utils.py
8.82 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import re
import os
import random
import numpy as np
import tensorflow as tf
from keras.utils.np_utils import to_categorical
from keras.preprocessing.sequence import pad_sequences
from keras import backend as K
def ensure_deterministic():
seed = 123
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(seed)
random.seed(seed)
session_conf = tf.ConfigProto(intra_op_parallelism_threads=16, inter_op_parallelism_threads=16)
tf.set_random_seed(seed)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
class Token:
def __init__(self, fields):
self.fields = fields
def __eq__(self, other_token):
return self.fields == other_token.fields
def __str__(self):
return self.fields['form']
def __repr__(self):
return self.__str__()
class Tree:
def __init__(self, tree_id, tokens, words, comments=None, probs=None, emb=None):
self.id = tree_id
self.tokens = tokens
self.words = words
self.comments = comments
self.probs = probs
self.emb = emb
def __eq__(self, other_tree):
return all([t1 == t2 for t1, t2 in zip(self.tokens, other_tree.tokens)])
def __str__(self):
return ' '.join(map(str, self.tokens))
def __repr__(self):
return self.__str__()
class TSVLoader:
columns = []
def safe_int(self, i):
try:
return int(i)
except ValueError:
return 0
def load(self, filename):
tree_id = 0
trees = []
tree = None
comments = []
with open(filename, 'r', encoding='utf-8') as f:
for line in f:
ls = line.strip().split('\t')
if line == '\n':
if max([self.safe_int(t.fields['head']) for t in tree.tokens]) < len(tree.tokens):
trees.append(tree)
tree = None
continue
if line[0] == '#':
comments.append(line.strip('\n'))
continue
if tree is None:
tree = Tree(
tree_id=tree_id,
tokens=[],
words=[],
comments=comments,
)
tree_id += 1
comments = []
fields = dict(zip(self.columns, ['__ROOT__']*len(self.columns)))
fields['id'] = '0'
fields['head'] = '0'
token = Token(
fields=fields,
)
tree.tokens.append(token)
token = Token(
fields=dict(zip(self.columns, ls)),
)
if '-' in ls[0] or '.' in ls[0]:
tree.words.append(token)
else:
tree.tokens.append(token)
if tree is not None:
if max([self.safe_int(t.fields['head']) for t in tree.tokens]) < len(tree.tokens):
trees.append(tree)
return trees
class ConllLoader(TSVLoader):
columns = [
'id',
'form',
'lemma',
'upostag',
'xpostag',
'feats',
'head',
'deprel',
'deps',
'misc',
]
class ConllSemanticLoader(TSVLoader):
columns = [
'id',
'form',
'lemma',
'upostag',
'xpostag',
'feats',
'head',
'deprel',
'deps',
'misc',
'semrel',
]
class TxtLoader:
columns = [
'id',
'form',
'lemma',
'upostag',
'xpostag',
'feats',
'head',
'deprel',
'deps',
'misc',
]
def __init__(self, semantic=False):
if semantic:
self.columns.append('semrel')
@staticmethod
def tokenize(s):
return [t for t in re.findall(r'\w+|\W', s) if ' ' not in t]
def load(self, filename):
output = []
with open(filename, 'r', encoding='utf-8') as f:
for tree_id, sent in enumerate(f):
tree = Tree(
tree_id=tree_id,
tokens=[],
words=[],
comments=[],
)
fields = dict(zip(self.columns, ['__ROOT__']*len(self.columns)))
fields['id'] = '0'
fields['head'] = '0'
token = Token(
fields=fields,
)
tree.tokens.append(token)
for token_id, token in enumerate(self.tokenize(sent.strip())):
fields = dict(zip(self.columns, ['_']*len(self.columns)))
fields['id'] = str(token_id + 1)
fields['form'] = token
token = Token(
fields=fields,
)
tree.tokens.append(token)
output.append(tree)
return output
class TSVSaver:
def save(self, filename, trees):
with open(filename, 'w', encoding='utf-8') as f:
for tree in trees:
tree_output = []
tree_output += tree.comments
for token in sorted(
tree.words + tree.tokens[1:],
key=lambda x: float(x.fields['id'].split('-')[0]),
):
line_output = []
for col in self.columns:
line_output.append(token.fields.get(col, '_'))
tree_output.append('\t'.join(line_output))
f.write('\n'.join(tree_output) + '\n\n')
class ConllSaver(TSVSaver):
columns = [
'id',
'form',
'lemma',
'upostag',
'xpostag',
'feats',
'head',
'deprel',
'deps',
'misc',
]
class ConllSemanticSaver(TSVSaver):
columns = [
'id',
'form',
'lemma',
'upostag',
'xpostag',
'feats',
'head',
'deprel',
'deps',
'misc',
'semrel',
]
class EmbeddingSaver:
def save(self, filename, trees):
with open(filename, 'w', encoding='utf-8') as f:
for tree in trees:
f.write(' '.join([str(tree.id)] + [str(e) for e in tree.emb]) + '\n')
def accuracy_score(pred, true, fields):
if len(pred) != len(true):
raise ValueError
correct = 0
total = 0
for p_tree, t_tree in zip(pred, true):
for pred_token, true_token in zip(p_tree.tokens[1:], t_tree.tokens[1:]):
same = True
for field in fields:
same = same and pred_token.fields.get(field) == true_token.fields.get(field)
if same:
correct += 1
total += 1
return correct/total
def feat_score(pred, true):
if len(pred) != len(true):
raise ValueError
correct = 0
total = 0
for p_tree, t_tree in zip(pred, true):
for pred_token, true_token in zip(p_tree.tokens[1:], t_tree.tokens[1:]):
pred_feats = set(pred_token.fields['feats'].split('|'))
true_feats = set(true_token.fields['feats'].split('|'))
if pred_feats == true_feats:
correct += 1
total += 1
return correct/total
def em_score(pred, true):
if len(pred) != len(true):
raise ValueError
correct = 0
total = 0
for p, t in zip(pred, true):
if p == t:
correct += 1
total += 1
return correct/total
def cycle_score(pred, true):
# https://sci-hub.tw/10.1002/aic.690110316
d = max([len(t.tokens) for t in pred])
pred = [[int(t.fields['head']) for t in tree.tokens] for tree in pred]
pred = pad_sequences(pred, padding='post')
pred = to_categorical(pred, num_classes=d)
pred = pred[:, 1:, 1:]
results = np.zeros(pred.shape[0])
pred_n = pred
for i in range(d - 1):
results += np.sum(np.sum(pred_n*np.eye(d - 1), axis=1), axis=1)
pred_n = pred_n @ pred
return np.mean(results > 0.0)
def print_summary(pred, true):
print('UAS: {}\nLAS: {}\nLEMMA: {}\nPOS: {}\nXPOS: {}\nFEAT: {}\nSEM: {}\nEM: {}\n'.format(
accuracy_score(pred, true, ['head']),
accuracy_score(pred, true, ['head', 'deprel']),
accuracy_score(pred, true, ['lemma']),
accuracy_score(pred, true, ['upostag']),
accuracy_score(pred, true, ['xpostag']),
feat_score(pred, true),
accuracy_score(pred, true, ['semrel']),
accuracy_score(pred, true, ['head', 'deprel', 'upostag', 'feat', 'lemma']),
))