main_current.py
24.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
import numpy as np
import time
import sys
import subprocess
import os
import random
#from modules.data import load
#from modules.rnn.many_models import *
#from modules.metrics.accuracy import conlleval
#from modules.utils.tools import *
import theano.tensor as T
import theano
import itertools
import os.path
import pickle
from theano import tensor as T, printing
from collections import OrderedDict
from theano.ifelse import ifelse
from keras.preprocessing import sequence as seq
dataType = 'int64'
def shuffle(lol, seed):
'''
lol :: list of list as input
seed :: seed the shuffling
shuffle inplace each list in the same order
'''
for l in lol:
random.seed(seed)
random.shuffle(l)
def words_in_from_down_to_top_order(sentence_tree):
#print sentence_tree
levels = np.setdiff1d(range(len(sentence_tree)),np.unique(sentence_tree)) # - zwraca slowo/a, ktore nie jest niczyim dzieckiem - czyli powinno/y byc korzeniem/korzeniami frazy/fraz
if len(levels) == 0: # wczesniej bylo != 1, co oznaczalo, ze jezeli okazuje sie jest wiecej niz jeden korzec (lub nie ma korzenia) to zwracamy None, aby pozniej rozpoznac takie zdanie i je wywalic. Ale jak robimy batche to musi byc kilka korzeni
return None, None
levels = levels.tolist()
for i in range(len(sentence_tree)):
#print i
#print levels[i]
levels.extend(np.setdiff1d(sentence_tree[levels[i]],-1))
ordered_words = np.array(levels)[levels != np.array(-1)][::-1] #odwaracmy kolejnosc na poczatku beda slowa znajdujace sie najglebiej
order = np.zeros(len(sentence_tree),dtype='int')
for i in range(len(sentence_tree)):
order[ordered_words[i]] = i
return ordered_words, order
def load_stanford_data4(labels, parents, tokens, words2ids, use_batch, batch_size, nb_classes):
def transform_labels(x, nb_classes):
if nb_classes == 3:
if x =='#' or int(x) == 0:
return 1
elif int(x) < 0:
return 0
else:
return 2
elif nb_classes == 5:
if x =='#':
return 2
else:
return int(x)+2
# elif nb_classes == 2: #jesli chcemy miec dwie klasy to neutralne wyrzucamy ze zbioru,
# if x =='#' or int(x) == 0:
# return -1
# elif int(x) < 0:
# return 0
# else:
# return 1
sentences = []
l = open(labels, "r")
# 5 klas: labels = [[2 if y=='#' else int(y)+2 for y in x.split()] for x in l.readlines()]
# Na ten moment przyjmujemy wartosc "2" w miejsce "#"
labels = [[transform_labels(y,nb_classes) for y in x.split()] for x in l.readlines()]
l.close()
p = open(parents,"r")
parents = [[int(y) for y in x.split()] for x in p.readlines()]
p.close()
t = open(tokens,"r")
tokens = [x.split() for x in t.readlines()]
t.close()
k = 0
sentence_length = 0
current_batch, batch_tokens, batch_children_ids, batch_children_positions, batch_labels = [], [], [], [], []
batch_words = []
for labels_i,parents_i,tokens_i in zip(labels,parents,tokens):
k = k + 1
s = []
for i in range(len(tokens_i)):
s.append([i,int(parents_i[i]),labels_i[i],tokens_i[i]])
if len(s) == 1 and use_batch == False: #przypadek gdy fraza sklada sie z jednego tokena
#if nb_classes == 2:
# if s[0][-1] < 0:
# continue
sentences.append([\
np.array([words2ids.get(tokens[0], -1)]),\
#wyrzucamy macierz id dzieci np.array([-1], ndmin=2),\
np.array([-1], ndmin=2), \
np.array(labels_i[0]) \
#,np.array([0])
])
else:
for i in range(len(s)): # nie wiem czy sie nie wywali dla frazy dlugosci 1
children = []
for j in range(len(s)):
if s[j][1] == i+1:
children.append(s[j][0])
s[i].append(children)
words = [x[0] for x in s]
children = seq.pad_sequences([x[4] for x in s], padding='post', value = -1)
tokens = [x[3] for x in s]
labels_in_batch = [x[2] for x in s]
ordered_words, order = words_in_from_down_to_top_order(children)
if ordered_words is None:
continue
current_sentence = [
np.array([words2ids.get(x,-1) for x in tokens])[ordered_words],
#wyrzucamy macierz id dzieci np.array([[words2ids.get(tokens[w],-1) if w>=0 else -1 for w in x]
# for x in children[ordered_words]]),
np.array([[order[w] if w>= 0 else -1 for w in x] for x in children[ordered_words]]),
np.array(labels_in_batch)[ordered_words]
,np.array(words)
]
#if nb_classes == 2:
# if current_sentence[3][-1] <0:
# continue
if use_batch == True:
# w tej chwili len(current_sentence[0]) nie jest nigdzie wykorzystywane
current_batch.append((current_sentence, len(current_sentence[0])))
if len(current_batch) % batch_size == 0:
shift = 0
for sent in range(batch_size):
##if sent > 0:
## shift = shift + current_batch[sent-1][1]
for tok in range(len(current_batch[sent][0][0])):
if sent == 0:
batch_children_positions.append(current_batch[sent][0][1][tok])
else:
batch_children_positions.append([chd+shift if chd>=0 else -1 for chd in current_batch[sent][0][1][tok]])
#batch_children_positions.append(current_batch[sent][0][2][tok])
batch_tokens.append(current_batch[sent][0][0][tok])
#wyrzucamy macierz id dzieci batch_children_ids.append(current_batch[sent][0][1][tok])
batch_labels.append(current_batch[sent][0][2][tok])
batch_words.append(current_batch[sent][0][3][tok])
#wyrzucamy macierz id dzieci batch_children_ids = seq.pad_sequences(batch_children_ids, padding='post', value = -1)
batch_children_positions = seq.pad_sequences(batch_children_positions, padding='post', value = -1)
sentences.append([
np.array(batch_tokens),
#wyrzucamy macierz id dzieci np.array(batch_children_ids),
np.array(batch_children_positions),
np.array(batch_labels)
,np.array(batch_words)
])
current_batch, batch_tokens, batch_children_positions, batch_labels = [], [], [], []
batch_words = []
else:
sentences.append(current_sentence)
# gdy liczba zdan nie jest wilokrotnosci licznosci batch, to na koncu trzeba dodac pozostale zdania:
if use_batch == True and len(current_batch) > 0:
shift = 0
for sent in range(len(current_batch)):
#if sent > 0:
# shift = shift + current_batch[sent-1][1]
for tok in range(len(current_batch[sent][0][0])):
if sent == 0:
batch_children_positions.append(current_batch[sent][0][1][tok])
else:
batch_children_positions.append([chd+shift if chd>=0 else -1 for chd in current_batch[sent][0][1][tok]])
#batch_children_positions.append(current_batch[sent][0][2][tok])
batch_tokens.append(current_batch[sent][0][0][tok])
#wyrzucamy macierz id dzieci batch_children_ids.append(current_batch[sent][0][1][tok])
batch_labels.append(current_batch[sent][0][2][tok])
batch_words.append(current_batch[sent][0][3][tok])
#wyrzucamy macierz id dzieci batch_children_ids = seq.pad_sequences(batch_children_ids, padding='post', value = -1)
batch_children_positions = seq.pad_sequences(batch_children_positions, padding='post', value = -1)
sentences.append([
np.array(batch_tokens),
#wyrzucamy macierz id dzieci np.array(batch_children_ids),
np.array(batch_children_positions),
np.array(batch_labels)
,np.array(batch_words)
])
return sentences
class model51(object):
def __init__(self, nh, nc, w2v_model_path, max_phrase_length):
'''
nh :: dimension of hidden state
nc :: number of classes
ne :: number of word embeddings in the vocabulary
de :: dimension of the word embeddings
ds :: dimension of the sentiment state
'''
self.max_phrase_length = max_phrase_length
w2vecs = pickle.load(open(w2v_model_path,"r"))
self.emb = theano.shared(w2vecs["vectors"].astype(theano.config.floatX))
self.words2ids = w2vecs["words2ids"]
ne = len(w2vecs["words2ids"])
de = w2vecs["vectors"].shape[1]
del w2vecs
r = 0.05
self.W_e_h = theano.shared(r * np.random.uniform(-1.0, 1.0,\
(de, nh)).astype(theano.config.floatX))
#self.W_sh = theano.shared(r * np.random.uniform(-1.0, 1.0,\
# (ds, nh)).astype(theano.config.floatX))
self.W_h2_y = theano.shared(r * np.random.uniform(-1.0, 1.0,\
(2*nh, nc)).astype(theano.config.floatX))
self.W_h_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0,\
(2*nh, 2*nh)).astype(theano.config.floatX))
#self.W_ssy = theano.shared(r * np.random.uniform(-1.0, 1.0,\
# (ds, nc)).astype(theano.config.floatX))
self.W_sh_h = theano.shared(r * np.random.uniform(-1.0, 1.0,\
(2*nh, nh)).astype(theano.config.floatX))
self.W_h_y = theano.shared(r * np.random.uniform(-1.0, 1.0,\
(2*nh, nc)).astype(theano.config.floatX))
self.b_h = theano.shared(r * np.random.uniform(-1.0, 1.0, 2*nh).astype(theano.config.floatX))
self.b_y = theano.shared(r * np.random.uniform(-1.0, 1.0, nc).astype(theano.config.floatX))
#self.b_h2 = theano.shared(r * np.random.uniform(-1.0, 1.0, 2*nh).astype(theano.config.floatX))
# bundle
self.params = [ self.W_h_y, self.W_e_h, self.W_sh_h, self.emb, self.b_y]
self.names = [ 'W_h_y', 'W_eh', 'W_shsh', "embeddings", "b_y"]
#norm_coefficient = theano.shared(0.0001)
#hidden_states = theano.shared(np.zeros((self.max_phrase_length+1,2*nh), dtype = theano.config.floatX))
def one_step(word_id, word_children_positions, y_true, i, hidden_states, learning_rate):
schh = hidden_states[-1] #+ 0.5 # czyli wektor zerowy
if T.neq(word_children_positions[0],-1):
tmp = word_children_positions>=0.0
idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1
#print_idx = printing.Print('idx: ')
#idx_tmp_printed = print_idx(word_children_positions[idx_tmp])
schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci
number_of_children = tmp.sum(dtype = theano.config.floatX)
number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0)
schh = schh/number_of_children
h = T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)])
#h = T.nnet.sigmoid(T.dot(self.emb[word_id],self.W_eh) + T.dot(schh,self.W_shsh) + self.bh)
current_hidden_state = hidden_states[i]
hidden_states_new = T.set_subtensor(current_hidden_state, h)
h2 = T.nnet.sigmoid(T.dot(h, self.W_h_h2))#+self.b_h2)
y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y) + self.b_y)[0]
#y_prob = T.nnet.sigmoid(T.dot(h2,self.W_h2_y))# + self.b_y)
#y_prob = y_prob/y_prob.sum()
#l2_norm = T.sum(self.W_h_h2**2) + T.sum(self.W_h2_y**2) + T.sum(self.W_e_h**2) + T.sum(self.W_sh_h**2) + T.sum(self.emb**2) + T.sum(self.b_h**2) + T.sum(self.b_y**2) + T.sum(self.b_h2**2)
cross_entropy = -T.log(y_prob[y_true]) #+ norm_coefficient * l2_norm
#current_emb = self.emb[word_id]
#new_emb = T.set_subtensor(current_emb, self.emb[word_id]-learning_rate*T.grad(cce, self.emb)[word_id])
#updates = OrderedDict([(self.W_h2_y, self.W_h2_y-learning_rate*T.grad(cce, self.W_h2_y)),
# #(self.W_h_y, self.W_h_y-learning_rate*T.grad(cce, self.W_h_y)),
# (self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cce, self.W_h_h2)),
# (self.W_e_h, self.W_e_h-learning_rate*T.grad(cce, self.W_e_h)),
# (self.W_sh_h, self.W_sh_h-learning_rate*T.grad(cce, self.W_sh_h)),
# (self.emb, self.emb-learning_rate*T.grad(cce, self.emb)), #updated_current_emb), #
# #(self.b_h, self.b_h-learning_rate*T.grad(cce,self.b_h)),
# (self.b_y, self.b_y-learning_rate*T.grad(cce,self.b_y))#,
# #(self.b_h2, self.b_h2-learning_rate*T.grad(cce,self.b_h2)),
# #(hidden_states, hidden_states_new)
# ])
return cross_entropy, hidden_states_new #, updates
y = T.vector('y',dtype=dataType)
learning_rate = T.scalar('lr',dtype=theano.config.floatX)
words = T.vector(dtype=dataType)
children_positions = T.matrix(dtype=dataType)
words_indexes = T.vector(dtype=dataType)
cross_entropy_vector, _ = theano.scan(fn=one_step, \
sequences = [words, children_positions,y,words_indexes],
outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,2*nh), dtype = theano.config.floatX))],
non_sequences = learning_rate,
n_steps = words.shape[0])
cost = T.sum(cross_entropy_vector[0])
updates = OrderedDict([(self.W_h2_y, self.W_h2_y-learning_rate*T.grad(cost, self.W_h2_y)),
#(self.W_h_y, self.W_h_y-learning_rate*T.grad(cost, self.W_h_y)),
(self.W_h_h2, self.W_h_h2-learning_rate*T.grad(cost, self.W_h_h2)),
(self.W_e_h, self.W_e_h-learning_rate*T.grad(cost, self.W_e_h)),
(self.W_sh_h, self.W_sh_h-learning_rate*T.grad(cost, self.W_sh_h)),
(self.emb, self.emb-learning_rate*T.grad(cost, self.emb)), #updated_current_emb), #
#(self.b_h, self.b_h-learning_rate*T.grad(cost,self.b_h)),
(self.b_y, self.b_y-learning_rate*T.grad(cost,self.b_y))#,
#(self.b_h2, self.b_h2-learning_rate*T.grad(cost,self.b_h2)),
])
self.train = theano.function( inputs = [words, children_positions, y, words_indexes, learning_rate],
outputs = [],
updates = updates,
allow_input_downcast=True,
mode='FAST_RUN'
)
#hidden_states = theano.shared(np.zeros((self.max_phrase_length+1,2*nh), dtype = theano.config.floatX))
def one_step_classify(word_id, word_children_positions, i, hidden_states):
schh = hidden_states[-1] #+ 0.5# czyli wektor zerowy
if T.neq(word_children_positions[0],-1):
tmp = word_children_positions>=0.0
idx_tmp = tmp.nonzero() #indeksy realne dzieci - czyli te, gdzie nie ma -1
schh = schh + hidden_states[word_children_positions[idx_tmp]].sum(axis=0) #suma stanow ukrytych dzieci
number_of_children = tmp.sum(dtype = theano.config.floatX)
number_of_children = ifelse( T.gt(number_of_children, 1.0),number_of_children, 1.0)
schh = schh/number_of_children
h = T.concatenate([T.dot(self.emb[word_id],self.W_e_h), T.dot(schh,self.W_sh_h)])
current_hidden_state = hidden_states[i]
hidden_states_new = T.set_subtensor(current_hidden_state, h)
h2 = T.nnet.sigmoid(T.dot(h, self.W_h_h2))#+self.b_h2)
y_prob = T.nnet.softmax(T.dot(h2,self.W_h2_y) + self.b_y)[0]
#y_prob = T.nnet.sigmoid(T.dot(h2,self.W_h2_y))# + self.b_y)
#y_prob = y_prob/y_prob.sum()
#updates = OrderedDict([
# (hidden_states, hidden_states_new)
# ])
return y_prob, hidden_states_new #), updates
[y_probs_classify, hidden_states ], _ = theano.scan(
fn=one_step_classify,
sequences = [words, children_positions,words_indexes],
outputs_info = [None, theano.shared(np.zeros((self.max_phrase_length+1,2*nh), dtype = theano.config.floatX))])
#print_y_probs_classify = printing.Print('y_probs_classify: ')
#y_probs_classify_printed = print_y_probs_classify(y_probs_classify)
predictions, _ = theano.scan(lambda i: T.argmax(y_probs_classify[i]),
sequences = [words_indexes])
#print_predictions = printing.Print('predictions: ')
#predictions_printed = print_predictions(predictions)
# theano functions
self.classify = theano.function(inputs=[words,children_positions,words_indexes],
outputs=predictions,
#updates = upates_hidden_states_classify,
allow_input_downcast=True,
mode='FAST_RUN'
)
def save(self, folder, e, i):
for param, name in zip(self.params, self.names):
np.save(os.path.join(folder, name + str(e) + "_" + str(i) + '.npy'), param.get_value())
if __name__ == '__main__':
#theano.config.floatX = 'float64'
file_with_filtered_embeddings = "embeddings/embedding_and_words2ids.pkl"
if not os.path.exists(file_with_filtered_embeddings):
print("Cannot find file with only needed embeddings. We use 'filter_embeddings' in order to create it.")
filter_embeddings(["data/sst/train/dlabels.txt", "data/sst/train/dparents.txt","data/sst/train/sents.toks", "data/sst/dev/dlabels.txt", "data/sst/dev/dparents.txt","data/sst/dev/sents.toks", "data/sst/test/dlabels.txt", "data/sst/test/dparents.txt","data/sst/test/sents.toks"],
"/home/norbert/Doktorat/clarin2sent/treelstm/data/glove/glove.840B.300d.txt",
file_with_filtered_embeddings)
s = {'lr':0.01, #0.03 (przy r=0.05) dobilo do dopasowania 0.9 na 500 obserwacjach po 15 epokach
#bo 40 epoki, bylo ok 0.9, a potem spadlo do stalej predykcji rownej 0,
#chociaz w zbiorze treningowym nie bylo ani jednaj obserwacji z etykieta 0 !!!
#0.03 (r=0.05) przy 5000 obs do 15 epoki stalo na ok 75% a potem spadlo dor predykcji stalej rownej 0
#0.05 - reszta j.w. nic sie nie nauczyl, a przy 10 iteracji predykcja spadla do stalej - 0
'nepochs':30,
'seed':345,
'nc':5 # number of y classes
}
# instanciate the model
batch_size = 1
for learning_rate in [0.005]: #[0.1, 0.07, 0.03, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005]:
np.random.seed(s['seed'])
random.seed(s['seed'])
h_dim = 150
#if learning_rate != 0.0005:
# time.sleep(900)
#print "model1: h_dim = ", h_dim, " h2_dim = ", h2_dim
rnn = model51( nh = h_dim,
nc = s['nc'],
w2v_model_path = file_with_filtered_embeddings, #sciezka do pliku z embeddingami
max_phrase_length = 60 )
best_prediction = 0
early_stop = 0
train_data = load_stanford_data4("data/sst/train/dlabels.txt", "data/sst/train/dparents.txt","data/sst/train/sents.toks",rnn.words2ids,True,batch_size,s['nc'])
train_data_check = load_stanford_data4("data/sst/train/dlabels.txt", "data/sst/train/dparents.txt","data/sst/train/sents.toks",rnn.words2ids,False,batch_size,s['nc'])
dev_data = load_stanford_data4("data/sst/dev/dlabels.txt", "data/sst/dev/dparents.txt","data/sst/dev/sents.toks",rnn.words2ids,False,0,s['nc'])
test_data = load_stanford_data4("data/sst/test/dlabels.txt", "data/sst/test/dparents.txt","data/sst/test/sents.toks",rnn.words2ids,False,0,s['nc'])
#print(train_data)
n_train = len(train_data)
n_dev = len(dev_data)
n_test = len(test_data)
print ""
print "model51: h_dim = ", h_dim, " learning rate = ", learning_rate
print ""
#rnn = model51( nh = h_dim,
# nc = s['nc'],
# w2v_model_path = file_with_filtered_embeddings, #sciezka do pliku z embeddingami
# max_phrase_length = 60 )
best_prediction = 0
early_stop = 0
s['clr'] = learning_rate
for e in xrange(s['nepochs']):
if early_stop == 5:
break
# shuffle
shuffle([train_data], s['seed'])
tic = time.time()
for i in range(n_train):
rnn.train(train_data[i][0],train_data[i][1], train_data[i][2], train_data[i][3], s['clr'])
# Dev:
counts_dev = np.zeros((s['nc'],s['nc']),dtype='int')
counts_dev_root = np.zeros((s['nc'],s['nc']),dtype='int')
for ii in range(n_dev):
pred = rnn.classify(dev_data[ii][0],dev_data[ii][1], dev_data[ii][3])
for j in range(len(pred)):
counts_dev[pred[j], dev_data[ii][2][j]] += 1
counts_dev_root[pred[-1], dev_data[ii][2][-1]] += 1
if np.diag(counts_dev).sum()/float(counts_dev.sum()) > best_prediction:
best_prediction = np.diag(counts_dev).sum()/float(counts_dev.sum())
early_stop = 0
else:
early_stop = early_stop + 1
# Test:
counts_test = np.zeros((s['nc'],s['nc']),dtype='int')
counts_test_root = np.zeros((s['nc'],s['nc']),dtype='int')
for i in range(n_test):
pred = rnn.classify(test_data[i][0],test_data[i][1], test_data[i][3])
for j in range(len(pred)):
counts_test[pred[j], test_data[i][2][j]] += 1
counts_test_root[pred[-1], test_data[i][2][-1]] += 1
# Train
counts = np.zeros((s['nc'],s['nc']),dtype='int')
counts_root = np.zeros((s['nc'],s['nc']),dtype='int')
for i in range(len(train_data_check)):
if i % 1 == 0: #sprawdzamy dopasowanie na 1/100 zbioru zeby oszczedzic czas
pred = rnn.classify(train_data_check[i][0],train_data_check[i][1], train_data_check[i][3])
for j in range(len(pred)):
counts[pred[j], train_data_check[i][2][j]] += 1
counts_root[pred[-1], train_data_check[i][2][-1]] += 1
print("epoch: ", e,
"V all: ", np.diag(counts_dev).sum()/float(counts_dev.sum()),
" Test all: ", np.diag(counts_test).sum()/float(counts_test.sum()),
"V root: ", np.diag(counts_dev_root).sum()/float(counts_dev_root.sum()),
" Test root: ", np.diag(counts_test_root).sum()/float(counts_test_root.sum()),
" Train: ", np.diag(counts).sum()/float(counts.sum()),
" Train root: ", np.diag(counts_root).sum()/float(counts_root.sum())
)
print(time.time()-tic)