dla nowych slow w zbiorze tren; 2) wziecie wartosci ze slowa najbardziej podobnego wzgledem embeddingu wystepujacego w zbiorze tren | |
| 252 | - # trzeba bedzie to uwzglednic w stosowaniu sieci | |
| 253 | - | |
| 254 | - r = 0.05 | |
| 255 | - | |
| 256 | - | |
| 257 | - self.W_e_h = theano.shared(r * np.random.uniform(-1.0, 1.0,\ | |
| 258 | - (de, nh)).astype(theano.config.floatX)) | |
| 259 | - #self.W_e_h = theano.shared(np.load("saved_models_final1/W_eh"+str(e)+"_200.npy").astype(theano.config.floatX)) | |
| 260 | - | |
| 261 | - self.W_sh = theano.shared(r * np.random.uniform(-1.0, 1.0,\ | |
| 262 | - (ds, nh)).astype(theano.config.floatX)) | |
| 263 | - | |
| 264 | - self.W_h2_y = theano.shared(r * np.random.uniform(-1.0, 1.0,\ | |
| 265 | - (2*nh, nc)).astype(theano.config.floatX)) | |
| 266 | - #self.W_h2_y = theano.shared(np.load("saved_models_final1/W_h2y"+str(e)+"_200.npy").astype(theano.config.floatX)) | |
| 267 | - | |
| 268 | - self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0,\ | |
| 269 | - (2*nh, 2*nh)).astype(theano.config.floatX)) | |
| 270 | - #self.W_h_h2 = theano.shared(np.load("saved_models_final1/W_hh2"+str(e)+"_200.npy").astype(theano.config.floatX)) | |
| 271 | - | |
| 272 | - self.W_ssy = theano.shared(r * np.random.uniform(-1.0, 1.0,\ | |
| 273 | - (ds, nc)).astype(theano.config.floatX)) | |
| 274 | - | |
| 275 | - self.W_sh_h = theano.shared(r * np.random.uniform(-1.0, 1.0,\ | |
| 276 | - (2*nh, nh)).astype(theano.config.floatX)) | |
| 277 | - #self.W_sh_h = theano.shared(np.load("saved_models_final1/W_shsh"+str(e)+"_200.npy").astype(theano.config.floatX)) | |
| 278 | - | |
| 279 | - | |
| 280 | - self.W_h_y = theano.shared(r * np.random.uniform(-1.0, 1.0,\ | |
| 281 | - (2*nh, nc)).astype(theano.config.floatX)) | |
| 282 | - | |
| 283 | - self.bh = theano.shared(np.zeros(nh, dtype=theano.config.floatX)) | |
| 284 | - self.b = theano.shared(np.zeros(nc, dtype=theano.config.floatX)) | |
| 285 | - | |
| 286 | - | |
| 287 | - # bundle | |
| 288 | - self.params = [ self.W_h_y, self.W_e_h, self.W_sh_h, self.emb]# self.W_h2_y, self.W_h_h2, | |
| 289 | - self.names = [ "W_h_y", 'W_eh', 'W_shsh', "embeddings"]# 'W_h2y', "W_hh2", | |
| 290 | - | |
| 291 | - | |
| 292 | - shared_zero = theano.shared(0) | |
| 293 | - shared_one = theano.shared(1) | |
| 294 | - | |
| 295 | - # liczy sentyment obecnego slowa / predykcja | |
| 296 | - # word_id = obecne slowo | |
| 297 | - # i = indeks w zdaniu slowa word_id | |
| 298 | - # word_children_ids = id-ki dzieci obecnego slowa | |
| 299 | - # word_children_positions = pozycje word_children_ids | |
| 300 | - def one_step(word_id, word_children_ids, word_children_positions, y_true, i, hidden_states, learning_rate): | |
| 301 | - | |
| 302 | - p = printing.Print('word_children_positions: ') | |
| 303 | - word_children_positions = p(word_children_positions) | |
| 304 | - | |
| 305 | - | |
| 306 | - idx_tmp = (word_children_positions>=0).nonzero() | |
| 307 | - tmp = T.zeros_like(word_children_positions) | |
| 308 | - tmp2 = T.set_subtensor(tmp[idx_tmp], 1) | |
| 309 | - number_of_children = tmp2.sum(dtype = dataType) | |
| 310 | - | |
| 311 | - number_of_children = ifelse(T.eq(number_of_children, shared_zero), shared_one, number_of_children) | |
| 312 | - # sprobowac zamiast zer, wstawic wektor wartosci 0.5 | |
| 313 | - | |
| 314 | - hello_world_op = printing.Print('number_of_children: ') | |
| 315 | - number_of_children = hello_world_op(number_of_children) | |
| 316 | - | |
| 317 | - | |
| 318 | - schh = hidden_states[word_children_positions].sum(axis=0) / number_of_children#( number_of_children + 0.000001) | |
| 319 | -#dodane 0..1, zeby nie bawic sie w ify, gdy nie ma dzieci (wtedy suma i tak jest zero, wiece dzielenie nie ma znaczenia) | |
| 320 | - h = T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)]) # bez biasa i sigmoida | |
| 321 | - | |
| 322 | - #h = T.nnet.sigmoid(T.dot(self.emb[word_id],self.W_eh) + T.dot(schh,self.W_shsh) + self.bh) | |
| 323 | - | |
| 324 | - #h_s = T.zeros_like(hidden_states) | |
| 325 | - #zeros_subtensor = h_s[i] | |
| 326 | - #new_h_s = T.set_subtensor(zeros_subtensor, h) | |
| 327 | - | |
| 328 | - zeros_subtensor = hidden_states[i] | |
| 329 | - hidden_states_new = T.set_subtensor(zeros_subtensor, h) | |
| 330 | - | |
| 331 | - #h2 = T.dot(h, self.W_h_h2) | |
| 332 | - | |
| 333 | - #y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y))# + self.b) | |
| 334 | - | |
| 335 | - y_prob = T.nnet.softmax(T.dot(h,self.W_h_y))# + self.b) | |
| 336 | - | |
| 337 | - cce = -T.log(y_prob[0][y_true]) | |
| 338 | - | |
| 339 | - #learning_rate = 0.01 | |
| 340 | - | |
| 341 | - updates = OrderedDict([#(self.W_h2_y, self.W_h2_y-learning_rate*T.grad(cce, self.W_h2_y)), | |
| 342 | - (self.W_h_y, self.W_h_y-learning_rate*T.grad(cce, self.W_h_y)), | |
| 343 | - #(self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cce, self.W_h_h2)), | |
| 344 | - (self.W_e_h, self.W_e_h-learning_rate*T.grad(cce, self.W_e_h)), | |
| 345 | - (self.W_sh_h, self.W_sh_h-learning_rate*T.grad(cce, self.W_sh_h)), | |
| 346 | - (self.emb, self.emb-learning_rate*T.grad(cce, self.emb)) | |
| 347 | - ]) | |
| 348 | - | |
| 349 | - | |
| 350 | - return (i+1,hidden_states_new, y_prob), updates | |
| 351 | - | |
| 352 | - | |
| 353 | - | |
| 354 | - | |
| 355 | - y = T.vector('y',dtype=dataType) | |
| 356 | - | |
| 357 | - lr = T.scalar('lr',dtype=theano.config.floatX) | |
| 358 | - | |
| 359 | - words = T.vector(dtype=dataType) | |
| 360 | - children_ids = T.matrix(dtype=dataType) | |
| 361 | - children_positions = T.matrix(dtype=dataType) | |
| 362 | - #words_indexes = T.vector(dtype=dataType) | |
| 363 | - | |
| 364 | - y_probs, upd = theano.scan(fn=one_step, \ | |
| 365 | - sequences = [words, children_ids, children_positions,y],#,words_indexes], | |
| 366 | - outputs_info = [theano.shared(0), | |
| 367 | - theano.shared(np.zeros((self.max_phrase_length+1,2*nh), dtype = theano.config.floatX)), | |
| 368 | - None], | |
| 369 | - non_sequences = lr, | |
| 370 | - n_steps = words.shape[0]) | |
| 371 | - | |
| 372 | - | |
| 373 | - def one_step_classify(word_id, word_children_ids, word_children_positions, i, hidden_states): | |
| 374 | - | |
| 375 | - | |
| 376 | - idx_tmp = (word_children_positions>=0).nonzero() | |
| 377 | - tmp = T.zeros_like(word_children_positions) | |
| 378 | - tmp2 = T.set_subtensor(tmp[idx_tmp], 1) | |
| 379 | - number_of_children = tmp2.sum() | |
| 380 | - | |
| 381 | - schh = hidden_states[word_children_positions].sum(axis=0) / ifelse(T.eq(number_of_children, shared_zero), shared_one, number_of_children) | |
| 382 | - h = T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)]) # bez biasa i sigmoida | |
| 383 | - | |
| 384 | - zeros_subtensor = hidden_states[i] | |
| 385 | - hidden_states_new = T.set_subtensor(zeros_subtensor, h) | |
| 386 | - | |
| 387 | - #h2 = T.dot(h, self.W_h_h2) | |
| 388 | - #y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y))# + self.b) | |
| 389 | - y_prob = T.nnet.softmax(T.dot(h,self.W_h_y)) | |
| 390 | - | |
| 391 | - return i+1, hidden_states_new, y_prob | |
| 392 | - | |
| 393 | - | |
| 394 | - | |
| 395 | - y_probs_classify, _ = theano.scan(fn=one_step_classify, \ | |
| 396 | - sequences = [words, children_ids, children_positions], | |
| 397 | - outputs_info = [theano.shared(0), | |
| 398 | - theano.shared(np.zeros((self.max_phrase_length+1,2*nh), dtype = theano.config.floatX)), | |
| 399 | - None], | |
| 400 | - n_steps = words.shape[0]) | |
| 401 | - | |
| 402 | - | |
| 403 | - | |
| 404 | - | |
| 405 | - predictions, _ = theano.scan(lambda i: (i+1, T.argmax(y_probs_classify[2][i][0])), outputs_info = [theano.shared(0), None], n_steps = y_probs_classify[2].shape[0]) | |
| 406 | - | |
| 407 | - #res2 , _ = theano.scan(lambda x,i : (i+1, T.argmax(x)), | |
| 408 | - # sequences = [estimated_probs[1]], | |
| 409 | - # outputs_info = [theano.shared(0), None] | |
| 410 | - # ) | |
| 411 | - | |
| 412 | - | |
| 413 | -# minus_log_true_class_prob = res[1] | |
| 414 | - #prediction_class = res2[1] | |
| 415 | - | |
| 416 | - | |
| 417 | -# nll = minus_log_true_class_prob.sum() | |
| 418 | - | |
| 419 | - #y_pred = T.argmax(estimated_probs) # y_probs[-1][-1][0] zwraca wektor [P(y=0), P(y=1), ...] -> argmax zwraca predykce klasy | |
| 420 | - # dostajemy sie do predykcji dla ostatniego slowa, a klasyfikacja ostatniego slowa odpowiada klasyfikacji frazy, | |
| 421 | - # bo slowa sa ustawione w takiej kolejnosci, ze korzen jest ostatnim slowem | |
| 422 | - | |
| 423 | - | |
| 424 | - | |
| 425 | - | |
| 426 | - # cost and gradients and learning rate | |
| 427 | - #nll = -T.log(estimated_probs[1])[y] #to samo co (sprawdzone): | |
| 428 | - #nll = T.nnet.nnet.categorical_crossentropy(estimated_probs,T.extra_ops.to_one_hot(y.dimshuffle('x'), 5)[0]) | |
| 429 | - | |
| 430 | -# gradients = T.grad( nll, self.params ) | |
| 431 | -# updates = OrderedDict(( p, p-lr*g ) for p, g in zip( self.params , gradients)) | |
| 432 | - | |
| 433 | - # uwaga: ostani rzad macierzy sent_states - wektor odpowiadajacy dziecku, ktorego nie ma - jest stale rowny zero | |
| 434 | - | |
| 435 | - | |
| 436 | - # theano functions | |
| 437 | - self.classify = theano.function(inputs=[words,children_ids,children_positions], outputs=predictions[1], | |
| 438 | - allow_input_downcast=True, | |
| 439 | - mode='FAST_RUN' ) | |
| 440 | - | |
| 441 | - self.train = theano.function( inputs = [words,children_ids, children_positions, y, lr],#, words_indexes | |
| 442 | - outputs = [],#nll, | |
| 443 | - updates = upd,#updates, | |
| 444 | - allow_input_downcast=True, | |
| 445 | - mode='FAST_RUN' ) | |
| 446 | - | |
| 447 | - | |
| 448 | - #self.normalize = theano.function( inputs = [], #uwazac na dzielenie przez 0 - ostatni wiersz sent_states jest zerowy | |
| 449 | - # updates = {self.sent_states:\ | |
| 450 | - # self.sent_states/T.sqrt((self.sent_states**2).sum(axis=1))})#.dimshuffle(0,'x')}) | |
| 451 | - | |
| 452 | - def save(self, folder, e, i): | |
| 453 | - for param, name in zip(self.params, self.names): | |
| 454 | - np.save(os.path.join(folder, name + str(e) + "_" + str(i) + '.npy'), param.get_value()) |
modules/rnn/tmp.pyc deleted
No preview for this file type
modules/utils/tools.py
| ... | ... | @@ -3,8 +3,12 @@ import numpy |
| 3 | 3 | from keras.preprocessing import sequence as seq |
| 4 | 4 | import theano |
| 5 | 5 | |
| 6 | +from collections import Counter | |
| 7 | + | |
| 6 | 8 | import pickle |
| 7 | 9 | |
| 10 | + | |
| 11 | + | |
| 8 | 12 | def shuffle(lol, seed): |
| 9 | 13 | ''' |
| 10 | 14 | lol :: list of list as input |
| ... | ... | @@ -70,7 +74,6 @@ def filter_embeddings(datasets, embedding_path, destination): |
| 70 | 74 | |
| 71 | 75 | |
| 72 | 76 | |
| 73 | - | |
| 74 | 77 | def words_in_from_down_to_top_order(sentence_tree): |
| 75 | 78 | #print sentence_tree |
| 76 | 79 | levels = numpy.setdiff1d(range(len(sentence_tree)),numpy.unique(sentence_tree)) # - zwraca slowo/a, ktore nie jest niczyim dzieckiem - czyli powinno/y byc korzeniem/korzeniami frazy/fraz |
| ... | ... | @@ -81,7 +84,8 @@ def words_in_from_down_to_top_order(sentence_tree): |
| 81 | 84 | for i in range(len(sentence_tree)): |
| 82 | 85 | #print i |
| 83 | 86 | #print levels[i] |
| 84 | - levels.extend(numpy.setdiff1d(sentence_tree[levels[i]],-1)) | |
| 87 | + x = numpy.setdiff1d(sentence_tree[levels[i]],-1) | |
| 88 | + levels.extend(x[x<len(sentence_tree)]) | |
| 85 | 89 | |
| 86 | 90 | ordered_words = numpy.array(levels)[levels != numpy.array(-1)][::-1] #odwaracmy kolejnosc na poczatku beda slowa znajdujace sie najglebiej |
| 87 | 91 | |
| ... | ... | @@ -94,7 +98,6 @@ def words_in_from_down_to_top_order(sentence_tree): |
| 94 | 98 | |
| 95 | 99 | |
| 96 | 100 | |
| 97 | - | |
| 98 | 101 | def load_conll_data(conll_format_data, words2ids): |
| 99 | 102 | |
| 100 | 103 | |
| ... | ... | @@ -633,12 +636,7 @@ def load_stanford_data3(labels, parents, tokens, words2ids, use_batch, batch_siz |
| 633 | 636 | |
| 634 | 637 | def load_stanford_data4(labels, parents, tokens, words2ids, use_batch, batch_size, nb_classes): |
| 635 | 638 | |
| 636 | - | |
| 637 | - | |
| 638 | - | |
| 639 | 639 | def transform_labels(x, nb_classes): |
| 640 | - | |
| 641 | - | |
| 642 | 640 | if nb_classes == 3: |
| 643 | 641 | if x =='#' or int(x) == 0: |
| 644 | 642 | return 1 |
| ... | ... | @@ -685,19 +683,12 @@ def load_stanford_data4(labels, parents, tokens, words2ids, use_batch, batch_siz |
| 685 | 683 | |
| 686 | 684 | for labels_i,parents_i,tokens_i in zip(labels,parents,tokens): |
| 687 | 685 | |
| 688 | - | |
| 689 | - | |
| 690 | 686 | k = k + 1 |
| 691 | - | |
| 692 | - | |
| 687 | + | |
| 693 | 688 | s = [] |
| 694 | 689 | for i in range(len(tokens_i)): |
| 695 | 690 | s.append([i,int(parents_i[i]),labels_i[i],tokens_i[i]]) |
| 696 | 691 | |
| 697 | - | |
| 698 | - | |
| 699 | - | |
| 700 | - | |
| 701 | 692 | if len(s) == 1 and use_batch == False: #przypadek gdy fraza sklada sie z jednego tokena |
| 702 | 693 | |
| 703 | 694 | #if nb_classes == 2: |
| ... | ... | @@ -743,7 +734,6 @@ def load_stanford_data4(labels, parents, tokens, words2ids, use_batch, batch_siz |
| 743 | 734 | # if current_sentence[3][-1] <0: |
| 744 | 735 | # continue |
| 745 | 736 | |
| 746 | - | |
| 747 | 737 | if use_batch == True: |
| 748 | 738 | |
| 749 | 739 | # w tej chwili len(current_sentence[0]) nie jest nigdzie wykorzystywane |
| ... | ... | @@ -770,8 +760,7 @@ def load_stanford_data4(labels, parents, tokens, words2ids, use_batch, batch_siz |
| 770 | 760 | #wyrzucamy macierz id dzieci batch_children_ids.append(current_batch[sent][0][1][tok]) |
| 771 | 761 | batch_labels.append(current_batch[sent][0][2][tok]) |
| 772 | 762 | batch_words.append(current_batch[sent][0][3][tok]) |
| 773 | - | |
| 774 | - | |
| 763 | + | |
| 775 | 764 | #wyrzucamy macierz id dzieci batch_children_ids = seq.pad_sequences(batch_children_ids, padding='post', value = -1) |
| 776 | 765 | batch_children_positions = seq.pad_sequences(batch_children_positions, padding='post', value = -1) |
| 777 | 766 | |
| ... | ... | @@ -785,8 +774,7 @@ def load_stanford_data4(labels, parents, tokens, words2ids, use_batch, batch_siz |
| 785 | 774 | |
| 786 | 775 | current_batch, batch_tokens, batch_children_positions, batch_labels = [], [], [], [] |
| 787 | 776 | batch_words = [] |
| 788 | - | |
| 789 | - | |
| 777 | + | |
| 790 | 778 | else: |
| 791 | 779 | |
| 792 | 780 | sentences.append(current_sentence) |
| ... | ... | @@ -826,15 +814,13 @@ def load_stanford_data4(labels, parents, tokens, words2ids, use_batch, batch_siz |
| 826 | 814 | numpy.array(batch_labels) |
| 827 | 815 | ,numpy.array(batch_words) |
| 828 | 816 | ]) |
| 829 | - | |
| 830 | - | |
| 831 | - | |
| 832 | - | |
| 817 | + | |
| 833 | 818 | return sentences |
| 834 | 819 | |
| 835 | 820 | |
| 836 | 821 | |
| 837 | 822 | |
| 823 | + | |
| 838 | 824 | def load_stanford_data5(labels, parents, tokens, words2ids, use_batch, batch_size, nb_classes): |
| 839 | 825 | |
| 840 | 826 | |
| ... | ... | @@ -1033,5 +1019,200 @@ def load_stanford_data5(labels, parents, tokens, words2ids, use_batch, batch_siz |
| 1033 | 1019 | |
| 1034 | 1020 | |
| 1035 | 1021 | |
| 1022 | +def load_stanford_data6(labels, parents, tokens, relations, words2ids, use_batch, batch_size, nb_classes, k_most_common_relations): | |
| 1023 | + | |
| 1024 | + def transform_labels(x, nb_classes): | |
| 1025 | + if nb_classes == 3: | |
| 1026 | + if x =='#' or int(x) == 0: | |
| 1027 | + return 1 | |
| 1028 | + elif int(x) < 0: | |
| 1029 | + return 0 | |
| 1030 | + else: | |
| 1031 | + return 2 | |
| 1032 | + elif nb_classes == 5: | |
| 1033 | + if x =='#': | |
| 1034 | + return 2 | |
| 1035 | + else: | |
| 1036 | + return int(x)+2 | |
| 1037 | + # elif nb_classes == 2: #jesli chcemy miec dwie klasy to neutralne wyrzucamy ze zbioru, | |
| 1038 | + # if x =='#' or int(x) == 0: | |
| 1039 | + # return -1 | |
| 1040 | + # elif int(x) < 0: | |
| 1041 | + # return 0 | |
| 1042 | + # else: | |
| 1043 | + # return 1 | |
| 1044 | + | |
| 1045 | + sentences = [] | |
| 1046 | + | |
| 1047 | + l = open(labels, "r") | |
| 1048 | + # 5 klas: labels = [[2 if y=='#' else int(y)+2 for y in x.split()] for x in l.readlines()] | |
| 1049 | + | |
| 1050 | + # Na ten moment przyjmujemy wartosc "2" w miejsce "#" | |
| 1051 | + | |
| 1052 | + labels = [[transform_labels(y,nb_classes) for y in x.split()] for x in l.readlines()] | |
| 1053 | + l.close() | |
| 1054 | + | |
| 1055 | + p = open(parents,"r") | |
| 1056 | + parents = [[int(y) for y in x.split()] for x in p.readlines()] | |
| 1057 | + p.close() | |
| 1058 | + | |
| 1059 | + t = open(tokens,"r") | |
| 1060 | + tokens = [x.split() for x in t.readlines()] | |
| 1061 | + t.close() | |
| 1062 | + | |
| 1063 | + | |
| 1064 | + rels = open(relations,"r") | |
| 1065 | + relations = [[y for y in x.split()] for x in rels.readlines()] | |
| 1066 | + rels.close() | |
| 1067 | + most_common_rels = [x[0] for x in Counter(numpy.concatenate(relations)).most_common(k_most_common_relations)] | |
| 1068 | + transform_rels = dict(zip(most_common_rels,range(len(most_common_rels)))) | |
| 1069 | + relations = [[transform_rels.get(x, k_most_common_relations) for x in sent] for sent in relations] | |
| 1070 | + | |
| 1071 | + | |
| 1072 | + k = 0 | |
| 1073 | + sentence_length = 0 | |
| 1074 | + current_batch, batch_tokens, batch_children_ids, batch_children_positions, batch_labels, batch_relations = [], [], [], [], [], [] | |
| 1075 | + batch_words = [] | |
| 1076 | + | |
| 1077 | + for labels_i, parents_i, tokens_i, relations_i in zip(labels,parents,tokens,relations): | |
| 1078 | + | |
| 1079 | + k = k + 1 | |
| 1080 | + | |
| 1081 | + s = [] | |
| 1082 | + for i in range(len(tokens_i)): | |
| 1083 | + s.append([i,int(parents_i[i]),labels_i[i],tokens_i[i],relations_i[i]]) | |
| 1084 | + | |
| 1085 | + if len(s) == 1 and use_batch == False: #przypadek gdy fraza sklada sie z jednego tokena | |
| 1086 | + | |
| 1087 | + #if nb_classes == 2: | |
| 1088 | + # if s[0][-1] < 0: | |
| 1089 | + # continue | |
| 1090 | + | |
| 1091 | + sentences.append([\ | |
| 1092 | + numpy.array([words2ids.get(tokens[0], -1)]),\ | |
| 1093 | + #wyrzucamy macierz id dzieci numpy.array([-1], ndmin=2),\ | |
| 1094 | + numpy.array([-1], ndmin=2), \ | |
| 1095 | + numpy.array(labels_i[0]), \ | |
| 1096 | + numpy.array(relations_i[0]) | |
| 1097 | + ]) | |
| 1098 | + | |
| 1099 | + else: | |
| 1100 | + | |
| 1101 | + for i in range(len(s)): # nie wiem czy sie nie wywali dla frazy dlugosci 1 | |
| 1102 | + children = [] | |
| 1103 | + for j in range(len(s)): | |
| 1104 | + if s[j][1] == i+1: | |
| 1105 | + children.append(s[j][0]) | |
| 1106 | + s[i].append(children) | |
| 1107 | + | |
| 1108 | + words = [x[0] for x in s] | |
| 1109 | + children = seq.pad_sequences([x[-1] for x in s], padding='post', value = -1) | |
| 1110 | + tokens = [x[3] for x in s] | |
| 1111 | + labels_in_batch = [x[2] for x in s] | |
| 1112 | + relations = [x[4] for x in s] | |
| 1113 | + | |
| 1114 | + ordered_words, order = words_in_from_down_to_top_order(children) | |
| 1115 | + | |
| 1116 | + if ordered_words is None: | |
| 1117 | + continue | |
| 1118 | + | |
| 1119 | + current_sentence = [ | |
| 1120 | + numpy.array([words2ids.get(x,-1) for x in tokens])[ordered_words], | |
| 1121 | + #wyrzucamy macierz id dzieci numpy.array([[words2ids.get(tokens[w],-1) if w>=0 else -1 for w in x] | |
| 1122 | + # for x in children[ordered_words]]), | |
| 1123 | + numpy.array([[order[w] if w>= 0 else -1 for w in x] for x in children[ordered_words]]), | |
| 1124 | + numpy.array(labels_in_batch)[ordered_words], | |
| 1125 | + numpy.array(relations)[ordered_words] , | |
| 1126 | + numpy.array(words) | |
| 1127 | + ] | |
| 1128 | + #if nb_classes == 2: | |
| 1129 | + # if current_sentence[3][-1] <0: | |
| 1130 | + # continue | |
| 1131 | + | |
| 1132 | + if use_batch == True: | |
| 1133 | + | |
| 1134 | + # w tej chwili len(current_sentence[0]) nie jest nigdzie wykorzystywane | |
| 1135 | + current_batch.append((current_sentence, len(current_sentence[0]))) | |
| 1136 | + | |
| 1137 | + if len(current_batch) % batch_size == 0: | |
| 1138 | + | |
| 1139 | + shift = 0 | |
| 1140 | + | |
| 1141 | + for sent in range(batch_size): | |
| 1142 | + | |
| 1143 | + ##if sent > 0: | |
| 1144 | + ## shift = shift + current_batch[sent-1][1] | |
| 1145 | + | |
| 1146 | + for tok in range(len(current_batch[sent][0][0])): | |
| 1147 | + | |
| 1148 | + if sent == 0: | |
| 1149 | + batch_children_positions.append(current_batch[sent][0][1][tok]) | |
| 1150 | + else: | |
| 1151 | + batch_children_positions.append([chd+shift if chd>=0 else -1 for chd in current_batch[sent][0][1][tok]]) | |
| 1152 | + #batch_children_positions.append(current_batch[sent][0][2][tok]) | |
| 1036 | 1153 | |
| 1154 | + batch_tokens.append(current_batch[sent][0][0][tok]) | |
| 1155 | + #wyrzucamy macierz id dzieci batch_children_ids.append(current_batch[sent][0][1][tok]) | |
| 1156 | + batch_labels.append(current_batch[sent][0][2][tok]) | |
| 1157 | + batch_relations.append(current_batch[sent][0][3][tok]) | |
| 1158 | + batch_words.append(current_batch[sent][0][4][tok]) | |
| 1159 | + | |
| 1160 | + #wyrzucamy macierz id dzieci batch_children_ids = seq.pad_sequences(batch_children_ids, padding='post', value = -1) | |
| 1161 | + batch_children_positions = seq.pad_sequences(batch_children_positions, padding='post', value = -1) | |
| 1162 | + | |
| 1163 | + sentences.append([ | |
| 1164 | + numpy.array(batch_tokens), | |
| 1165 | + #wyrzucamy macierz id dzieci numpy.array(batch_children_ids), | |
| 1166 | + numpy.array(batch_children_positions), | |
| 1167 | + numpy.array(batch_labels), | |
| 1168 | + numpy.array(batch_relations) | |
| 1169 | + ,numpy.array(batch_words) | |
| 1170 | + ]) | |
| 1171 | + | |
| 1172 | + current_batch, batch_tokens, batch_children_positions, batch_labels, batch_relations = [], [], [], [], [] | |
| 1173 | + batch_words = [] | |
| 1174 | + | |
| 1175 | + else: | |
| 1176 | + | |
| 1177 | + sentences.append(current_sentence) | |
| 1178 | + | |
| 1179 | + | |
| 1180 | + # gdy liczba zdan nie jest wilokrotnosci licznosci batch, to na koncu trzeba dodac pozostale zdania: | |
| 1181 | + if use_batch == True and len(current_batch) > 0: | |
| 1182 | + | |
| 1183 | + shift = 0 | |
| 1184 | + | |
| 1185 | + for sent in range(len(current_batch)): | |
| 1186 | + | |
| 1187 | + #if sent > 0: | |
| 1188 | + # shift = shift + current_batch[sent-1][1] | |
| 1189 | + | |
| 1190 | + for tok in range(len(current_batch[sent][0][0])): | |
| 1191 | + | |
| 1192 | + if sent == 0: | |
| 1193 | + batch_children_positions.append(current_batch[sent][0][1][tok]) | |
| 1194 | + else: | |
| 1195 | + batch_children_positions.append([chd+shift if chd>=0 else -1 for chd in current_batch[sent][0][1][tok]]) | |
| 1196 | + #batch_children_positions.append(current_batch[sent][0][2][tok]) | |
| 1197 | + | |
| 1198 | + batch_tokens.append(current_batch[sent][0][0][tok]) | |
| 1199 | + #wyrzucamy macierz id dzieci batch_children_ids.append(current_batch[sent][0][1][tok]) | |
| 1200 | + batch_labels.append(current_batch[sent][0][2][tok]) | |
| 1201 | + batch_relations.append(current_batch[sent][0][3][tok]) | |
| 1202 | + batch_words.append(current_batch[sent][0][4][tok]) | |
| 1203 | + | |
| 1204 | + | |
| 1205 | + #wyrzucamy macierz id dzieci batch_children_ids = seq.pad_sequences(batch_children_ids, padding='post', value = -1) | |
| 1206 | + batch_children_positions = seq.pad_sequences(batch_children_positions, padding='post', value = -1) | |
| 1207 | + | |
| 1208 | + sentences.append([ | |
| 1209 | + numpy.array(batch_tokens), | |
| 1210 | + #wyrzucamy macierz id dzieci numpy.array(batch_children_ids), | |
| 1211 | + numpy.array(batch_children_positions), | |
| 1212 | + numpy.array(batch_labels), | |
| 1213 | + numpy.array(batch_relations) | |
| 1214 | + ,numpy.array(batch_words) | |
| 1215 | + ]) | |
| 1216 | + | |
| 1217 | + return sentences | |
| 1037 | 1218 | |
| ... | ... |
modules/utils/tools.pyc
No preview for this file type
modules/rnn/many_models.py renamed to nieaktualne/many_models.py
modules/rnn/many_models.pyc renamed to nieaktualne/many_models.pyc
No preview for this file type
modules/rnn/nnet_for_dependency_trees.py renamed to nieaktualne/nnet_for_dependency_trees.py
modules/rnn/nnet_for_dependency_trees.pyc renamed to nieaktualne/nnet_for_dependency_trees.pyc
No preview for this file type