tools.py 24.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
import random
import numpy
from keras.preprocessing import sequence as seq
import theano

import pickle

def shuffle(lol, seed):
    '''
    lol :: list of list as input
    seed :: seed the shuffling

    shuffle inplace each list in the same order
    '''
    for l in lol:
        random.seed(seed)
        random.shuffle(l)

def minibatch(l, bs):
    '''
    l :: list of word idxs
    return a list of minibatches of indexes
    which size is equal to bs
    border cases are treated as follow:
    eg: [0,1,2,3] and bs = 3
    will output:
    [[0],[0,1],[0,1,2],[1,2,3]]
    '''
    out  = [l[:i] for i in xrange(1, min(bs,len(l)+1) )]
    out += [l[i-bs:i] for i in xrange(bs,len(l)+1) ]
    assert len(l) == len(out)
    return out


def filter_embeddings(datasets, embedding_path, destination):
    '''
    Funkcja redukuje zbior embeddingow, tylko do tych, ktore wystepuja w naszych danych.
    Ostatni wektor w macierzy jest wektorem zerowym.

    datasets - lista zbiorow danych, ktore zostana uzyte w analizie
    embedding_path - plik z wszystkimi embeddingami
    '''

    words = set()
    for dataset in datasets:
        with open(dataset) as f:
            for x in f.read().split():
                words.add(x)

    


    words2ids = {}
    vectors = []
    i = 0
    for line in open(embedding_path,"r"):
        toks = line.strip("\n").split(" ")
        word = toks[0]
        if word in words:
            v = map(float, toks[1:])
            vectors.append(v)
            words2ids[word] = i
            i = i + 1

    vectors.append(numpy.zeros((len(vectors[0]))))
    vectors = numpy.array(vectors)
    print(vectors.shape)
    
    pickle.dump(dict([("vectors",vectors), ("words2ids",words2ids)]), open(destination,"w"))





def words_in_from_down_to_top_order(sentence_tree):
    #print sentence_tree
    levels = numpy.setdiff1d(range(len(sentence_tree)),numpy.unique(sentence_tree)) # - zwraca slowo/a, ktore nie jest niczyim dzieckiem - czyli powinno/y byc korzeniem/korzeniami frazy/fraz
    if len(levels) == 0: # wczesniej bylo != 1, co oznaczalo, ze jezeli okazuje sie jest wiecej niz jeden korzec (lub nie ma korzenia) to zwracamy None, aby pozniej rozpoznac takie zdanie i je wywalic. Ale jak robimy batche to musi byc kilka korzeni
        return None, None
    levels = levels.tolist() 

    for i in range(len(sentence_tree)):
        #print i
        #print levels[i]
        levels.extend(numpy.setdiff1d(sentence_tree[levels[i]],-1))
            
    ordered_words = numpy.array(levels)[levels != numpy.array(-1)][::-1] #odwaracmy kolejnosc na poczatku beda slowa znajdujace sie najglebiej
    
    order = numpy.zeros(len(sentence_tree),dtype='int')
    for i in range(len(sentence_tree)):
        order[ordered_words[i]] = i

    return ordered_words, order





def load_conll_data(conll_format_data, words2ids):

    
    label_trans = {'_\n':0, 'A\n':1, 'A':1, 'T':1, 'T\n':1}
    
    sentences = []

    k = 0
    with open(conll_format_data) as fr:
        s = []
        for line in fr:
            if len(line) < 2:
                for i in range(len(s)):
                    children = []
                    for j in range(len(s)):
                        if s[j][1] == i+1:
                            children.append(s[j][0])
                    s[i].append(children)

                words = [x[0] for x in s]
                children = seq.pad_sequences([x[4] for x in s], padding='post', value = -1)
                tokens = [x[3] for x in s]
                if len(s) == 1:
                    sentences.append([\
                                      numpy.array([words2ids[tokens[0]]]),\
                                      numpy.array([-1], ndmin=2),\
                                      numpy.array([-1], ndmin=2), \
                                      y \
                                      ])    
                                
                else: 
                    ordered_words, order = words_in_from_down_to_top_order(children)
                    if ordered_words is None: #jezeli we frazie jest 2 lub wiecej albo 0 korzeni to nie wlaczamy tego zdania do naszych danych, bo uznajemy je za blendne
                        s = []
                        k = 0
                        continue

                    sentences.append([\
                                      numpy.array([words2ids[x] for x in tokens])[ordered_words],\
                                      numpy.array([[words2ids[tokens[w]] if w>=0 else -1 for w in x] for x in children[ordered_words]]),\
                                      numpy.array([[order[w] if w>= 0 else -1 for w in x] for x in children[ordered_words]]), \
                                      y \
                                      ])
                s = []
                k = 0

            else:
                toks = line.split(' ')
                token = toks[1].decode('utf8')
                parent = int(toks[6])
                sentiment = int(toks[-1] == 'S' or toks[-1] == 'S\n')
                if parent == 0: # to oznacza, ze dane slowo jest korzeniem frazy
                    y = sentiment
                s.append( [k, parent, sentiment, token] )
                k = k +1
    return sentences
                

def extract_phrases_from_sentence(tokens_ids,childres_ids,children_positions,phrase_labels):
    
    all_phrases = []
    
    for root in range(len(tokens_ids)-1): #"-1" poniewaz fraza rozpoczynajaca sie w ostatnim slowie to cale zdanie, ktore bedzie wczesniej dodane do zbioru
        
        # wyciagamy fraze rozpoczynajacego sie w slowie o indeksie 'root' - to jest korzen frazy:
        nodes = [root] 
        i = 0
        for i in range(children_positions.shape[0]): #przechodzimy po podrzewie
            try:
                children = children_positions[nodes[i]]
                nodes.extend(children[children>=0])
            except:
                pass

        nodes = nodes[::-1] # odwracamy kolejnosc, aby potem przechodzic po frazie od lisci do korzenia (aby moc obliczac rekurencyjnie siec)
        # nodes to teraz ciag slow w drzewie w kolejnosci: liscie, slowa, ktore maja pod soba tylko jedno slowo, ..., korzen
        
        #we frazie slowa pozmienialy pozycja w stosunku do zdania wejsciowego, zatem trzeba uaktualnic zapis struktury drzewa:
        new_positions = numpy.zeros(children_positions.shape[0])-1 
        for i in range(len(nodes)):
            new_positions[nodes[i]] = i

        if len(nodes) == 1: #czyli jestesmy w lisciu
            children = numpy.array([[-1]])
        else:
            children = children_positions[nodes]
            children = children[:,numpy.max(children,0)>=0]
            for (i,j), value in numpy.ndenumerate(children):
                children[i,j] = -1 if children[i,j]==-1 else new_positions[value]
            
        phrase_tokens_ids = tokens_ids[numpy.array(nodes)]
        phrase_children_positions = children
        
        phrase_children_ids = children.copy()
        for (i,j), value in numpy.ndenumerate(children):
                phrase_children_ids[i,j] = -1 if children[i,j]==-1 else phrase_tokens_ids[value] #wstawiamy id tokenow zamiast pozycji
                
        phrase_label = phrase_labels[root]
        
        all_phrases.append([phrase_tokens_ids,\
                        phrase_children_ids,\
                        phrase_children_positions,\
                        phrase_label\
                        ])
    
    return all_phrases    
    


def load_stanford_data(labels, parents, tokens, words2ids):

    '''
    Funkcja wczytuje dane w postaci drzew zaleznosciowych.

    labels - sciezka do pliku z etykietami - jeden wiersz to wektor etykiek dla podfraz o korzeniach w odpowiadajacym slowie
    parents - sciezka do pliku zawierajacego struktury drzew - jeden wiersz to jedno zdanie - kolejne liczby to indeks rodzica danego slowa
    tokens - sciezka do pliku z tokenami - jeden wiersz to jedno zdanie (tokeny rozdzielone spacjami)
    word2ids - slownik: klucz to token, wartosc to id slow, czyli jego indeks w macierzy embeddingow

    Funkcja zwraca wszystkie istniejace w danym zestawie zdan podfrazy (w tym cale zdania) w postaci listy - jeden element to jedna frazz.
    Jeden element sklada sie kolejno z:
    0. wektor id slow;
    1. macierz dzieci z id slow - i-ty wiersz zawiera id dzieci i-tego slowa. Tu mamy z dotyczenie  paddingiem wartoscia -1.
    2. macie dzieci z pozycjami w zdaniu - j.w. tylko zamiast id jest indeks dziecka w cigu tokenow
    3. etykieta frazy

    Slowa w wyniku sa posortowane w ten sposob, ze obliczajac kolejnce kroki sieci rekurencyjnej ideacej po drzewie, mozemy isc naturalnie od lewej do prawej, bo ustalona kolejnosc zapewnia ze w danym kroku bedziemy mieli policzone wczesniej potrzebne do rekurencji wartosci. Kolejnosc jest tak, ze najpier sa liscie, potem slowa, ktore maja pod soba tylko jedno slowo, itd.

    '''


    def transform_labels(x):
        if x =='#' or int(x) == 0:
            return 1
        elif int(x) < 0:
            return 0
        else:
            return 2

    sentences = []

    l = open(labels, "r")
    # 5 klas: labels = [[2 if y=='#' else int(y)+2 for y in x.split()] for x in l.readlines()] 

    # Na ten moment przyjmujemy wartosc "2" w miejsce "#"

    labels = [[transform_labels(y) for y in x.split()] for x in l.readlines()] 
    l.close()

    p = open(parents,"r")
    parents = [[int(y) for y in x.split()] for x in p.readlines()]
    p.close()

    t = open(tokens,"r")
    tokens = [x.split() for x in t.readlines()]
    t.close()
    

    for labels_i,parents_i,tokens_i in zip(labels,parents,tokens):

        s = []
        for i in range(len(tokens_i)):
            s.append([i,int(parents_i[i]),labels_i[i],tokens_i[i]])
        

        if len(s) == 1: #przypadek gdy fraz sklada sie z jednego tokena
            sentences.append([\
                                  numpy.array([words2ids.get(tokens[0], -1)]),\
                                  numpy.array([-1], ndmin=2),\
                                  numpy.array([-1], ndmin=2), \
                                  numpy.array(labels_i[0]) \
                              ])    
                                
        else: 

            for i in range(len(s)):
                children = []
                for j in range(len(s)):
                    if s[j][1] == i+1:
                        children.append(s[j][0])
                s[i].append(children)

            words = [x[0] for x in s]
            children = seq.pad_sequences([x[4] for x in s], padding='post', value = -1)
            tokens = [x[3] for x in s]

            ordered_words, order = words_in_from_down_to_top_order(children)

            if ordered_words is None: #jezeli we frazie jest 2 lub wiecej albo 0 korzeni to nie wlaczamy tego zdania do naszych danych, bo uznajemy je za bledne
                continue

            current_sentence = [
                                  numpy.array([words2ids.get(x,-1) for x in tokens])[ordered_words],
                                  numpy.array([[words2ids.get(tokens[w],-1) if w>=0 else -1 for w in x] for x in children[ordered_words]]), #trzeba dokonac takich trasformacji, aby po zamianie kolejnosci slow zgadzaly sie pozycje dzieci 
                                  numpy.array([[order[w] if w>= 0 else -1 for w in x] for x in children[ordered_words]]), 
                                  numpy.array(labels_i)[ordered_words][-1] 
                                  ]
            sentences.append(current_sentence)

            # Dodajemy wszystkie podfrazy danego zdania: 
            sentences.extend(extract_phrases_from_sentence(current_sentence[0],current_sentence[1],current_sentence[2],numpy.array(labels_i)))

    return sentences
                



def load_stanford_data2(labels, parents, tokens, words2ids, train, batch_size, nb_classes):

    '''
    Funkcja wczytuje dane w postaci drzew zaleznosciowych.

    labels - sciezka do pliku z etykietami - jeden wiersz to wektor etykiek dla podfraz o korzeniach w odpowiadajacym slowie
    parents - sciezka do pliku zawierajacego struktury drzew - jeden wiersz to jedno zdanie - kolejne liczby to indeks rodzica danego slowa
    tokens - sciezka do pliku z tokenami - jeden wiersz to jedno zdanie (tokeny rozdzielone spacjami)
    word2ids - slownik: klucz to token, wartosc to id slow, czyli jego indeks w macierzy embeddingow

    Funkcja zwraca zdania w postaci listy - jeden element to jedno zdanie.
    Jeden element sklada sie kolejno z:
    0. wektor id slow;
    1. macierz dzieci z id slow - i-ty wiersz zawiera id dzieci i-tego slowa. Tu mamy z dotyczenie  paddingiem wartoscia -1.
    2. macie dzieci z pozycjami w zdaniu - j.w. tylko zamiast id jest indeks dziecka w cigu tokenow
    3. etykieta frazy

    Slowa w wyniku sa posortowane w ten sposob, ze obliczajac kolejnce kroki sieci rekurencyjnej ideacej po drzewie, mozemy isc naturalnie od lewej do prawej, bo ustalona kolejnosc zapewnia ze w danym kroku bedziemy mieli policzone wczesniej potrzebne do rekurencji wartosci. Kolejnosc jest tak, ze najpier sa liscie, potem slowa, ktore maja pod soba tylko jedno slowo, itd.

    '''


    def transform_labels(x, nb_classes):


        if nb_classes == 3:
            if x =='#' or int(x) == 0:
                return 1
            elif int(x) < 0:
                return 0
            else:
                return 2
        elif nb_classes == 5:
            if x =='#':
                return 2
            else:
                return int(x)+2

    sentences = []

    l = open(labels, "r")
    # 5 klas: labels = [[2 if y=='#' else int(y)+2 for y in x.split()] for x in l.readlines()] 

    # Na ten moment przyjmujemy wartosc "2" w miejsce "#"

    labels = [[transform_labels(y,nb_classes) for y in x.split()] for x in l.readlines()] 
    l.close()

    p = open(parents,"r")
    parents = [[int(y) for y in x.split()] for x in p.readlines()]
    p.close()

    t = open(tokens,"r")
    tokens = [x.split() for x in t.readlines()]
    t.close()
    
    
    k = 0
    sentence_length = 0

    for labels_i,parents_i,tokens_i in zip(labels,parents,tokens):

        if train == True:

            if k % batch_size == 0:
               s = []
               sentence_length = 0
                 
            for i in range(len(tokens_i)):
                s.append([i+sentence_length,int(parents_i[i])+sentence_length,labels_i[i],tokens_i[i]])
            sentence_length = sentence_length + len(tokens_i)
            k = k + 1
        
            if k % batch_size != 0:
                continue

        else:
            s = []
            for i in range(len(tokens_i)):
                s.append([i,int(parents_i[i]),labels_i[i],tokens_i[i]])


        

        if len(s) == 1: #przypadek gdy fraz sklada sie z jednego tokena
            sentences.append([\
                                  numpy.array([words2ids.get(tokens[0], -1)]),\
                                  numpy.array([-1], ndmin=2),\
                                  numpy.array([-1], ndmin=2), \
                                  numpy.array(labels_i[0]) \
                              ])    
                                
        else: 

            for i in range(len(s)):
                children = []
                for j in range(len(s)):
                    if s[j][1] == i+1:
                        children.append(s[j][0])
                s[i].append(children)

            words = [x[0] for x in s]
            children = seq.pad_sequences([x[4] for x in s], padding='post', value = -1)
            tokens = [x[3] for x in s]
            labels_in_batch = [x[2] for x in s]
            
            ordered_words, order = words_in_from_down_to_top_order(children)

            if ordered_words is None: #jezeli we frazie jest 2 lub wiecej albo 0 korzeni to nie wlaczamy tego zdania do naszych danych, bo uznajemy je za bledne
                continue

            current_sentence = [
                                  numpy.array([words2ids.get(x,-1) for x in tokens])[ordered_words],
                                  numpy.array([[words2ids.get(tokens[w],-1) if w>=0 else -1 for w in x] for x in children[ordered_words]]), #trzeba dokonac takich trasformacji, aby po zamianie kolejnosci slow zgadzaly sie pozycje dzieci 
                                  numpy.array([[order[w] if w>= 0 else -1 for w in x] for x in children[ordered_words]]), 
                                  numpy.array(labels_in_batch)[ordered_words] 
                                  ]
            sentences.append(current_sentence)

            ## Dodajemy wszystkie podfrazy danego zdania: 
            #sentences.extend(extract_phrases_from_sentence(current_sentence[0],current_sentence[1],current_sentence[2],numpy.array(labels_i)))

    return sentences
                





def load_stanford_data3(labels, parents, tokens, words2ids, use_batch, batch_size, nb_classes):




    def transform_labels(x, nb_classes):


        if nb_classes == 3:
            if x =='#' or int(x) == 0:
                return 1
            elif int(x) < 0:
                return 0
            else:
                return 2
        elif nb_classes == 5:
            if x =='#':
                return 2
            else:
                return int(x)+2
       # elif nb_classes == 2: #jesli chcemy miec dwie klasy to neutralne wyrzucamy ze zbioru, 
       #     if x =='#' or int(x) == 0:
       #         return -1
       #     elif int(x) < 0:
       #         return 0
       #     else:
       #         return 1

    sentences = []

    l = open(labels, "r")
    # 5 klas: labels = [[2 if y=='#' else int(y)+2 for y in x.split()] for x in l.readlines()] 

    # Na ten moment przyjmujemy wartosc "2" w miejsce "#"

    labels = [[transform_labels(y,nb_classes) for y in x.split()] for x in l.readlines()] 
    l.close()

    p = open(parents,"r")
    parents = [[int(y) for y in x.split()] for x in p.readlines()]
    p.close()

    t = open(tokens,"r")
    tokens = [x.split() for x in t.readlines()]
    t.close()
    
    
    k = 0
    sentence_length = 0
    current_batch, batch_tokens, batch_children_ids, batch_children_positions, batch_labels = [], [], [], [], []
    #batch_words = []
    
    for labels_i,parents_i,tokens_i in zip(labels,parents,tokens):
        
       
        
        k = k + 1
        
        
        s = []
        for i in range(len(tokens_i)):
            s.append([i,int(parents_i[i]),labels_i[i],tokens_i[i]])

        

        

        if len(s) == 1 and use_batch == False: #przypadek gdy fraza sklada sie z jednego tokena

            #if nb_classes == 2:
            #    if s[0][-1] < 0:
            #        continue

            sentences.append([\
                                  numpy.array([words2ids.get(tokens[0], -1)]),\
                                  numpy.array([-1], ndmin=2),\
                                  numpy.array([-1], ndmin=2), \
                                  numpy.array(labels_i[0]) \
                                  #,numpy.array([0])
                              ])    
                                
        else: 

            for i in range(len(s)): # nie wiadomo czy sie nei wywali dla frazy dlugosci 1
                children = []
                for j in range(len(s)):
                    if s[j][1] == i+1:
                        children.append(s[j][0])
                s[i].append(children)

            words = [x[0] for x in s]
            children = seq.pad_sequences([x[4] for x in s], padding='post', value = -1)
            tokens = [x[3] for x in s]
            labels_in_batch = [x[2] for x in s]
            
            ordered_words, order = words_in_from_down_to_top_order(children)

            if ordered_words is None: 
                continue

            current_sentence = [
                                  numpy.array([words2ids.get(x,-1) for x in tokens])[ordered_words],
                                  numpy.array([[words2ids.get(tokens[w],-1) if w>=0 else -1 for w in x] 
                                               for x in children[ordered_words]]), 
                                  numpy.array([[order[w] if w>= 0 else -1 for w in x] for x in children[ordered_words]]), 
                                  numpy.array(labels_in_batch)[ordered_words] 
                                  #,numpy.array(words)
                                  ]
            #if nb_classes == 2:
            #    if current_sentence[3][-1] <0:
            #        continue


            if use_batch == True:
                
                # w tej chwili len(current_sentence[0]) nie jest nigdzie wykorzystywane
                current_batch.append((current_sentence, len(current_sentence[0])))
                
                if len(current_batch) % batch_size == 0:

                    shift = 0
                    
                    for sent in range(batch_size):
                        
                        if sent > 0:
                            shift = shift + current_batch[sent-1][1]
                        
                        for tok in range(len(current_batch[sent][0][0])):
                            
                            if sent == 0:
                                batch_children_positions.append(current_batch[sent][0][2][tok])
                            else:
                                batch_children_positions.append([chd+shift if chd>=0 else -1 for chd in current_batch[sent][0][2][tok]])
                            #batch_children_positions.append(current_batch[sent][0][2][tok])

                            batch_tokens.append(current_batch[sent][0][0][tok])   
                            batch_children_ids.append(current_batch[sent][0][1][tok])
                            batch_labels.append(current_batch[sent][0][3][tok])
                            #batch_words.append(current_batch[sent][0][4][tok])
                                
                                
                    batch_children_ids = seq.pad_sequences(batch_children_ids, padding='post', value = -1)
                    batch_children_positions = seq.pad_sequences(batch_children_positions, padding='post', value = -1)
                    
                    sentences.append([
                                        numpy.array(batch_tokens), 
                                        numpy.array(batch_children_ids), 
                                        numpy.array(batch_children_positions), 
                                        numpy.array(batch_labels)
                                        #,numpy.array(batch_words)
                                    ])
                    
                    current_batch, batch_tokens, batch_children_ids, batch_children_positions, batch_labels = [], [], [], [], []
                    #batch_words = []
                    
                    
            else:
                
                sentences.append(current_sentence)

            
    # gdy liczba zdan nie jest wilokrotnosci licznosci batch, to na koncu trzeba dodac pozostale zdania:
    if use_batch == True and len(current_batch) > 0:
        
        shift = 0

        for sent in range(len(current_batch)):
 
            if sent > 0:
                shift = shift + current_batch[sent-1][1]

            for tok in range(len(current_batch[sent][0][0])):

                if sent == 0:
                    batch_children_positions.append(current_batch[sent][0][2][tok])
                else:
                    batch_children_positions.append([chd+shift if chd>=0 else -1 for chd in current_batch[sent][0][2][tok]])
                #batch_children_positions.append(current_batch[sent][0][2][tok])

                batch_tokens.append(current_batch[sent][0][0][tok])
                batch_children_ids.append(current_batch[sent][0][1][tok])
                batch_labels.append(current_batch[sent][0][3][tok])
                #batch_words.append(current_batch[sent][0][4][tok])


        batch_children_ids = seq.pad_sequences(batch_children_ids, padding='post', value = -1)
        batch_children_positions = seq.pad_sequences(batch_children_positions, padding='post', value = -1)

        sentences.append([
                            numpy.array(batch_tokens), 
                            numpy.array(batch_children_ids), 
                            numpy.array(batch_children_positions), 
                            numpy.array(batch_labels)
                            #,numpy.array(batch_words)
                        ])

            
            
            
    return sentences