encoders.py 13.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
import gzip
from collections import OrderedDict

import numpy as np
from scipy.sparse.csgraph import minimum_spanning_tree
from sklearn.base import BaseEstimator, TransformerMixin
from keras.utils.np_utils import to_categorical

from mst import mst


class EmbeddingLoader():

    def __init__(self, params):
        self.params = params
        self.word2idx = {
            '__PADDING__': 0,
            '__UNKNOWN__': 1,
            '__ROOT__': 2,
        }
        self.offset = len(self.word2idx)
        self.word_vectors = None
        self.embed_size = None
        self.vocab_size = None

    def load_embedding(self, embedding_file):
        if embedding_file.endswith('.gz'):
            f = gzip.open(embedding_file, 'rb')
        else:
            f = open(embedding_file, 'rb')

        n_row, n_col = map(int, f.readline().strip().split())

        self.embed_size = n_col
        self.vocab_size = n_row + self.offset
        self.word_vectors = np.zeros((self.vocab_size, self.embed_size))

        idx = self.offset
        for line in f:
            try:
                line = line.decode('utf-8')
            except UnicodeDecodeError:
                print('unicode error', line.split()[0])

            try:
                ls = line.strip().split()
                word = ls[0]
                if self.params.lower:
                    word = word.lower()

                vector = np.array(ls[1:])
                self.word2idx[word] = idx
                self.word_vectors[idx, :] = vector
            except:
                print('other error', word)

            idx += 1

        self.word_vectors[self.word2idx['__UNKNOWN__']] \
             = np.random.normal(
                np.mean(self.word_vectors),
                np.std(self.word_vectors),
                self.embed_size,
            )

        f.close()


class WordEmbedEncoder(BaseEstimator, TransformerMixin):

    def __init__(self, params):
        self.params = params
        self.emb = self.load_emb()
        self.word_count = {}
        self.vocab_size = self.emb.vocab_size

    def load_emb(self):
        emb = EmbeddingLoader(params=self.params)
        emb.load_embedding(
            self.params.embed_file,
        )

        return emb

    def fit(self, trees, *args):
        for tree in trees:
            for token in tree.tokens:
                word = token.fields['form']
                if word not in self.word_count:
                    self.word_count[word] = 0
                self.word_count[word] += 1
        return self

    def transform(self, trees):
        out_rows = []
        for tree in trees:
            out_row = []
            for token in tree.tokens:
                word = token.fields['form']
                if self.params.lower:
                    word = word.lower()

                if word not in self.emb.word2idx:# or self.word_count.get(word, 0) < 2:
                    word = '__UNKNOWN__'
                out_row.append(self.emb.word2idx[word])
            out_rows.append(out_row)
        return out_rows


class OneHotEncoder(BaseEstimator, TransformerMixin):

    input_field = ''

    def __init__(self, params):
        self.params = params
        self.vocab_size = None
        self.pos2idx = {
            '__PADDING__': 0,
            '__UNKNOWN__': 1,
            '__ROOT__': 2,
        }
        self.idx2pos = {
            0: '__PADDING__',
            1: '__UNKNOWN__',
            2: '__ROOT__',
        }

    def fit(self, trees, *args):
        idx = len(self.pos2idx)
        for tree in trees:
            for token in tree.tokens:
                pos = token.fields[self.input_field]
                if pos not in self.pos2idx:
                    self.pos2idx[pos] = idx
                    self.idx2pos[idx] = pos
                    idx += 1
        self.vocab_size = len(self.pos2idx)

        return self

    def transform(self, trees):
        out_rows = []
        for tree in trees:
            out_row = []
            for token in tree.tokens:
                pos = token.fields[self.input_field]
                if pos not in self.pos2idx:
                    pos = '__UNKNOWN__'
                out_row.append(self.pos2idx[pos])
            out_rows.append(out_row)

        return out_rows

    def inverse_transform(self, pred, trees):
        pred = np.argmax(pred, axis=2)

        out_rows = []
        for pred_row in pred:
            out_row = []
            for idx in pred_row:
                out_row.append(self.idx2pos[idx])
            out_rows.append(out_row)

        return out_rows


class PosEncoder(OneHotEncoder):

    input_field = 'upostag'


class XposEncoder(OneHotEncoder):

    input_field = 'xpostag'


class DeprelEncoder(OneHotEncoder):

    input_field = 'deprel'


class WordEncoder(OneHotEncoder):

    input_field = 'form'


class SemrelEncoder(OneHotEncoder):

    input_field = 'semrel'


class FeatEncoder(BaseEstimator, TransformerMixin):

    def __init__(self, params):
        self.params = params

        self.threshold = 0.5
        self.separator = '|'
        self.assigment = '='

        self.slices = {}
        self.feat2idx = {}
        self.idx2feat = {}

        self.vocab_size = None

    def fit(self, trees, *args):
        idx = len(self.feat2idx)

        # gather all (cat, val) pairs
        for tree in trees:
            for token in tree.tokens:
                for feat in token.fields['feats'].split(self.separator):
                    if self.assigment in feat:
                        cat, val = feat.split(self.assigment)
                    else:
                        cat, val = feat, feat
                    
                    if cat not in self.feat2idx:
                        self.feat2idx[cat] = {
                            None: 0,
                        }
                    self.feat2idx[cat][val] = 0

        # update ids
        for cat, vals in self.feat2idx.items():
            min_idx = idx
            for val in vals.keys():
                self.feat2idx[cat][val] = idx
                self.idx2feat[idx] = (cat, val)
                idx += 1

            self.slices[cat] = (min_idx, idx)

        self.vocab_size = idx + 1

        return self

    def transform(self, trees):
        out_rows = []
        for tree in trees:
            out_row = []
            for token in tree.tokens:
                out_feat = [0.0 for _ in range(self.vocab_size)]

                # load token feats
                token_feats_dict = {}
                for feat in token.fields['feats'].split(self.separator):
                    if self.assigment in feat:
                        cat, val = feat.split(self.assigment)
                    else:
                        cat, val = feat, feat

                    token_feats_dict[cat] = val

                # update vector
                for cat, val2idx in self.feat2idx.items():
                    val = token_feats_dict.get(cat, None)
                    out_feat[val2idx[val]] = 1.0

                out_row.append(out_feat)
            out_rows.append(out_row)
        return out_rows

    def inverse_transform(self, pred, trees):
        out_rows = []
        for sent in pred:
            out_row = []
            for word in sent:
                pred_feat = []
                for cat, (min_idx, max_idx) in self.slices.items():
                    best_idx = np.argmax(word[min_idx:max_idx]) + min_idx

                    cat, val = self.idx2feat[best_idx]
                    if val is not None:
                        if cat != val:
                            pred_feat.append(cat + self.assigment + val)
                        else:
                            pred_feat.append(val)

                if len(pred_feat) == 0:
                    pred_feat_str = '_'
                else:
                    pred_feat_str = self.separator.join(sorted(pred_feat))

                out_row.append(pred_feat_str)
            out_rows.append(out_row)
        return out_rows


class CharEncoder(BaseEstimator, TransformerMixin):

    input_field = ''

    def __init__(self, params):
        self.params = params
        self.vocab_size = None
        self.char2idx = {
            '__PADDING__': 0,
            '__UNKNOWN__': 1,
            '__ROOT__': 2,
            '__START__': 3,
            '__END__': 4,
        }
        self.idx2char = {
            0: '__PADDING__',
            1: '__UNKNOWN__',
            2: '__ROOT__',
            3: '__START__',
            4: '__END__',
        }

    def fit(self, trees, *args):
        idx = len(self.char2idx)
        for tree in trees:
            for token in tree.tokens:
                for char in token.fields[self.input_field]:
                    if char not in self.char2idx:
                        self.char2idx[char] = idx
                        self.idx2char[idx] = char
                        idx += 1
        self.vocab_size = len(self.char2idx)

        return self

    def transform(self, trees):
        out_rows = []
        for tree in trees:
            out_row = []
            for token in tree.tokens:
                word = token.fields[self.input_field]

                out_word = []
                out_word.append(self.char2idx['__START__'])
                for i in range(self.params.char_max_len + 1):
                    if word == '__ROOT__':
                        char = '__ROOT__'
                    elif i < len(word):
                        char = word[i]
                    elif i == len(word):
                        char = '__END__'
                    else:
                        char = '__PADDING__'

                    if char not in self.char2idx:
                        char = '__UNKNOWN__'

                    out_word.append(self.char2idx[char])
                out_row.append(out_word)
            out_rows.append(out_row)
        return out_rows

    def inverse_transform(self, pred, trees):
        pred = np.argmax(pred, axis=3)

        out_rows = []
        for pred_row in pred:
            out_row = ['__ROOT__']
            for pred_word in pred_row[1:]:
                out_word = []
                for idx in pred_word[1:-1]:
                    pred_char = self.idx2char[idx]

                    if pred_char == '__END__':
                        break
                    elif pred_char == '__PADDING__':
                        continue
                    elif '__' in pred_char:
                        pred_char = '?'
                    
                    out_word.append(pred_char)

                out_row.append(''.join(out_word))
            out_rows.append(out_row)

        return out_rows


class WordCharEncoder(CharEncoder):

    input_field = 'form'


class LemmaEncoder(CharEncoder):

    input_field = 'lemma'


class HeadEncoder(BaseEstimator, TransformerMixin):

    def __init__(self, params):
        self.params = params

    def fit(self, trees, *args):
        return self

    def transform(self, trees):
        out_rows = []
        for tree in trees:
            out_row = []
            for token in tree.tokens:
                if token.fields['head'] == '_':
                    out_row.append(0)
                else:
                    out_row.append(int(token.fields['head']))
            out_rows.append(out_row)
        return out_rows

    def inverse_transform(self, pred, trees):
        if self.params.force_trees:
            output = []
            for i, tree in enumerate(trees):
                probs = pred[i, :, :].copy()
                n = len(trees[i].tokens)

                # make sure we won't predict padding as a head
                probs = probs[:n, :n]

                # choose the best tree
                heads = mst(probs)
                output.append(heads.astype(str))

            return output
        else:
            return np.argmax(pred, axis=2).astype(str)


class SentEncoder(BaseEstimator, TransformerMixin):

    def __init__(self, params):
        self.params = params

    def fit(self, trees, *args):
        return self

    def transform(self, trees):
        return None

    def inverse_transform(self, pred, trees):
        return pred


class Factory:

    def __init__(self, params):
        self.params = params
        self.encoders = self.get_encoders()

    def get_encoders(self):
        raise NotImplementedError

    def fit(self, trees):
        for name, encoder in self.encoders.items():
            self.encoders[name] = encoder.fit(trees)
        return self

    def transform(self, trees):
        output = []
        for encoder in self.encoders.values():
            encoded_trees = encoder.transform(trees)
            if encoded_trees is not None:
                output.append(encoded_trees)

        return output

    def inverse_transform(self, preds, trees):
        output = []
        for pred, encoder in zip(preds, self.encoders.values()):
            output.append(encoder.inverse_transform(pred, trees))

        return output


class FeaturesFactory(Factory):

    def get_encoders(self):
        encoder_map = {
            'form': WordEmbedEncoder if self.params.embed_file is not None else WordEncoder,
            'lemma': LemmaEncoder,
            'upostag': PosEncoder,
            'xpostag': XposEncoder,
            'feats': FeatEncoder,
            'char': WordCharEncoder,
        }

        encoders = OrderedDict()
        for encoder_name in self.params.features:
            encoders[encoder_name] = encoder_map[encoder_name](self.params)

        return encoders


class TargetsFactory(Factory):

    def get_encoders(self):
        encoder_map = {
            'head': HeadEncoder,
            'deprel': DeprelEncoder,
            'lemma': LemmaEncoder,
            'upostag': PosEncoder,
            'xpostag': XposEncoder,
            'feats': FeatEncoder,
            'sent': SentEncoder,
            'semrel': SemrelEncoder,
        }

        encoders = OrderedDict()
        for encoder_name in self.params.targets:
            encoders[encoder_name] = encoder_map[encoder_name](self.params)

        return encoders