FlexionGraph.cpp
6.36 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#include <string>
#include <cassert>
#include <climits>
#include <vector>
#include "utils.hpp"
#include "FlexionGraph.hpp"
using namespace std;
void FlexionGraph::addStartEdge(const Edge& e) {
if (this->graph.empty()) {
assert(this->node2ChunkStartPtr.empty());
this->graph.push_back(vector<Edge>());
this->node2ChunkStartPtr.push_back(e.chunk.chunkStartPtr);
}
assert(this->node2ChunkStartPtr[0] == e.chunk.chunkStartPtr);
this->graph[0].push_back(e);
}
void FlexionGraph::addMiddleEdge(unsigned int startNode, const Edge& e) {
assert(startNode < e.nextNode);
assert(startNode == this->graph.size());
if (startNode == this->graph.size()) {
this->graph.push_back(vector<Edge>());
this->node2ChunkStartPtr.push_back(e.chunk.chunkStartPtr);
}
this->graph[startNode].push_back(e);
}
void FlexionGraph::addPath(const std::vector<InterpretedChunk>& path) {
// debugPath(path);
// debugGraph(this->graph);
for (unsigned int i = 0; i < path.size(); i++) {
const InterpretedChunk& chunk = path[i];
if (&chunk == &(path.front())
&& &chunk == &(path.back())) {
Edge e = {chunk, UINT_MAX};
this->addStartEdge(e);
} else if (&chunk == &(path.front())) {
Edge e = {chunk, this->graph.empty() ? 1 : (unsigned int) this->graph.size()};
this->addStartEdge(e);
} else if (&chunk == &(path.back())) {
Edge e = {chunk, UINT_MAX};
this->addMiddleEdge((unsigned int) this->graph.size(), e);
} else {
Edge e = {chunk, (int) this->graph.size() + 1};
this->addMiddleEdge((unsigned int) this->graph.size(), e);
}
}
}
bool FlexionGraph::canMergeNodes(unsigned int node1, unsigned int node2) {
return this->node2ChunkStartPtr[node1] == this->node2ChunkStartPtr[node2]
&& this->getPossiblePaths(node1) == this->getPossiblePaths(node2);
}
set<FlexionGraph::Path> FlexionGraph::getPossiblePaths(unsigned int node) {
if (node == UINT_MAX || node == this->graph.size() - 1) {
return set<FlexionGraph::Path>();
} else {
set<FlexionGraph::Path> res;
vector<Edge>& edges = this->graph.at(node);
for (unsigned int i = 0; i < edges.size(); i++) {
Edge& e = edges[i];
FlexionGraph::PathElement pathElem(e.chunk.chunkStartPtr, e.chunk.interpsGroup.type);
if (e.nextNode != this->graph.size()) {
set<Path> possiblePaths = this->getPossiblePaths(e.nextNode);
vector<Path> nextPaths(possiblePaths.begin(), possiblePaths.end());
vector<Path>::iterator it;
for (it = nextPaths.begin(); it != nextPaths.end(); ++it) {
(*it).insert(pathElem);
}
res.insert(nextPaths.begin(), nextPaths.end());
}
}
return res;
}
}
static bool containsEqualEdge(const vector<FlexionGraph::Edge>& edges, const FlexionGraph::Edge& e) {
for (unsigned int i = 0; i < edges.size(); i++) {
const FlexionGraph::Edge& e1 = edges[i];
if (e1.chunk.chunkStartPtr == e.chunk.chunkStartPtr
&& e1.chunk.lowercaseCodepoints == e.chunk.lowercaseCodepoints
&& e1.chunk.interpsGroup.type == e.chunk.interpsGroup.type
&& e1.nextNode == e.nextNode) {
return true;
}
}
return false;
}
void FlexionGraph::redirectEdges(unsigned int fromNode, unsigned int toNode) {
for (unsigned int node = 0; node < fromNode; node++) {
vector<Edge>& edges = this->graph[node];
vector<Edge>::iterator edgesIt = edges.begin();
while (edgesIt != edges.end()) {
Edge& oldEdge = *edgesIt;
if (oldEdge.nextNode == fromNode) {
Edge newEdge = {oldEdge.chunk, toNode};
if (!containsEqualEdge(edges, newEdge)) {
// if newEdge is not in edges, redirect edgeEdge
// so it becomes newEdge
oldEdge.nextNode = toNode;
}
else {
// if newEdge is already there, just remove old edge
edges.erase(edgesIt);
}
} else {
++edgesIt;
}
}
}
}
void FlexionGraph::doRemoveNode(unsigned int node) {
for (unsigned int i = node + 1; i < this->graph.size(); i++) {
redirectEdges(i, i - 1);
this->graph[i - 1] = this->graph[i];
this->node2ChunkStartPtr[i - 1] = this->node2ChunkStartPtr[i];
}
this->graph.pop_back();
this->node2ChunkStartPtr.pop_back();
}
void FlexionGraph::doMergeNodes(unsigned int node1, unsigned int node2) {
if (node1 > node2) {
doMergeNodes(node2, node1);
} else {
// node1 < node2
for (unsigned int i = 0; i < this->graph[node2].size(); i++) {
Edge& e = this->graph[node2][i];
if (!containsEqualEdge(graph[node1], e)) {
this->graph[node1].push_back(e);
}
}
// DEBUG("1");
// debugGraph(this->graph);
this->redirectEdges(node2, node1);
// DEBUG("2");
// debugGraph(this->graph);
this->doRemoveNode(node2);
// DEBUG("3");
// debugGraph(this->graph);
}
}
bool FlexionGraph::tryToMergeTwoNodes() {
for (unsigned int node1 = 0; node1 < this->graph.size(); node1++) {
for (unsigned int node2 = this->graph.size() - 1; node2 > node1; node2--) {
if (this->canMergeNodes(node1, node2)) {
this->doMergeNodes(node1, node2);
return true;
}
}
}
return false;
}
void FlexionGraph::minimizeGraph() {
if (this->graph.size() > 2) {
// debugGraph(this->graph);
while (this->tryToMergeTwoNodes()) {
// debugGraph(this->graph);
}
}
}
bool FlexionGraph::empty() const {
return this->graph.empty();
}
void FlexionGraph::repairLastNodeNumbers() {
for (unsigned int i = 0; i < this->graph.size(); i++) {
vector<Edge>& edges = this->graph[i];
for (unsigned int j = 0; j < edges.size(); j++) {
Edge& e = edges[j];
if (e.nextNode == UINT_MAX) {
e.nextNode = this->graph.size();
}
}
}
}